1
|
Darshna, Dkhar DS, Srivastava P, Chandra P. Nano-fibers fabrication using biological macromolecules: Application in biosensing and biomedicine. Int J Biol Macromol 2025; 306:141508. [PMID: 40020816 DOI: 10.1016/j.ijbiomac.2025.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Nanofibers, a type of nanomaterial, have been widely use in a variety of fields, both research and commercial applications. They are a material of choice in a diverse range of applications due to their characteristics and unique physicochemical properties. Nanofibers have cross-sectional dimeters varying between 1 nm and 100 nm, the nano range dimensions providing them characteristics such as high surface area-to-volume ratio, highly porous as well as interconnected networks. There are various types of materials which have been used to synthesize nanofibers both biological (namely, hyaluronic acid, chitosan, alginate, fibrin, collagen, gelatin, silk fibroin, gums, and cellulose) as well as synthetic (namely, poly(lactic acid), poly(1-caprolactone), poly(vinyl alcohol), and polyurethane) polymers which have been briefly discussed in the present review. The review also explores various fabrication techniques for producing nanofibers, such as physical/chemical/biological techniques as well as electrospinning/non-spinning techniques. Due to their distinctive physicochemical qualities, nanofibers have become intriguing one-dimensional nanomaterials with applications in a wide range of biomedical fields. In line with this, the review discusses about various applications of nanofibers, namely, wound dressing, drug delivery, implants, diagnostic devices, tissue engineering, and biosensing. Furthermore, having an insight of the distinctive characteristics of nanofibers materials which could have immense potential in various biosensing applications, this review emphasizes on application of nanofibrous materials in the field of biosensing. However, despite these advances, there remain some challenges that need to be addressed before nanofiber technology can be widely adopted for its commercial use in biomedical as well as biosensing applications.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Scheibel JM, Siqueira NM, da Silva LS, Mace MAM, Soares RMD. Progress in galactomannan-based materials for biomedical application. Int J Biol Macromol 2025; 311:143614. [PMID: 40306510 DOI: 10.1016/j.ijbiomac.2025.143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/05/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Galactomannan-based biomaterials display a unique behavior in aqueous media due to their mechanical, rheological and solubility properties, which are increasingly attracting their applicability into the biomedical area. The physical-chemical features of galactomannans extracted from different botanical sources provide diverse applicability for the developed systems, which can deliver active substances and be applied in wound healing and bone replacement. Galactomannans have an essential biological role and can be easily chemically modified due to their reactive chemical structure. Besides, their biocompatibility and capacity to be applied in the form of film, hydrogel, micro, nanoparticles, and printed material, could revolutionize personalized medicine. Scientists are investigating ways to functionalize galactomannans with bioactive molecules to enhance their biological performance. This is the first review of galactomannans that combines their chemical modifications with biological activities, presenting various biomaterial possibilities with a focus on biomedical applications. The rising demand for renewable-source materials in the medical field underscores their importance, driving ongoing research to explore their full capabilities. As studies progress, the scope of clinical applications for galactomannan-based materials is expected to broaden. To maximize the bioactive potential of galactomannan-based materials, emphasis should be placed on clinical translation to facilitate its effective incorporation into biomedical applications.
Collapse
Affiliation(s)
- Joice M Scheibel
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil.
| | - Nataly M Siqueira
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Laiane S da Silva
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Manoela A M Mace
- Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil; Postgraduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Rosane M D Soares
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
3
|
Sharahi M, Bahrami SH, Karimi A. A comprehensive review on guar gum and its modified biopolymers: Their potential applications in tissue engineering. Carbohydr Polym 2025; 347:122739. [PMID: 39486968 DOI: 10.1016/j.carbpol.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Guar gum (GG), as a non-exudate gum, is extracted from the seed's embryos of Cyamopsis tetragonoloba (a member of Leguminosae family). Recently, this biopolymer has received extensive attention due to its low cost, notable properties, non-toxic biodegradation, ease of availability, and biocompatibility. However, disadvantages such as uncontrolled hydration rate and susceptibility to microbial attack have led many researchers to further modification of guar gum. Further modifications of guar gum heteropolysaccharide have been performed to improve properties and explore and expand its potential. The favorable biostability, improved solubility, and swelling, increased pH sensitivity, and good antibacterial and antioxidant properties indicate the significant advantages of the modified gum structures with different functional groups. In this review, the rapid growth in research on GG derivatives-based materials has been discovered. Besides, the production methods of GG and its derivatives have been discussed in tissue engineering and regenerative medical. Consequently, this review highlights the advances in the production of guar-based products to outline a promising future for this biopolymer by changing its properties and expanding its applications in potential targets.
