1
|
Shin S, Kim H, Ha JH, Eun KY, Kim J, Kim Y, Choe W, Kang SJ, Min SK, Bielawski CW, Park YS. Achieving Precise Control Over the Molecular Periphery of Dibenzoixenes Through Modular Synthesis. Chemistry 2025; 31:e202404189. [PMID: 39714809 DOI: 10.1002/chem.202404189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured. The single-crystal structures of dibenzo[a,p]ixene and dibenzo[j,y]ixene reveal enantiomeric pairs with helically twisted cove edges and packing structures. The molecular edge structures are identified from the C-H bonds of the dibenzoixenes using Fourier transform infrared spectroscopy with different vibrational modes, which were further explained using density functional theory calculations. Electron spin resonance spectroscopy indicates that the zigzag-edged molecular periphery significantly affects the magnetic properties of the material. Furthermore, the electrochemical characteristics, examined using dibenzoixenes as anode materials in Li-ion batteries, reveal that the dibenzo[a,p]ixene exhibits promising Li intercalation behaviors with a specific capacity of ~120 mAh g-1. The findings of this study could facilitate the synthesis of larger π ${\pi }$ -extended systems with engineered molecular peripheries and potential application in organic electronics.
Collapse
Affiliation(s)
- Seongrok Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hwon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jee Ho Ha
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Kyung Yeon Eun
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jiyeon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yeram Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seok Ju Kang
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Christopher W Bielawski
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Young S Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
2
|
Kim J, Lee SH, Yang J. Revealing the Calcium Assisted Partial Catalytic Graphitization of Lignin-Derived Hard Carbon Anode and Its Electrochemical Behaviors in Sodium Ion Batteries. Polymers (Basel) 2025; 17:540. [PMID: 40006204 PMCID: PMC11859861 DOI: 10.3390/polym17040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Among the various contenders for next-generation sodium-ion battery anodes, hard carbons stand out for their notable reversible capacity, extended cycle life, and cost-effectiveness. Their economic advantage can be further enhanced by using inexpensive precursors, such as biomass waste. Lignin, one of the most abundant natural biopolymers on Earth, which can be readily obtained from wood, possesses a three-dimensional amorphous polymeric structure, making it a suitable candidate for producing carbonaceous materials through appropriate carbonization processes for energy storage applications. In this work, we synthesized hard carbon using lignin containing CaSO4 to facilitate partial catalytic graphitization to improve the microstructural features, such as interlayer spacing, degree of disorder, and surface defects. Partial catalytic graphitization enables hard carbon to develop an ordered structure compared with hard carbon carbonized without CaSO4 as analyzed by X-ray diffraction, Raman spectroscopy, scanning/transmission electron microscopy, and X-ray photoelectron spectroscopy. The CaSO4-aided partially catalytic graphitized hard carbon (CCG-HC) exhibited improved electrochemical performance, showing a larger portion of the low-voltage plateau-an indicator typically associated with a highly ordered structure-compared to simply carbonized hard carbon (HC). Notably, CCG-HC delivered a reversible capacity of 237 mAh g-1, retained 95.6% of its capacity over 100 cycles at 50 mA g-1, and exhibited 127 mAh g-1 at 1.0 A g-1.
Collapse
Affiliation(s)
- Jungpil Kim
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea;
| | | | - Junghoon Yang
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea;
| |
Collapse
|
3
|
Kim J. Spectroscopic Differentiation of Structural Transitions from Carbon Nanobelts to Carbon Nanotubes. J Phys Chem Lett 2024; 15:11155-11161. [PMID: 39480118 DOI: 10.1021/acs.jpclett.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In this study, simulated X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were utilized to differentiate the early stage structures as carbon nanobelts (CNBs) evolved into carbon nanotubes (CNTs). The effects of edge type, length, and diameter on the spectroscopic characteristics of armchair and zigzag CNTs were examined. Variations in XPS spectra were found to correspond to changes in the bandgap, while Raman spectra provided distinct bands associated with specific structural features. Notably, in armchair CNTs, the C 1s XPS peak positions exhibited clear differences depending on the structure. Additionally, the Kekulé vibration band and other characteristic bands in Raman spectra varied with length and diameter, enabling differentiation of armchair CNT structures. Although the structural analysis of zigzag CNTs was challenging using XPS, Raman spectroscopy proved to be effective in distinguishing structural differences. This study lays the groundwork for future spectroscopic analyses, contributing to the broader understanding of nanocarbon materials such as CNBs and CNTs and their potential applications in advanced electronic materials.
Collapse
Affiliation(s)
- Jungpil Kim
- Carbon & Light Materials Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| |
Collapse
|
4
|
Kim J. Unveiling Structural Variations in Armchair-Edge Coronoids by Spectroscopies. ACS OMEGA 2024; 9:43956-43962. [PMID: 39494005 PMCID: PMC11525506 DOI: 10.1021/acsomega.4c07966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
This study explores the electronic and vibrational properties of armchair coronoids (ACs), a unique class of polycyclic aromatic hydrocarbons with varying molecular and cavity sizes. Through density functional theory simulations, we investigated the X-ray photoelectron spectroscopy (XPS) and Raman spectra of C222, C114, C42, and their derivatives with different cavity sizes. The results reveal that band gaps and electronic properties of ACs can be precisely tuned by adjusting the molecular and cavity dimensions. XPS spectra demonstrated shifts in binding energy correlating with bandgap variations, while Raman spectra exhibited distinct C-C stretching and breathing modes. Notably, the introduction of cavities led to shifts in the breathing mode band, providing insights into the structural identification of ACs through Raman spectroscopy. The findings suggest that combining XPS and Raman spectroscopy can effectively characterize ACs, offering a comprehensive understanding of their structure-property relationships. This research lays the groundwork for future experimental and theoretical studies on the potential applications of ACs in electronic materials.
Collapse
Affiliation(s)
- Jungpil Kim
- Carbon & Light Materials Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| |
Collapse
|
5
|
Park H, Hwang J, Chae H, Kang DJ. Rapid In-Plane Pattern Growth for Large-Area Inverse Replication Through Electrohydrodynamic Instability of Polymer Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400155. [PMID: 38644332 DOI: 10.1002/smll.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Nanopatterning driven by electrohydrodynamic (EHD) instability can aid in the resolution of the drawbacks inherent in conventional imprinting or other molding methods. This is because EHD force negates the requirement of physical contact and is easily tuned. However, its potential has not examined owing to the limited size of the pattern replica (several to tens of micrometers). Thus, this study proposes a new route for large-area patterning through high-speed evolution of EHD-driven pattern growth along the in-plane axis. Through the acceleration of the in-plane growth, while selectively controlling a specific edge growth, the pattern replica area can be extended from the micro- to centimeter scale with high fidelity. Moreover, even in the case of nonuniform contact mode, the proposed rapid in-plane growth mode facilitates uniform large-scale replication, which is not possible in conventional imprinting or other molding methods.
