1
|
Sharma H, Narayanan KB, Ghosh S, Singh KK, Rehan P, Amist AD, Bhaskar R, Sinha JK. Nanotherapeutics for Meningitis: Enhancing Drug Delivery Across the Blood-Brain Barrier. Biomimetics (Basel) 2025; 10:25. [PMID: 39851741 PMCID: PMC11762342 DOI: 10.3390/biomimetics10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Meningitis is the acute or chronic inflammation of the protective membranes, surrounding the brain and spinal cord, and this inflammatory process spreads throughout the subarachnoid space. The traditional drug delivery methods pose a disadvantage in limiting the capacity of crossing the blood-brain barrier (BBB) to reach the central nervous system (CNS). Hence, it is imperative to develop novel approaches that can overcome these constraints and offer efficient therapy for meningitis. Nanoparticle (NP)-based therapeutic approaches have the potential to address the limitations such as penetrating the BBB and achieving targeted drug release in specific cells and tissues. This review highlights recent advancements in nanotechnology-based approaches, such as functionalized polymeric nanoparticles, solid lipid nanoparticles (SLNs), nanostructured lipid carriers, nanoemulsions, liposomes, transferosomes, and metallic NPs for the treatment of meningitis. Recently, bionics has emerged as a next-generation technology in the development of novel ideas from biological principles, structures, and interactions for neurological and neuroinfectious diseases. Despite their potential, more studies are needed to ensure the safety and efficacy of NP-based drug delivery systems focusing on critical aspects such as toxicity, immunogenicity, and pharmacokinetics. Therefore, this review addresses current treatment strategies and innovative nanoparticle approaches, and it discusses future directions for efficient and targeted meningitis therapies.
Collapse
Affiliation(s)
- Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Hinjawadi, Pune 411057, Maharashtra, India
| | - Prarthana Rehan
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India
| | - Aparajita Dasgupta Amist
- Amity University Uttar Pradesh (AUUP), Sector 125, Gautam Buddha Nagar, Noida 201303, Uttar Pradesh, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | | |
Collapse
|
2
|
Chkair R, Couvez J, Brégier F, Diab-Assaf M, Sol V, Blanchard-Desce M, Liagre B, Chemin G. Activity of Hydrophilic, Biocompatible, Fluorescent, Organic Nanoparticles Functionalized with Purpurin-18 in Photodynamic Therapy for Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1557. [PMID: 39404284 PMCID: PMC11478336 DOI: 10.3390/nano14191557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved, non-invasive therapy currently used for several solid tumors, triggering cell death through the generation of reactive oxygen species (ROS). However, the hydrophobic nature of most of the photosensitizers used, such as chlorins, limits the overall effectiveness of PDT. To address this limitation, the use of nanocarriers seems to be a powerful approach. From this perspective, we have recently developed water-soluble and biocompatible, fluorescent, organic nanoparticles (FONPs) functionalized with purpurin-18 and its derivative, chlorin p6 (Cp6), as new PDT agents. In this study, we aimed to investigate the induced cell death mechanism mediated by these functionalized nanoparticles after PDT photoactivation. Our results show strong phototoxic effects of the FONPs[Cp6], mediated by intracellular ROS generation, and subcellular localization in HCT116 and HT-29 human colorectal cancer (CRC) cells. Additionally, we proved that, post-PDT, the FONPs[Cp6] induce apoptosis via the intrinsic mitochondrial pathway, as shown by the significant upregulation of the Bax/Bcl-2 ratio, the activation of caspases 9, 3, and 7, leading poly-ADP-ribose polymerase (PARP-1) cleavage, and DNA fragmentation. Our work demonstrates the photodynamic activity of these nanoparticles, making them promising candidates for the PDT treatment of CRC.