Collapse
Affiliation(s)
- Melika Sharahi
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Afzal Karimi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kim Y, Lim J, Kim HS, Lee J, Chun Y, Cho DH, Kang CS, Choi S. Transient Viscosity Adjustment Using a Coaxial Nozzle for Electrospinning Nanofibers from Non-Spinnable Pure m-Poly(hydroxyamide). Polymers (Basel) 2024; 16:3414. [PMID: 39684159 DOI: 10.3390/polym16233414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, a transient viscosity adjustment method using a coaxial nozzle was explored to fabricate nanofibers from non-spinnable m-poly(hydroxyamide) (m-PHA). Unlike conventional electrospinning methods that often require additives to induce fiber formation, this approach relies on a sheath-core configuration, introducing tetrahydrofuran (THF) to the sheath to temporarily adjust solution viscosity. The diffusion of THF into the core m-PHA solution resulted in momentary solidification at the interface, promoting nanofiber formation without compromising polymer solubility. SEM and rheological analyses confirmed that optimized sheath-to-core flow ratios yielded nanofibers with significantly reduced particle formation. Notably, increasing the THF flow rate facilitated a faster solidification rate, enhancing jet elongation and resulting in uniform nanofibers with diameters of approximately 180-190 nm. Although complete nanofibers without beads were not achieved in this study, this coaxial electrospinning approach presents a possible pathway for fabricating nanofibers from polymers with limited spinnability, potentially expanding the application scope of electro-spun materials in high-performance fields.
Collapse
Affiliation(s)
- Yerim Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jihwan Lim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Han Seong Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jaejun Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Youngsang Chun
- Department of Advanced Materials Engineering, Shinhan University, 95 Hoam-ro, Uijeongbu-si 11644, Republic of Korea
| | - Dong-Hyun Cho
- Department of Aerospace Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chan Sol Kang
- Department of Advanced Materials Engineering, Shinhan University, 95 Hoam-ro, Uijeongbu-si 11644, Republic of Korea
| | - Sejin Choi
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Matić A, Sher EK, Farhat EK, Sher F. Nanostructured Materials for Drug Delivery and Tissue Engineering Applications. Mol Biotechnol 2023:10.1007/s12033-023-00784-1. [PMID: 37347435 DOI: 10.1007/s12033-023-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Nanotechnology and nanostructured materials for drug delivery and tissue engineering applications are relatively new field that is constantly advancing and expanding. The materials used are at the nanoscale level. Recently, great discoveries and applications have been made (Agents for use in chemotherapy, biological agents and immunotherapy agents) in the treatment of diseases in various areas. Tissue engineering is based on the regeneration and repair of damaged organs and tissues by developing biological substitutes that restore, maintain or improve the function of tissues and organs. Cells isolated from patients are used to seed 3D nanoparticles that can be synthetic or natural biomaterials. For the development of new tissue in tissue engineering, it is necessary to meet the conditions for connecting cells. This paper will present the ways of connecting cells and creating new tissues. Some recent discoveries and advances in the field of nanomedicine and the application of nanotechnology in drug delivery will be presented. Furthermore, the improvement of the effectiveness of new and old drugs based on the application of nanotechnology will be shown.
Collapse
Affiliation(s)
- Antonela Matić
- Faculty of Pharmacy, University of Modern Sciences - CKM, Mostar, 88000, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food and Technology, Josip Juraj Strossmayer University of Osijek, Osijek, 31000, Croatia
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
6
|
Castro-Muñoz R, Kharazmi MS, Jafari SM. Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review. Int J Biol Macromol 2023:125424. [PMID: 37343613 DOI: 10.1016/j.ijbiomac.2023.125424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Today, society has been more aware of healthy food products and related items containing bioactive compounds, which potentially contribute to human health. Unfortunately, the long-term stability and bioactivity of biologically active compounds against environmental factors compromise their target and effective action. In this way, lab-designed vehicles, such as nanoparticles and nanofibers, provide enough properties for their preservation and suitable delivery. Here, the electrospinning technique acts as an effective pathway for fabricating and designing nanofibers for the entrapments of biomolecules, in which several biopolymers such as proteins, polysaccharides (e.g., maltodextrin, agarose, chitosan), silk, among others, can be used as a wall material. It is likely that chitosan is one of the most employed biomaterials in this field. Therefore, in this review, we reveal the latest advances (over the last 2-3 years) in designing chitosan-based electrospun nanofibers and nanocarriers for encapsulation of bioactive compounds, along with the key applications in smart food packaging as well. Key findings and relevant breakthroughs are a priority in this review to provide a cutting-edge analysis of the literature. Finally, particular attention has been paid to the most promising developments.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 11/12 Narutowicza St., 80-233 Gdansk, Poland; Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico.