Collapse
Affiliation(s)
- Hyunje Park
- Research Institute of Basic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jaeseok Hwang
- Wonik IPS Semiconductor Research Center, 75, Jinwisandan-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 17709, Republic of Korea
| | - Heejoon Chae
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
6
|
Han XB. Coupled Kite-to-Square Distortion Transition and Physical Properties in 2D Lead Halide Perovskite. J Phys Chem Lett 2024:7979-7991. [PMID: 39078198 DOI: 10.1021/acs.jpclett.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
2D lead halide perovskites showcase diverse electrical and optoelectrical properties due to their adaptable structural distortion, which dictates the symmetry characteristics of the material. To accommodate the geometric shape of the cation, the inorganic layer of the 2D perovskite often undergoes specific distortions such as lead-halide bond length elongation/compression and lead atom displacement. The resultant distortion manifests as a quadrilateral shape formed by Pb atoms from four adjacent four octahedrons. The degree of distortion increases as the quadrilateral deviates further from a square shape and vice versa. This quadrilateral shape not only visually represents the magnitude of distortion but also confirms its direction. During the transition from kite to square distortion under external stimuli, the positions of the Pb atoms vividly illustrate the symmetry-breaking process, corresponding to a shift from high to low symmetry states. The electrical and optoelectronic properties, including ferroelectricity, pyroelectricity, piezoelectricity, nonlinear optical properties, and characteristics related to bulky photovoltaic effects, some of them exhibit direction dependence nature. This perspective employed a visible structural distortion approach to elucidate symmetry breaking and coupling distortion transitions with eight optoelectronic physical properties in 2D layered perovskite. We review recent research advancements and outline current challenges that help us to understand the structure-property relationship of 2D perovskite.
Collapse
Affiliation(s)
- Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Baachaoui S, Hajlaoui R, Aoun SB, Fortunelli A, Sementa L, Raouafi N. Covalent surface modification of single-layer graphene-like BC 6N nanosheets with reactive nitrenes for selective ammonia sensing via DFT modeling. NANOTECHNOLOGY 2024; 35:425501. [PMID: 39025079 DOI: 10.1088/1361-6528/ad64da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Novel graphene-like nanomaterials with a non-zero bandgap are important for the design of gas sensors. The selectivity toward specific targets can be tuned by introducing appropriate functional groups on their surfaces. In this study, we use first-principles simulations, in the form of density functional theory (DFT), to investigate the covalent functionalization of a single-layer graphitized BC6N with azides to yield aziridine-functionalized adducts and explore their possible use to realize ammonia sensors. First, we determine the most favorable sites for physical adsorption and chemical reaction of methylnitrene, arising from the decomposition of methylazide, onto a BC6N monolayer. Then, we examine the thermodynamics of the [1 + 2]-cycloaddition reaction of various phenylnitrenes and perfluorinated phenylnitrenes para-substituted with (R = CO2H, SO3H) groups, demonstrating favorable energetics. We also monitor the effect of the functionalization on the electronic properties of the nanosheets via density of states and band structure analyses. Finally, we test four dBC6N to gBC6N substrates in the sensing of ammonia. We show that, thanks to their hydrogen bonding capabilities, the functionalized BC6N can selectively detect ammonia, with interaction energies varying from -0.54 eV to -1.37 eV, even in presence of competing gas such as CO2and H2O, as also confirmed by analyzing the change in the electronic properties and the values of recovery times near ambient temperature. Importantly, we model the conductance of a selected substrate alone and in presence of NH3to determine its effect on the integrated current, showing that humidity and coverage conditions should be properly tuned to use HO2C-functionalized BC6N-based nanomaterials to develop selective gas sensors for ammonia.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Rabiaa Hajlaoui
- Advanced Materials and Quantum Phenomena Laboratory, Physics Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, PO Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | | - Luca Sementa
- Consiglio Nazionale delle Ricerche, CNR-ICCOM & IPCF, 56124 Pisa, Italy
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| |
Collapse
|
8
|
Galleni L, Escudero D, Pourtois G, van Setten MJ. The C1s core levels of polycyclic aromatic hydrocarbons and styrenic polymers: A first-principles study. J Chem Phys 2024; 160:214105. [PMID: 38828810 DOI: 10.1063/5.0206503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Understanding core level shifts in aromatic compounds is crucial for the correct interpretation of x-ray photoelectron spectroscopy (XPS) of polycyclic aromatic hydrocarbons (PAHs), including acenes, as well as of styrenic polymers, which are increasingly relevant for the microelectronic industry, among other applications. The effect of delocalization through π aromatic systems on the stabilization of valence molecular orbitals has been widely investigated in the past. However, little has been reported on the impact on the deeper C1s core energy levels. In this work, we use first-principles calculations at the level of many body perturbation theory to compute the C1s binding energies of several aromatic systems. We report a C1s red shift in PAHs and acenes of increasing size, both in the gas phase and in the molecular crystal. C1s red shifts are also calculated for stacked benzene and naphthalene pairs at decreasing intermolecular distances. A C1s red shift is in addition found between oligomers of poly(p-hydroxystyrene) and polystyrene of increasing length, which we attribute to ring-ring interactions between the side-chains. The predicted shifts are larger than common instrumental errors and could, therefore, be detected in XPS experiments.