Collapse
Affiliation(s)
- Rayan Chkair
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Justine Couvez
- University Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), Bat A12, 351 Cours de la Libération, 33405 Talence, France;
| | - Frédérique Brégier
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Mona Diab-Assaf
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon;
| | - Vincent Sol
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Mireille Blanchard-Desce
- University Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), Bat A12, 351 Cours de la Libération, 33405 Talence, France;
| | - Bertrand Liagre
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Guillaume Chemin
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| |
Collapse
|
3
|
Hou M, Liu S. Recent Progress of pH-Responsive Peptides, Polypeptides, and Their Supramolecular Assemblies for Biomedical Applications. Biomacromolecules 2024; 25:5402-5416. [PMID: 39105715 DOI: 10.1021/acs.biomac.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Peptides and polypeptides feature a variety of active functional groups on their side chains (including carboxylic acid, hydroxyl, amino, and thiol groups), enabling diverse chemical modifications. This versatility makes them highly valuable in stimuli-responsive systems. Notably, pH-responsive peptides and polypeptides, due to their ability to respond to pH changes, hold significant promise for applications in cellular pathology and tumor targeting. Extensive researches have highlighted the potentials of low pH insertion peptides (pHLIPs), peptide-drug conjugates (PDCs), and antibody-drug conjugates (ADCs) in biomedicine. Peptide self-assemblies, with their structural stability, ease of regulation, excellent biocompatibility, and biodegradability, offer immense potentials in the development of novel materials and biomedical applications. We also explore specific examples of their applications in drug delivery, tumor targeting, and tissue engineering, while discussing future challenges and potential advancements in the field of pH-responsive self-assembling peptide-based biomaterials.
Collapse
Affiliation(s)
- Mingxuan Hou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jin-zhai Road, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jin-zhai Road, Hefei, Anhui Province 230026, China
| |
Collapse
|
4
|
Sasaki I, Brégier F, Chemin G, Daniel J, Couvez J, Chkair R, Vaultier M, Sol V, Blanchard-Desce M. Hydrophilic Biocompatible Fluorescent Organic Nanoparticles as Nanocarriers for Biosourced Photosensitizers for Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:216. [PMID: 38276734 PMCID: PMC10819872 DOI: 10.3390/nano14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Most photosensitizers of interest for photodynamic therapy-especially porphyrinoids and chlorins-are hydrophobic. To circumvent this difficulty, the use of nanocarriers is an attractive strategy. In this perspective, we have developed highly water-soluble and biocompatible fluorescent organic nanoparticles (FONPs) made from citric acid and diethyltriamine which are then activated by ethlynene diamine as nanoplatforms for efficient photosensitizers (PSs). Purpurin 18 (Pp18) was selected as a biosourced chlorin photosensitizer combining the efficient single oxygen generation ability and suitable absorption in the biological spectral window. The simple reaction of activated FONPs with Pp18, which contains a reactive anhydride ring, yielded nanoparticles containing both Pp18 and Cp6 derivatives. These functionalized nanoparticles combine solubility in water, high singlet oxygen generation quantum yield in aqueous media (0.72) and absorption both in the near UV region (FONPS) and in the visible region (Soret band approximately 420 nm as well as Q bands at 500 nm, 560 nm, 660 nm and 710 nm). The functionalized nanoparticles retain the blue fluorescence of FONPs when excited in the near UV region but also show deep-red or NIR fluorescence when excited in the visible absorption bands of the PSs (typically at 520 nm, 660 nm or 710 nm). Moreover, these nanoparticles behave as efficient photosensitizers inducing colorectal cancer cell (HCT116 and HT-29 cell lines) death upon illumination at 650 nm. Half maximal inhibitory concentration (IC50) values down to, respectively, 0.04 and 0.13 nmol/mL were observed showing the potential of FONPs[Cp6] for the PDT treatment of cancer. In conclusion, we have shown that these novel biocompatible nanoparticles, which can be elaborated from biosourced components, both show deep-red emission upon excitation in the red region and are able to produce singlet oxygen with high efficiency in aqueous environments. Moreover, they show high PDT efficiency on colorectal cancer cells upon excitation in the deep red region. As such, these functional organic nanoparticles hold promise both for PDT treatment and theranostics.
Collapse
Affiliation(s)
- Isabelle Sasaki
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Frédérique Brégier
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Guillaume Chemin
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Jonathan Daniel
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Justine Couvez
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Rayan Chkair
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Michel Vaultier
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Vincent Sol
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Mireille Blanchard-Desce
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| |
Collapse
|
5
|
Xu F, Yang YH, Yang H, Li W, Hao Y, Zhang S, Zhang YZ, Cao WX, Li XX, Du GH, Ji TF, Wang JH. Progress of studies on natural products for glioblastoma therapy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:154-176. [PMID: 38321773 DOI: 10.1080/10286020.2023.2300367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024]
Abstract
Glioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults. Up to now, the chemotherapy approaches for GBM are limited. Therefore, more studies on identifying and exploring new chemotherapy drugs or strategies overcome the GBM are essential. Natural products are an important source of drugs against various human diseases including cancers. With the better understanding of the molecular etiology of GBM, the development of new anti-GBM drugs has been increasing. Here, we summarized recent researches of natural products for the GBM therapy and their potential mechanisms in details, which will provide new ideas for the research on natural products and promote developing drugs from nature products for GBM therapy.