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
7
|
Özen İ, Bahtiyari Mİ, Haji A, Islam SU, Wang X. Properties of galactomannans and their textile-related applications-A concise review. Int J Biol Macromol 2023; 227:1001-1014. [PMID: 36464192 DOI: 10.1016/j.ijbiomac.2022.11.276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Galactomannans are reserve carbohydrates in legume plants and are primarily extracted from their seeds. They contain galactose side chains throughout the mannose backbone and have unique features such as emulsifying, thickening, and gelling together with biodegradability, biocompatibility, and non-toxicity, which make them an appealing material. Guar gum and locust bean gum mainly are used in all galactomannan needed applications. Nonetheless, tara gum and fenugreek gum have also attracted considerable attention in recent decades. Despite the increased usage of galactomannans in the textile-related fields in recent years, there is no review article published yet. To fill this gap and to demonstrate the striking and increasing importance of galactomannans, a concise summary of the properties of common galactomannans and their comparisons is given first, followed by an account of recent developments and applications of galactomannans in the textile-related fields. The associated potential opportunities are also provided at the end of this review.
Collapse
Affiliation(s)
- İlhan Özen
- Department of Textile Engineering, Erciyes University, Melikgazi Kayseri, Türkiye; Institute for Frontier Materials, Deakin University, Geelong, Australia.
| | | | - Aminoddin Haji
- Department of Textile Engineering, Yazd University, Yazd, Iran
| | - Shahid Ul Islam
- Department of Biological and Agricultural Engineering, University of California, Davis, United States
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Kian-Pour N, Yildirim-Yalcin M, Kurt A, Ozmen D, Toker OS. A review on latest innovations in physical modifications of galactomannans. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Roy R, Jan R, Joshi U, B R, Taneja A, Satsangi PG. Functionalization of Bio-polymer based nanofibers with clay minerals as nanofillers: promising material for antibacterial applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02967-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Nanofibers of carboxymethyl tamarind gum/reduced graphene oxide composite for neuronal cell proliferation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Dehghani Soltani M, Meftahizadeh H, Barani M, Rahdar A, Hosseinikhah SM, Hatami M, Ghorbanpour M. Guar (Cyamopsis tetragonoloba L.) plant gum: From biological applications to advanced nanomedicine. Int J Biol Macromol 2021; 193:1972-1985. [PMID: 34748787 DOI: 10.1016/j.ijbiomac.2021.11.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Natural polymers are an efficient class of eco-friendly and biodegradable polymers, because they are readily available, come from natural sources, inexpensive and can be chemically modified with the correct reagents. Guar gum (GG) is a natural polymer with great potential to be used in pharmaceutical formulations due to its unique composition and lack of toxicity. GG can be designed to suit the needs of the biological and medical engineering sectors. In the development of innovative drug delivery systems, GG is commonly utilized as a rate-controlling excipient. In this review, different properties of GG including chemical composition, extraction methods and its usefulness in diabetes, cholesterol lowering, weight control, tablet formulations as well as its food application were discussed. The other purpose of this study is to evaluate potential use of GG and its derivatives for advanced nanomedicine such as drug delivery, tissue engineering and nanosensing. It should be noted that some applicable patents in medical area have also been included in the rest of this survey to extend knowledge about guar gum and its polymeric nature.
Collapse
Affiliation(s)
| | - Heidar Meftahizadeh
- Department of Horticultural Sciences, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran.