Collapse
Affiliation(s)
- Laura Galleni
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | |
Collapse
|
9
|
Yang Z, Gai X, Zou Y, Jiang Y. The Physical Mechanism of Linear and Nonlinear Optical Properties of Nanographene-Induced Chiral Inversion. Molecules 2024; 29:1053. [PMID: 38474565 DOI: 10.3390/molecules29051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Based on density functional theory (DFT) and wave function analysis, the ultraviolet and visible spectrophotometry (UV-Vis) spectra and Raman spectra of 1-meso and 1-rac obtained by the chiral separation of chiral nanographenes are theoretically investigated. The electron excitation properties of 1-meso and 1-rac are studied by means of transition density matrix (TDM) and charge density difference (CDD) diagrams. The intermolecular interaction is discussed based on an independent gradient model based on Hirshfeld partition (IGMH). The interaction of 1-meso and 1-rac with the external environment is studied using the electrostatic potential (ESP), and the electron delocalization degree of 1-meso and 1-rac is studied based on the magnetically induced current under the external magnetic field. Through the chiral separation of 1-rac, two enantiomers, 1-(P, P) and 1-(M, M), were obtained. The electrical-magnetic interaction of the molecule is revealed by analyzing the electron circular dichroism (ECD) spectra of 1-meso, 1-(P, P) and 1-(M, M), the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM). It is found that 1-(P, P) and 1-(M, M) have opposite chiral properties due to the inversion of the structure.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Xinwen Gai
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Yi Zou
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, Fushun 113001, China
| | - Yongjian Jiang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, Fushun 113001, China
| |
Collapse
|
10
|
Inose T, Toyouchi S, Hara S, Sugioka S, Walke P, Oyabu R, Fortuni B, Peeters W, Usami Y, Hirai K, De Feyter S, Uji-I H, Fujita Y, Tanaka H. Visualizing Ribbon-to-Ribbon Heterogeneity of Chemically Unzipped Wide Graphene Nanoribbons by Silver Nanowire-Based Tip-Enhanced Raman Scattering Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301841. [PMID: 37649218 DOI: 10.1002/smll.202301841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Graphene nanoribbons (GNRs), a quasi-one-dimensional form of graphene, have gained tremendous attention due to their potential for next-generation nanoelectronic devices. The chemical unzipping of carbon nanotubes is one of the attractive fabrication methods to obtain single-layered GNRs (sGNRs) with simple and large-scale production. The authors recently found that unzipping from double-walled carbon nanotubes (DWNTs), rather than single- or multi-walled, results in high-yield production of crystalline sGNRs. However, details of the resultant GNR structure, as well as the reaction mechanism, are not fully understood due to the necessity of nanoscale spectroscopy. In this regard, silver nanowire-based tip-enhanced Raman spectroscopy (TERS) is applied for single GNR analysis and investigated ribbon-to-ribbon heterogeneity in terms of defect density and edge structure generated through the unzipping process. The authors found that sGNRs originated from the inner walls of DWNTs showed lower defect densities than those from the outer walls. Furthermore, TERS spectra of sGNRs exhibit a large variety in graphitic Raman parameters, indicating a large variation in edge structures. This work at the single GNR level reveals, for the first time, ribbon-to-ribbon heterogeneity that can never be observed by diffraction-limited techniques and provides deeper insights into unzipped GNR structure as well as the DWNT unzipping reaction mechanism.
Collapse
Affiliation(s)
- Tomoko Inose
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, iCeMS Research Bldg, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuichi Toyouchi
- Departement Chemie, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Shinnosuke Hara
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
| | - Shoji Sugioka
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020, Japan
| | - Peter Walke
- Departement Chemie, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
| | - Rikuto Oyabu
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
| | - Beatrice Fortuni
- Departement Chemie, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
| | - Wannes Peeters
- Departement Chemie, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
| | - Yuki Usami
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
- Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
| | - Kenji Hirai
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020, Japan
| | - Steven De Feyter
- Departement Chemie, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
| | - Hiroshi Uji-I
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, iCeMS Research Bldg, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- Departement Chemie, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020, Japan
| | - Yasuhiko Fujita
- Departement Chemie, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
- Toray Research Center, Inc., Sonoyama 3-3-7, Otsu, Shiga, 520-8567, Japan
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST Chugoku), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Hirofumi Tanaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
- Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
| |
Collapse
|
11
|
Borin Barin G, Di Giovannantonio M, Lohr TG, Mishra S, Kinikar A, Perrin ML, Overbeck J, Calame M, Feng X, Fasel R, Ruffieux P. On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges. NANOSCALE 2023; 15:16766-16774. [PMID: 37818609 DOI: 10.1039/d3nr03736c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Graphene nanoribbons (GNRs) exhibit a broad range of physicochemical properties that critically depend on their width and edge topology. GNRs with armchair edges (AGNRs) are usually more stable than their counterparts with zigzag edges (ZGNRs) where the low-energy spin-polarized edge states render the ribbons prone to being altered by undesired chemical reactions. On the other hand, such edge-localized states make ZGNRs highly appealing for applications in spintronic and quantum technologies. For GNRs fabricated via on-surface synthesis under ultrahigh vacuum conditions on metal substrates, the expected reactivity of zigzag edges is a serious concern in view of substrate transfer and device integration under ambient conditions, but corresponding investigations are scarce. Using 10-bromo-9,9':10',9''-teranthracene as a precursor, we have thus synthesized hexanthene (HA) and teranthene (TA) as model compounds for ultrashort GNRs with mixed armchair and zigzag edges, characterized their chemical and electronic structure by means of scanning probe methods, and studied their chemical reactivity upon air exposure by Raman spectroscopy. We present a detailed identification of molecular orbitals and vibrational modes, assign their origin to armchair or zigzag edges, and discuss the chemical reactivity of these edges based on characteristic Raman spectral features.
Collapse
Affiliation(s)
- Gabriela Borin Barin
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Marco Di Giovannantonio
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Thorsten G Lohr
- Center for Advancing Electronics Dresden, Department of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany
| | - Shantanu Mishra
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Amogh Kinikar
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Mickael L Perrin
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jan Overbeck
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Michel Calame
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Xinliang Feng
- Center for Advancing Electronics Dresden, Department of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Roman Fasel
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Pascal Ruffieux
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
12
|
McMahon CJ, Martinez B, Henry CS. Characterization of Factors Affecting Stripping Voltammetry on Thermoplastic Electrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2023; 170:096507. [PMID: 37807977 PMCID: PMC10552556 DOI: 10.1149/1945-7111/acfa68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Thermoplastic carbon electrodes (TPEs) are an alternative form of carbon composite electrodes that have shown excellent electrochemical performance with applications in biological sensing. However, little has been done to apply TPEs to environmental sensing, specifically heavy metal analysis. The work here focuses on lead analysis and based on their electrochemical properties, TPEs are expected to outperform other carbon composite materials; however, despite testing multiple formulations, TPEs showed inferior performance. Detailed electrode characterization was conducted to examine the cause for poor lead sensing behavior. X-Ray photoelectron spectroscopy (XPS) was used to analyze the surface functional groups, indicating that acidic and alkaline functional groups impact lead electrodeposition. Further, scanning electron microscopy (SEM) and electrochemical characterization demonstrated that both the binder and graphite can influence the surface morphology, electroactive area, and electron kinetics.
Collapse
Affiliation(s)
| | | | - Charles S Henry
- Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
13
|
Yan W, Bhuiyan FH, Tang C, Wei L, Jiang Y, Jang S, Liu Y, Wu J, Wang W, Wang Y, Martini A, Qian L, Kim SH, Chen L. Understanding and Preventing Lubrication Failure at the Carbon Atomic Steps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301515. [PMID: 37162454 DOI: 10.1002/smll.202301515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Indexed: 05/11/2023]
Abstract
Two-dimensional (2D) lamellar materials are normally capable of rendering super-low friction, wear protection, and adhesion reduction in nanoscale due to their ultralow shear strength between two basal plane surfaces. However, high friction at step edges prevents the 2D materials from achieving super-low friction in macroscale applications and eventually leads to failure of lubrication performance. Here, taking graphene as an example, the authors report that not all step edges are detrimental. The armchair (AC) step edges are found to have only a minor topographic effect on friction, while the zigzag (ZZ) edges cause friction two orders of magnitude larger than the basal plane. The AC step edge is less reactive and thus more durable. However, the ZZ structure prevails when step edges are produced mechanically, for example, through mechanical exfoliation or grinding of graphite. The authors found a way to make the high-friction ZZ edge superlubricious by reconstructing the (6,6) hexagon structure to the (5,7) azulene-like structure through thermal annealing in an inert gas environment. This will facilitate the realization of graphene-based superlubricity over a wide range of industrial applications in which avoiding the involvement of step edges is difficult.
Collapse
Affiliation(s)
- Wenmeng Yan
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Fakhrul H Bhuiyan
- Department of Mechanical Engineering, University of California, Merced, CA, 95343, USA
| | - Chuan Tang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Liang Wei
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yilong Jiang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Seokhoon Jang
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yangqin Liu
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences and State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Wen Wang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yang Wang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California, Merced, CA, 95343, USA
| | - Linmao Qian
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lei Chen
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| |
Collapse
|
14
|
Luo Y, Martin-Jimenez A, Pisarra M, Martin F, Garg M, Kern K. Imaging and controlling coherent phonon wave packets in single graphene nanoribbons. Nat Commun 2023; 14:3484. [PMID: 37311753 DOI: 10.1038/s41467-023-39239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
The motion of atoms is at the heart of any chemical or structural transformation in molecules and materials. Upon activation of this motion by an external source, several (usually many) vibrational modes can be coherently coupled, thus facilitating the chemical or structural phase transformation. These coherent dynamics occur on the ultrafast timescale, as revealed, e.g., by nonlocal ultrafast vibrational spectroscopic measurements in bulk molecular ensembles and solids. Tracking and controlling vibrational coherences locally at the atomic and molecular scales is, however, much more challenging and in fact has remained elusive so far. Here, we demonstrate that the vibrational coherences induced by broadband laser pulses on a single graphene nanoribbon (GNR) can be probed by femtosecond coherent anti-Stokes Raman spectroscopy (CARS) when performed in a scanning tunnelling microscope (STM). In addition to determining dephasing (~440 fs) and population decay times (~1.8 ps) of the generated phonon wave packets, we are able to track and control the corresponding quantum coherences, which we show to evolve on time scales as short as ~70 fs. We demonstrate that a two-dimensional frequency correlation spectrum unequivocally reveals the quantum couplings between different phonon modes in the GNR.
Collapse
Affiliation(s)
- Yang Luo
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Alberto Martin-Jimenez
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Michele Pisarra
- INFN-LNF, Gruppo Collegato di Cosenza, Via P. Bucci, cubo 31C, 87036, Rende (CS), Italy
| | - Fernando Martin
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Faraday 9, Cantoblanco, 28049, Madrid, Spain
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Manish Garg
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Park S, Yang J, Lee HM, Lee YS, Lee YK, Yamada Y, Lee N, Kim J. Effect of the Position of Amine Groups on the CO 2, CH 4, and H 2 Adsorption Performance of Graphene Nanoflakes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Sangmin Park
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Junghoon Yang
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Hye-Min Lee
- Research & Development Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Banyong-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Young-Seak Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoon Kyeung Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yasuhiro Yamada
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Nodo Lee
- Materials & Devices Advanced Research Institute, LG Electronics, 10, Magokjungang-ro, Gangseo-gu, Seoul 07796, Republic of Korea
| | - Jungpil Kim
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| |
Collapse
|
16
|
Kundalevich A, Zyubin A, Matveeva K, Samusev I, Lyatun I. Determination of Anthracene Derivatives in Baltic Amber Using SERS. SENSORS (BASEL, SWITZERLAND) 2023; 23:2161. [PMID: 36850758 PMCID: PMC9962695 DOI: 10.3390/s23042161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The article describes the results of Raman spectroscopy and SERS for the study of fluorescent components of Baltic amber via the extraction method. Using SERS, it was possible to confirm the presence of anthracene derivatives in amber: tetracene and benzanthracene. It has been shown that SERS methods are effective for the detection of aromatic compounds; they increase the registered Raman signal and make it possible to identify peaks characteristic of the compounds under study. By combining experimental methods with DFT simulations, anthracene derivatives were modeled and confirmed to be present in the structure of Baltic amber. A combination of the proposed methods can be used to distinguish between different types of amber and isolate the necessary amber components. The obtained results are promising for compiling spectral maps of ambers for their possible classification by their place of origin.
Collapse
Affiliation(s)
- Anna Kundalevich
- Research and Education Center “Fundamental and Applied Photonics. Nanophotonics”, Immanuel Kant Baltic Federal University, A. Nevskogo 14, 236016 Kaliningrad, Russia
| | - Andrey Zyubin
- Research and Education Center “Fundamental and Applied Photonics. Nanophotonics”, Immanuel Kant Baltic Federal University, A. Nevskogo 14, 236016 Kaliningrad, Russia
| | - Karina Matveeva
- Research and Education Center “Fundamental and Applied Photonics. Nanophotonics”, Immanuel Kant Baltic Federal University, A. Nevskogo 14, 236016 Kaliningrad, Russia
| | - Ilia Samusev
- Research and Education Center “Fundamental and Applied Photonics. Nanophotonics”, Immanuel Kant Baltic Federal University, A. Nevskogo 14, 236016 Kaliningrad, Russia
| | - Ivan Lyatun
- The International Research Center “X-ray Coherent Optics”, Immanuel Kant Baltic Federal University, A. Nevskogo 14, 236016 Kaliningrad, Russia
| |
Collapse
|
17
|
Scherb S, Hinaut A, Yao X, Götz A, Al-Hilfi SH, Wang XY, Hu Y, Qiu Z, Song Y, Müllen K, Glatzel T, Narita A, Meyer E. Solution-Synthesized Extended Graphene Nanoribbons Deposited by High-Vacuum Electrospray Deposition. ACS NANO 2023; 17:597-605. [PMID: 36542550 PMCID: PMC9835822 DOI: 10.1021/acsnano.2c09748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Solution-synthesized graphene nanoribbons (GNRs) facilitate various interesting structures and functionalities, like nonplanarity and thermolabile functional groups, that are not or not easily accessible by on-surface synthesis. Here, we show the successful high-vacuum electrospray deposition (HVESD) of well-elongated solution-synthesized GNRs on surfaces maintained in ultrahigh vacuum. We compare three distinct GNRs, a twisted nonplanar fjord-edged GNR, a methoxy-functionalized "cove"-type (or also called gulf) GNR, and a longer "cove"-type GNR both equipped with alkyl chains on Au(111). Nc-AFM measurements at room temperature with submolecular imaging combined with Raman spectroscopy allow us to characterize individual GNRs and confirm their chemical integrity. The fjord-GNR and methoxy-GNR are additionally deposited on nonmetallic HOPG and SiO2, and fjord-GNR is deposited on a KBr(001) surface, facilitating the study of GNRs on substrates, as of now not accessible by on-surface synthesis.