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| |
Collapse
|
12
|
Dufficy MK, Corder RD, Dennis KA, Fedkiw PS, Khan SA. Guar Gel Binders for Silicon Nanoparticle Anodes: Relating Binder Rheology to Electrode Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51403-51413. [PMID: 34664928 DOI: 10.1021/acsami.1c10776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Binding agents are a critical component of Si-based anodes for lithium-ion batteries. Herein, we introduce a composite hydrogel binder consisting of carbon black (CB) and guar, which is chemically cross-linked with glutaraldehyde as a means to reinforce the electrode structure during lithiation and improve electronic conductivity. Dynamic rheological measurements are used to monitor the cross-linking reaction and show that rheology plays a significant role in binder performance. The cross-linking reaction occurs at a faster rate and produces stronger networks in the presence of CB, as evidenced from higher gel elastic modulus in guar + CB gels than guar gels alone. Silicon nanoparticle (SiNP) electrodes that use binders with low cross-link densities (trxn < 2 days) demonstrate discharge capacities ∼1200 mAh g-1 and Coulombic efficiencies >99.8% after 300 cycles at 1-C rate. Low cross-link densities likely increase the capacity of SiNP anodes because of binder-Si hydrogen-bonding interactions that accommodate volume expansions. In addition, the cross-linked binder demonstrates the potential for self-healing, as evidenced by an increased elastic modulus after the gel was mechanically fragmented, which may preserve the electrode microstructure during lithiation and increase capacity retention. The composite hydrogel with integrated conductive additives gives promise to a new type of binder for next-generation lithium-ion batteries.
Collapse
Affiliation(s)
- Martin K Dufficy
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ria D Corder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kimberly A Dennis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Peter S Fedkiw
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
13
|
Koyyada A, Orsu P. Nanofibrous scaffolds of carboxymethyl guargum potentiated with reduced graphene oxide for in vitro and in vivo wound healing applications. Int J Pharm 2021; 607:121035. [PMID: 34438006 DOI: 10.1016/j.ijpharm.2021.121035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023]
Abstract
Nanofiber scaffolds mimic the extracellular matrix (ECM) and help in fibroblasts proliferation which is the main constituent for wound healing. This study aims to evaluate the wound healing potential of electrospun nanofibers fabricated by carboxymethyl guargum (CMGG), reduced graphene oxide (rGO) and polyvinyl alcohol. The nanofibers have shown desired properties like excellent porosity and good water holding capacities. The porosity of nanofibers helps in the movement of oxygen to cells and the removal of waste materials and the swelling capacity helps to maintain the moisture content at the wound site. In addition, the in vitro hemocompatibility and wound healing assay have shown excellent results rendering the nanofibers biocompatible. The in vitro fibroblasts (3T3-L1) proliferation was significantly more in rGO/CMGG/PVA nanofibers than CMGG/PVA and cell control. Further, the in vivo wound healing evaluation of these nanofiber dressings in rabbits has shown significant wound closure compared to control and standard. Histology studies revealed the fast collagen formation and re-epithelialization necessary for wound healing among rGO/CMGG/PVA treated rabbits. Therefore, the rGO/CMGG/PVA nanofiber scaffolds can be potential wound dressing candidates and be further evaluated for clinical use.
Collapse
Affiliation(s)
- Arun Koyyada
- Department of Pharmacology, GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam 530045, India.
| | - Prabhakar Orsu
- Department of Pharmacology, GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam 530045, India.
| |
Collapse
|
14
|
Orsu P, Haider HY, Koyyada A. Bioengineering for curcumin loaded carboxymethyl guargum/reduced graphene oxide nanocomposites for chronic wound healing applications. Int J Pharm 2021; 606:120928. [PMID: 34303820 DOI: 10.1016/j.ijpharm.2021.120928] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/11/2023]
Abstract
Biomimetic scaffolds engineering for improved collagen, epithelial cutaneous and fibrous tissue regeneration remains challenging for wound healing. To address these issues, this study aimed to report on the fabrication and characterization of electrospun of carboxymethyl guargum (CMGG), reduced graphene oxide (rGO) nanocomposite dressings loaded with curcumin for chronic wound healing applications. SEM and XRD examined the morphology of nanofibers and resulted in excellent porosity. TGA and FT-IR were done, which revealed the nanofibers' thermal and chemical interactions. CMGG, rGO nanocomposite with curcumin was investigated for in-vitro wound healing assay by scratch wound healing model using 3T3 L1 fibroblast cell lines and conducted in vitro drug-releasing studies. These nanocomposites showed 100% wound closure by the proliferation of fibroblast cell lines 3T3-L1 within 48 h and showed controlled drug release. Further, in vivo results also showed that the CMGG, rGO nanocomposite with curcumin has the potential wound healing effects. Histological studies showed that the CMGG, rGO nanocomposite with curcumin has the potential for wound healing, which indicates that the biomimetic CMGG nanofibers have an excellent healing effect on chronic wounds.