Collapse
Affiliation(s)
- Sebastian Scherb
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Antoine Hinaut
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Xuelin Yao
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Alicia Götz
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Samir H. Al-Hilfi
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiao-Ye Wang
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yunbin Hu
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zijie Qiu
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yiming Song
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Klaus Müllen
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Thilo Glatzel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Akimitsu Narita
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| |
Collapse
|
18
|
Carboxyl Functionalization of N-MWCNTs with Stone-Wales Defects and Possibility of HIF-1α Wave-Diffusive Delivery. Int J Mol Sci 2023; 24:ijms24021296. [PMID: 36674808 PMCID: PMC9866222 DOI: 10.3390/ijms24021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) are widely used for drug delivery. One of the main challenges is to clarify their interaction with hypoxia-inducible factor 1 alpha (HIF-1α), the lack of which leads to oncological and cardiovascular diseases. In the presented study, N-MWCNTs were synthesized by catalytic chemical vapor deposition and irradiated with argon ions. Their chemical state, local structure, interfaces, Stone-Wales defects, and doping with nitrogen were analyzed by high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Using experimental data, supercells of functionalized N-MWCNTs with an oxygen content of 2.7, 4 and 6 at. % in carboxyl groups were built by quantum chemical methods. Our analysis by the self-consistent charge density functional tight-binding (SCC DFTB) method shows that a key role in the functionalization of CNTs with carboxyl groups belongs to Stone-Wales defects. The results of research in the decoration of CNTs with HIF-1α demonstrate the possibility of wave-diffusion drug delivery. The nature of hybridization and relaxation determines the mechanism of oxygen regulation with HIF-1α molecules, namely, by OH-(OH-C) and OH-(O=C) chemical bonds. The concentration dependence of drug release in the diffusion mode suggests that the best pattern for drug delivery is provided by the tube with a carboxylic oxygen content of 6 at. %.
Collapse
|
19
|
Bhoyate SD, Kim J, de Souza FM, Lin J, Lee E, Kumar A, Gupta RK. Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Kim DY, Lee G, Lee GY, Kim J, Jeon K, Kim KS. Hybrid 1D/2D nanocarbon-based conducting polymer nanocomposites for high-performance wearable electrodes. NANOSCALE ADVANCES 2022; 4:4570-4578. [PMID: 36341283 PMCID: PMC9595188 DOI: 10.1039/d2na00220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
A low interfacial contact resistance is a challenge in polymer nanocomposites based on conductive nanomaterials for high-performance wearable electrode applications. Herein, a polydimethylsiloxane (PDMS)-based flexible nanocomposite incorporating high-conductivity 1D single-walled carbon nanotubes (SWCNTs) and 2D reduced graphene oxide (r-GO) was developed for high-performance electrocardiogram (ECG) wearable electrodes. A PDMS-SWCNT (P-SW; type I) nanocomposite containing only SWCNTs (2 wt%), exhibited rough and non-uniform surface morphology owing to the strong bundling effect of as-grown SWCNTs and randomly entangled aggregate structures and because of inefficient vacuum degassing (i.e., R P-SW = 1871 Ω). In contrast, owing to the hybrid structure of the SWCNTs (1 wt%) and r-GO (1 wt%), the PDMS-SWCNTs/r-GO (P-SW/r-GO; type II) nanocomposite exhibited uniform surface characteristics and low contact resistance (i.e., R P-SW/r-GO = 63 Ω) through the formation of hybrid and long conducting pathways. The optimized nanocomposite (P-SW/r-GO/f; type III) possessed a fabric-assisted structure that enabled tunable and efficient vacuum degassing and curing conditions. Additionally, a long and wide conducting pathway was formed through more uniform and dense interconnected structures, and the contact resistance was drastically reduced (i.e., R P-SW/r-GO/f = 15 Ω). The performance of the electrodes fabricated using the optimized nanocomposites was the same or higher than that of commercial Ag/AgCl gel electrodes during real-time measurement for ECG Bluetooth monitoring. The developed high-performance hybrid conducting polymer electrodes are expected to contribute significantly to the expansion of the application scope of wearable electronic devices and wireless personal health monitoring systems.
Collapse
Affiliation(s)
- Dong Young Kim
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON) 110-11 Banryong-ro, Deokjin-gu Jeonju 54852 Republic of Korea
| | - Geonhee Lee
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Centre, Sejong University Seoul 05006 Republic of Korea
| | - Gil Yong Lee
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Centre, Sejong University Seoul 05006 Republic of Korea
| | - Jungpil Kim
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology (KITECH) 222 Palbok-ro Deokjin-gu Jeonju 54853 Republic of Korea
| | - Kwangu Jeon
- E-Cube Materials 67, Yusang-ro, Deokjin-gu Jeonju 54852 Republic of Korea
| | - Keun Soo Kim
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Centre, Sejong University Seoul 05006 Republic of Korea
| |
Collapse
|
21
|
Bobenko N, Egorushkin V, Ponomarev A. Hysteresis in Heat Capacity of MWCNTs Caused by Interface Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3139. [PMID: 36144926 PMCID: PMC9503709 DOI: 10.3390/nano12183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The paper is concerned with the study of structural disorder as well as the emergence and causes of heat capacity hysteresis in multiwall carbon nanotubes. The investigation methods are X-ray diffraction analysis, Raman spectroscopy, transmission electron microscopy, and calorimetric tests: thermogravimetric analysis, differential scanning calorimetry, and the thermal relaxation method for heat capacity hysteresis. Multiwall carbon nanotubes are shown to be composed of one or several types of zigzag-armchair domains. The domain structure of nanotube samples is responsible for the generation of uniaxial elastic microstrains and viscoelastic bending strains at domain interfaces. The thermomechanical behavior of interfaces is the chief cause of temperature hysteresis of heat capacity. The number of hystereses corresponds to the number of domain types in the structure, and values of hysteresis are determined by the crystallite size, thermal conductivity, and normal temperature distribution of strain. The found mechanism of heat capacity hysteresis can be helpful in preventing jumps in thermal properties and managing thermal memory in multiwall carbon nanotubes.
Collapse
|
22
|
Chen L, Yang J, Zhang M, Gao M, Su J, Huang Y, Zhang Z, Wang Z, Xu L, Shen B. Theoretical Study of NO Adsorption by Hydroxyl-Containing Char with the Participation of Na/K. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9940-9954. [PMID: 35917436 DOI: 10.1021/acs.langmuir.2c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of the effects of Na and K on the heterogeneous adsorption of hydroxyl-containing char with NO is important for the clean utilization of high alkali coal. In this paper, the effects of Na/K atoms on the adsorption of NO on the char surface were investigated at the GGA-PBE level by choosing zigzag type, armchair type, and saturated hydroxyl-containing char structures based on DFT. It was found that the adsorption stability of NO on structures with active sites was greater for sites close to the hydroxyl group than that for sites far from the hydroxyl group. The stability of char doped by Na/K is related to the char structure and the position of functional groups. The most stable Na/K doped structures are Z-OH-2 (Eads= -350.50 kJ/mol) and A-OH-1-2 (Eads= -339.17 kJ/mol), respectively. The participation of Na/K can increase the adsorption energy of the three structures with NO, and especially the adsorption energy of saturated char with NO is increased by as much as 5 times. The reason for that is the promotion of the hybridization of the C and NO p orbitals. The comprehensive analysis of electrostatic potential, charge transfer, and front orbitals indicates that the effects of decorated sodium and potassium atoms on the char surface are very similar. This study lays a theoretical foundation for the study of the heterogeneous reduction process.
Collapse
Affiliation(s)
- Long Chen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiancheng Yang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Engineering Research Center of Pollution Control in Power System, Tianjin 300401, China
| | - Mingkai Zhang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Mengkai Gao
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiachun Su
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yuan Huang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhikun Zhang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Engineering Research Center of Pollution Control in Power System, Tianjin 300401, China
| | - Zhuozhi Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lianfei Xu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Engineering Research Center of Pollution Control in Power System, Tianjin 300401, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
23
|
Kumar S, Pratap S, Kumar V, Mishra RK, Gwag JS, Chakraborty B. Electronic, transport, magnetic and optical properties of graphene nanoribbons review. LUMINESCENCE 2022. [PMID: 35850156 DOI: 10.1002/bio.4334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Low dimensional materials have attracted great research interest from both theoretical and experimental point of view. These materials exhibit novel physical and chemical properties due to the confinement effect in low dimensions. The experimental observations of graphene open a new platform to study the physical properties of materials restricted to two dimensions. This featured article provides a review on the novel properties of quasi one-dimensional (1D) material known as graphene nanoribbon. Graphene nanoribbons can be obtained by unzipping carbon nanotubes (CNTs) or cutting the graphene sheet. Alternatively, it is also called the finite termination of graphene edges. It gives rise different edge geometries namely zigzag and armchair among others. There are various physical and chemical techniques to realize these materials. Depending on the edge type termination, these are called the zigzag and armchair graphene nanoribbons (ZGNR and AGNR). These edges play an important role in controlling the properties of graphene nanoribbons. The present review article provides an overview of the electronic, transport, optical and magnetic properties of graphene nanoribbons. However, there are different ways to tune these properties for device applications. Here, some of them are highlighted such as external perturbations and chemical modifications. Few applications of graphene nanoribbon have and chemical modifications. Few applications of graphene nanoribbon have also been briefly discussed.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Surender Pratap
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Vipin Kumar
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
24
|
Kim KS, Lee HM, Kim JH, Jung I, Na W, Lee BS, Kim BJ, Kim J. Designing kinetics of graphene composited multiscale porous carbon for advancing energy storage performance of supercapacitors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Ponomarev A, Egorushkin V, Bobenko N, Barabashko M, Rezvanova A, Belosludtseva A. On the Possible Nature of Armchair-Zigzag Structure Formation and Heat Capacity Decrease in MWCNTs. MATERIALS 2022; 15:ma15020518. [PMID: 35057233 PMCID: PMC8777848 DOI: 10.3390/ma15020518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/01/2023]
Abstract
Structural disorder and temperature behavior of specific heat in multi walled carbon nanotubes (MWCNTs) have been investigated. The results of X-ray diffractometry, Raman spectroscopy, and transmission electron microscopy (TEM) images are analyzed. The thermodynamic theory of the zigzag-armchair domain structure formation during nanotube synthesis is developed. The influence of structural disorder on the temperature behavior of specific heat is investigated. The size of domains was estimated at ~40 nm. A decrease in heat capacity is due to this size effect. The revealed dependence of the heat capacity of MWCNTs on the structural disorder allows control over thermal properties of nanotubes and can be useful for the development of thermoelectric, thermal interface materials and nanofluids based on them.
Collapse
Affiliation(s)
- Alexander Ponomarev
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, 634055 Tomsk, Russia; (A.P.); (V.E.); (A.R.); (A.B.)
| | - Valeriy Egorushkin
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, 634055 Tomsk, Russia; (A.P.); (V.E.); (A.R.); (A.B.)
| | - Nadezhda Bobenko
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, 634055 Tomsk, Russia; (A.P.); (V.E.); (A.R.); (A.B.)