Collapse
Affiliation(s)
- Prabhakar Orsu
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam 530045, India.
| | - Haider Yaroub Haider
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam 530045, India
| | - Arun Koyyada
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam 530045, India
| |
Collapse
|
15
|
Wilk S, Benko A. Advances in Fabricating the Electrospun Biopolymer-Based Biomaterials. J Funct Biomater 2021; 12:26. [PMID: 33923664 PMCID: PMC8167588 DOI: 10.3390/jfb12020026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymers formed into a fibrous morphology through electrospinning are of increasing interest in the field of biomedicine due to their intrinsic biocompatibility and biodegradability and their ability to be biomimetic to various fibrous structures present in animal tissues. However, their mechanical properties are often unsatisfactory and their processing may be troublesome. Thus, extensive research interest is focused on improving these qualities. This review article presents the selection of the recent advances in techniques aimed to improve the electrospinnability of various biopolymers (polysaccharides, polynucleotides, peptides, and phospholipids). The electrospinning of single materials, and the variety of co-polymers, with and without additives, is covered. Additionally, various crosslinking strategies are presented. Examples of cytocompatibility, biocompatibility, and antimicrobial properties are analyzed. Special attention is given to whey protein isolate as an example of a novel, promising, green material with good potential in the field of biomedicine. This review ends with a brief summary and outlook for the biomedical applicability of electrospinnable biopolymers.
Collapse
Affiliation(s)
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicz 30 Avenue, 30-059 Krakow, Poland;
| |
Collapse
|
16
|
Nun N, Cruz M, Jain T, Tseng YM, Menefee J, Jatana S, Patil PS, Leipzig ND, McDonald C, Maytin E, Joy A. Thread Size and Polymer Composition of 3D Printed and Electrospun Wound Dressings Affect Wound Healing Outcomes in an Excisional Wound Rat Model. Biomacromolecules 2020; 21:4030-4042. [PMID: 32902971 DOI: 10.1021/acs.biomac.0c00801] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thread size and polymer composition are critical properties to consider for achieving a positive healing outcome with a wound dressing. Three-dimensional (3D) printed scaffolds and electrospun mats both offer distinct advantages as replaceable wound dressings. This research aims to determine if the thread size and polymer compositions of the scaffolds affect skin wound healing outcomes, an aspect that has not been adequately explored. Using a modular polymer platform, four polyester direct-write 3D printed scaffolds and electrospun mats were fabricated into wound dressings. The dressings were applied to splinted, full thickness skin wounds in an excisional wound rat model and evaluated against control wounds to which no dressing was applied. Wound closure rates and reduction of the wound bed width were not affected by the thread size or polymer composition. However, epidermal thickness was larger in wounds treated with electrospun dressings and was slightly affected by the polymer composition. Two of the four tested polymer compositions lead to delayed reorganization of granulation tissues. Moreover, enhanced angiogenesis was seen in wounds treated with 3D printed dressings compared to those treated with electrospun dressings. The results from this study can be used to inform the choice of dressing architecture and polymer compositions to achieve positive wound healing outcomes.
Collapse
Affiliation(s)
- Nicholas Nun
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Megan Cruz
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tanmay Jain
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yen-Ming Tseng
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Josh Menefee
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Samreen Jatana
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Pritam S Patil
- Department of Chemical, Biomolecular and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nic D Leipzig
- Department of Chemical, Biomolecular and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Edward Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio 44106, United States.,Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020; 247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.
Collapse
|
18
|
Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, Ashrafizadeh M, Han SS, Khang G, Roveimiab Z. Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers (Basel) 2020; 12:E176. [PMID: 31936590 PMCID: PMC7022386 DOI: 10.3390/polym12010176] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The engineering of tissues under a three-dimensional (3D) microenvironment is a great challenge and needs a suitable supporting biomaterial-based scaffold that may facilitate cell attachment, spreading, proliferation, migration, and differentiation for proper tissue regeneration or organ reconstruction. Polysaccharides as natural polymers promise great potential in the preparation of a three-dimensional artificial extracellular matrix (ECM) (i.e., hydrogel) via various processing methods and conditions. Natural polymers, especially gums, based upon hydrogel systems, provide similarities largely with the native ECM and excellent biological response. Here, we review the origin and physico-chemical characteristics of potentially used natural gums. In addition, various forms of scaffolds (e.g., nanofibrous, 3D printed-constructs) based on gums and their efficacy in 3D cell culture and various tissue regenerations such as bone, osteoarthritis and cartilage, skin/wound, retinal, neural, and other tissues are discussed. Finally, the advantages and limitations of natural gums are precisely described for future perspectives in tissue engineering and regenerative medicine in the concluding remarks.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Dukjin, Jeonju 54896, Korea;
| | - Ziba Roveimiab
- Department of Biological Sciences, and Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|