- Correspondence: ; Tel.: +7-3822-286-814
| | - Maksym Barabashko
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine (B. Verkin ILTPE NASU), 47 Nauky Ave., 61103 Kharkov, Ukraine;
| | - Anastasiya Rezvanova
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, 634055 Tomsk, Russia; (A.P.); (V.E.); (A.R.); (A.B.)
| | - Anna Belosludtseva
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, 634055 Tomsk, Russia; (A.P.); (V.E.); (A.R.); (A.B.)
| |
Collapse
|
26
|
Yang J, Choi D, Kim KS, Kim DU, Kim J. Poly(vinylalcohol) (PVA) Assisted Sol-Gel Fabrication of Porous Carbon Network-Na 3V 2(PO 4) 3 (NVP) Composites Cathode for Enhanced Kinetics in Sodium Ion Batteries. Polymers (Basel) 2021; 14:polym14010149. [PMID: 35012171 PMCID: PMC8747463 DOI: 10.3390/polym14010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Na3V2(PO4)3 is regarded as one of the promising cathode materials for next-generation sodium ion batteries, but its undesirable electrochemical performances due to inherently low electrical conductivity have limited its direct use for applications. Motivated by the limit, this study employed a porous carbon network to obtain a porous carbon network–Na3V2(PO4)3 composite by using poly(vinylalcohol) assised sol-gel method. Compared with the typical carbon-coating approach, the formation of a porous carbon network ensured short ion diffusion distances, percolating electrolytes by distributing nanosized Na3V2(PO4)3 particles in the porous carbon network and suppressing the particle aggregation. As a result, the porous carbon network–Na3V2(PO4)3 composite exhibited improved electrochemical performances, i.e., a higher specific discharge capacity (~110 mAh g−1 at 0.1 C), outstanding kinetic properties (~68 mAh g−1 at 50 C), and stable cyclic stability (capacity retention of 99% over 100 cycles at 1 C).
Collapse
Affiliation(s)
- Junghoon Yang
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology, Jeonju 54853, Korea; (D.C.); (K.-S.K.); (D.U.K.)
- Correspondence: (J.Y.); (J.K.)
| | - Duyoung Choi
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology, Jeonju 54853, Korea; (D.C.); (K.-S.K.); (D.U.K.)
| | - Kwang-Seok Kim
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology, Jeonju 54853, Korea; (D.C.); (K.-S.K.); (D.U.K.)
| | - Dae Up Kim
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology, Jeonju 54853, Korea; (D.C.); (K.-S.K.); (D.U.K.)
| | - Jungpil Kim
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology, Jeonju 54853, Korea; (D.C.); (K.-S.K.); (D.U.K.)
- Correspondence: (J.Y.); (J.K.)
| |
Collapse
|
27
|
Nguyen V, Etz BD, Pylypenko S, Vyas S. Periodic Trends behind the Stability of Metal Catalysts Supported on Graphene with Graphitic Nitrogen Defects. ACS OMEGA 2021; 6:28215-28228. [PMID: 34723019 PMCID: PMC8552480 DOI: 10.1021/acsomega.1c04306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
This study explored the fundamental chemical intricacies behind the interactions between metal catalysts and carbon supports with graphitic nitrogen defects. These interactions were probed by examining metal adsorption, specifically, the location of adsorption and the electronic structure of metal catalysts as the basis for the metal-support interactions (MSIs). A computational framework was developed, and a series of 12 transition metals was systematically studied over various graphene models with graphitic nitrogen defect(s). Different modeling approaches served to provide insights into previous MSI computational discrepancies, reviewing both truncated and periodic graphene models. The computational treatment affected the magnitudes of adsorption energies between the metals and support; however, metals generally followed the same trends in their MSI. It was found that the addition of the nitrogen dopant improved the MSI by promoting electronic rearrangement from the metals' d- to s-orbitals for greater orbital overlap with the carbon support, shown with increased favorable adsorption. Furthermore, the study observed periodic trends that were adept descriptors of the MSI fundamental chemistries.
Collapse
Affiliation(s)
- Vu Nguyen
- Department of Chemistry, Colorado
School of Mines, 1012
14th Street, Golden, Colorado 80401, United States
| | - Brian D. Etz
- Department of Chemistry, Colorado
School of Mines, 1012
14th Street, Golden, Colorado 80401, United States
| | - Svitlana Pylypenko
- Department of Chemistry, Colorado
School of Mines, 1012
14th Street, Golden, Colorado 80401, United States
| | - Shubham Vyas
- Department of Chemistry, Colorado
School of Mines, 1012
14th Street, Golden, Colorado 80401, United States
| |
Collapse
|
28
|
Kim J, Lee N, Choi D, Kim DY, Kawai R, Yamada Y. Pentagons and Heptagons on Edges of Graphene Nanoflakes Analyzed by X-ray Photoelectron and Raman Spectroscopy. J Phys Chem Lett 2021; 12:9955-9962. [PMID: 34617766 DOI: 10.1021/acs.jpclett.1c02524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identifying pentagons and heptagons in graphene nanoflake (GNF) structures at the atomic scale is important to completely understand the chemical and physical properties of these materials. Herein, we used X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy to analyze the spectral features of GNFs according to the position of pentagons and heptagons introduced onto their zigzag and armchair edges. The XPS peak maxima were shifted to higher binding energies by introducing the pentagons or heptagons on armchair rather than zigzag edges, and the structures could be distinguished depending on the positions of the introduced pentagons or heptagons. Raman spectroscopic analyses also revealed that the position of edges with introduced pentagons or heptagons could also be identified using Raman spectroscopy, with characteristic bands appearing at 800-1200 cm-1, following the introduction of either pentagons or heptagons on armchair edges. This precise spectroscopic identification of pentagons and heptagons in GNFs provides the groundwork for the analysis of graphene-related materials.
Collapse
Affiliation(s)
- Jungpil Kim
- Carbon Materials Application Research Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Nodo Lee
- Materials & Devices Advanced Research Institute, LG Electronics, 10, Magokjungang-ro, Gangseo-gu, Seoul 07796, Republic of Korea
| | - Duyoung Choi
- Carbon Materials Application Research Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Dong Young Kim
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ryouhei Kawai
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Yasuhiro Yamada
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
29
|
Kim DY, Kim KS, Yang CM, Kim J. Water Adsorption Behavior on a Highly Dense Single-Walled Carbon Nanotube Film with an Enhanced Interstitial Space. ACS OMEGA 2021; 6:7015-7022. [PMID: 33748615 PMCID: PMC7970577 DOI: 10.1021/acsomega.0c06302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
In this study, we describe the adsorption behavior of water (H2O) in the interstitial space of single-walled carbon nanotubes (SWCNTs). A highly dense SWCNT (HD-SWCNT) film with a remarkably enhanced interstitial space was fabricated through mild HNO3/H2SO4 treatment. The N2, CO2, and H2 adsorption isotherm results indicated remarkably developed micropore volumes (from 0.10 to 0.40 mL g-1) and narrower micropore widths (from 1.5 to 0.9 nm) following mild HNO3/H2SO4 treatment, suggesting that the interstitial space was increased from the initial densely-packed network assembly structure of the SWCNTs. The H2O adsorption isotherm of the HD-SWCNT film at 303 K showed an increase in H2O adsorption (i.e., by ∼170%), which increased rapidly from the critical value of relative pressure (i.e., 0.3). Despite the remarkably enhanced adsorption capacity of H2O, the rates of H2O adsorption and desorption in the interstitial space did not change. This result shows an adsorption behavior different from that of the fast transport of H2O molecules in the internal space of the SWCNTs. In addition, the adsorption capacities of N2, CO2, H2, and H2O molecules in the interstitial space of the HD-SWCNT film showed a linear relationship with the kinetic diameter, indicating an adsorption behavior that is highly dependent on the kinetic diameter.
Collapse
Affiliation(s)
- Dong Young Kim
- Department
of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keun Soo Kim
- Department
of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea
| | - Cheol-Min Yang
- Institute
of Advanced Composite Materials, Korea Institute
of Science and Technology (KIST), 92 Chudong-ro, Wanju-gun, Jeonbuk 55324, Korea
| | - Jungpil Kim
- Carbon
Materials Application Research Group, Korea
Institute of Industrial Technology (KITECH), 222 Palbok-ro,
Deokjin-gu, Jeonju 54853, Korea
| |
Collapse
|
30
|
Kim J, Han JW, Yamada Y. Heptagons in the Basal Plane of Graphene Nanoflakes Analyzed by Simulated X-ray Photoelectron Spectroscopy. ACS OMEGA 2021; 6:2389-2395. [PMID: 33521477 PMCID: PMC7841947 DOI: 10.1021/acsomega.0c05717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The performance of graphene-based electronic devices depends critically on the existence of topological defects such as heptagons. Identifying heptagons at the atomic scale is important to completely understand the electronic properties of these materials. In this study, we report an atomic-scale analysis of graphene nanoflakes with two to eight isolated or connected heptagons, using simulated C 1s X-ray photoelectron spectroscopy (XPS) to estimate the XPS profiles depending on the density and the position of the heptagons. The introduction of up to 24% of isolated heptagons shifted the peak position toward high binding energies (284.0 to 284.3 eV), whereas the introduction of up to 39% of connected heptagons shifted the calculated peak position toward low binding energies (284.0 to 283.5 eV). The presence of heptagons also influenced the full width at half-maximum (FWHM). The introduction of 24% of isolated heptagons increased the FWHMs from 1.25 to 1.50 eV. However, the introduction of connected heptagons did not increase the FWHMs above 1.40 eV. The FWHMs increased to 1.40 eV for 19% of connected heptagons, but did not increase further as the percentage of connected heptagons increased to 39%. Based on the calculated results, the XPS profiles of graphene nanoflakes containing heptagons with different densities and positions can be obtained. Our precise identification of heptagons in graphene nanoflakes by XPS lays the groundwork for the analysis of graphene.
Collapse
Affiliation(s)
- Jungpil Kim
- Carbon
Material Application Research Group, Korea
Institute of Industrial Technology, 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic
of Korea
| | - Jang-Woo Han
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Yasuhiro Yamada
- Graduate
School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
31
|
Rezvani Jalal N, Madrakian T, Afkhami A, Ghoorchian A. In Situ Growth of Metal-Organic Framework HKUST-1 on Graphene Oxide Nanoribbons with High Electrochemical Sensing Performance in Imatinib Determination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4859-4869. [PMID: 31908170 DOI: 10.1021/acsami.9b18097] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metal-organic frameworks (MOFs) have been previously investigated as electrode materials for developing electrochemical sensors. They have usually been reported to suffer from poor conductivity and improvement in the conductivity of MOFs is still a great challenge. Here, we reported the fabrication of an electrochemical sensor based on the in situ growth of framework HKUST-1 on conductive graphene oxide nanoribbons (GONRs)-modified glassy carbon electrode (GCE) (HKUST-1/GONRs/GCE). The as-fabricated modified electrode was characterized using field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, Fourier transform infrared, X-ray diffraction, electrochemical impedance spectroscopy, cyclic voltammetry, and Raman spectroscopy. The voltammetric response of HKUST-1/GONRs/GCE toward Imatinib (IMA), as an anticancer drug, is dramatically higher than HKUST-1/GCE because of the synergic effect of the GONRs and HKUST-1 framework. The calibration curve at the HKUST-1/GONRs/GCE for IMA covered two linear dynamic ranges, 0.04-1.0 and 1.0-80 μmol L-1, with a detection limit of 0.006 μmol L-1 (6 nmol L-1). Taking advantage of the conductivity of GONRs and large surface area of HKUST-1, a sensitive modified electrode was developed for the electrochemical determination of IMA. The present method provides an effective strategy to solve the poor conductivity of the MOFs. Finally, the obtained electrochemical performance made this modified electrode promising in the determination of IMA in urine and serum samples.
Collapse
Affiliation(s)
| | - Tayyebeh Madrakian
- Faculty of Chemistry , Bu-Ali Sina University , Hamedan 6517838695 , Iran
| | - Abbas Afkhami
- Faculty of Chemistry , Bu-Ali Sina University , Hamedan 6517838695 , Iran
| | - Arash Ghoorchian
- Faculty of Chemistry , Bu-Ali Sina University , Hamedan 6517838695 , Iran
| |
Collapse
|
32
|
A New Approach of Mathematical Analysis of Structure of Graphene as a Potential Material for Composites. MATERIALS 2019; 12:ma12233918. [PMID: 31783513 PMCID: PMC6926717 DOI: 10.3390/ma12233918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
The new analysis of a simplified plane model of single-layered graphene is presented in this work as a potential material for reinforcement in ultralight and durable composites. However, owing to the clear literature discrepancies regarding the mechanical properties of graphene, it is extremely difficult to conduct any numerical analysis to design parts of machines and devices made of composites. Therefore, it is necessary to first systemize the analytical and finite element method (FEM) calculations, which will synergize mathematical models, used in the analysis of mechanical properties of graphene sheets, with the very nature of the chemical bond. For this reason, the considered model is a hexagonal mesh simulating the bonds between carbon atoms in graphene. The determination of mechanical properties of graphene was solved using the superposition method and finite element method. The calculation of the graphene tension was performed for two main directions of the graphene arrangement: armchair and zigzag. The computed results were verified and referred to articles and papers in the accessible literature. It was stated that in unloaded flake of graphene, the equilibrium of forces exists; however, owing to changes of inter-atom distance, the inner forces occur, which are responsible for the appearance of strains.
Collapse
|