Collapse
Affiliation(s)
- Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yi-Hui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yi-Zhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan-Xin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Xue Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guan-Hua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Teng-Fei Ji
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jin-Hua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Yun D, Liu D, Liu J, Feng Y, Chen H, Chen S, Xie Q. In Vitro/In Vivo Preparation and Evaluation of cRGDyK Peptide-Modified Polydopamine-Bridged Paclitaxel-Loaded Nanoparticles. Pharmaceutics 2023; 15:2644. [PMID: 38004622 PMCID: PMC10674738 DOI: 10.3390/pharmaceutics15112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a disease with one of the highest mortality rates worldwide. The poor water solubility and tissue selectivity of commonly used chemotherapeutic agents contribute to their poor efficacy and serious adverse effects. This study proposes an alternative to the traditional physicochemically combined modifications used to develop targeted drug delivery systems, involving a simpler surface modification strategy. cRGDyK peptide (RGD)-modified PLGA nanoparticles (NPs) loaded with paclitaxel were constructed by coating the NP surfaces with polydopamine (PD). The average particle size of the produced NPs was 137.6 ± 2.9 nm, with an encapsulation rate of over 80%. In vitro release tests showed that the NPs had pH-responsive drug release properties. Cellular uptake experiments showed that the uptake of modified NPs by tumor cells was significantly better than that of unmodified NPs. A tumor cytotoxicity assay demonstrated that the modified NPs had a lower IC50 and greater cytotoxicity than those of unmodified NPs and commercially available paclitaxel formulations. An in vitro cytotoxicity study indicated good biosafety. A tumor model in female BALB/c rats was established using murine-derived breast cancer 4T1 cells. RGD-modified NPs had the highest tumor-weight suppression rate, which was higher than that of the commercially available formulation. PTX-PD-RGD-NPs can overcome the limitations of antitumor drugs, reduce drug toxicity, and increase efficacy, showing promising potential in cancer therapy.
Collapse
Affiliation(s)
- Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlin Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
7
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
8
|
Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Ye Z, Gao L, Cai J, Wang Y, Li Y, Tong S, Yan T, Sun Q, Qi Y, Xu Y, Jiang H, Zhang S, Zhao L, Zhang S, Chen Q. Esterase-responsive and size-optimized prodrug nanoparticles for effective intracranial drug delivery and glioblastoma treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102581. [PMID: 35811067 DOI: 10.1016/j.nano.2022.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/03/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the intracranial malignancy with the highest rates of morbidity and mortality. Chemotherapy is often ineffective against GBM due to the presence of the blood-brain barrier (BBB); however, the application of nanotechnology is expected to overcome this limitation. Poly(lactic-co-glycolic acid) (PLGA) is a degradable and nontoxic functional polymer with good biocompatibility that is widely used in the pharmaceutical industry. Previous studies have shown that the ability of PLGA nanoparticles (NPs) to penetrate the BBB is largely determined by their size; however, determination of the optimal PLGA NP size requires further research. Here, we report a tandutinib-based prodrug (proTan), which responds to the GBM microenvironment, that was combined with NPs to overcome the BBB. AMD3100-PLGA NPs loaded with proTan inhibited tumor growth and effectively prolonged the survival of tumor-bearing mice.
Collapse
Affiliation(s)
- Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tengfeng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Linyao Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
10
|
Melloni E, Marchesi E, Preti L, Casciano F, Rimondi E, Romani A, Secchiero P, Navacchia ML, Perrone D. Synthesis and Biological Investigation of Bile Acid-Paclitaxel Hybrids. Molecules 2022; 27:molecules27020471. [PMID: 35056786 PMCID: PMC8779069 DOI: 10.3390/molecules27020471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Chenodeoxycholic acid and ursodeoxycholic acid (CDCA and UDCA, respectively) have been conjugated with paclitaxel (PTX) anticancer drugs through a high-yield condensation reaction. Bile acid-PTX hybrids (BA-PTX) have been investigated for their pro-apoptotic activity towards a selection of cancer cell lines as well as healthy fibroblast cells. Chenodeoxycholic-PTX hybrid (CDC-PTX) displayed cytotoxicity and cytoselectivity similar to PTX, whereas ursodeoxycholic-PTX hybrid (UDC-PTX) displayed some anticancer activity only towards HCT116 colon carcinoma cells. Pacific Blue (PB) conjugated derivatives of CDC-PTX and UDC-PTX (CDC-PTX-PB and UDC-PTX-PB, respectively) were also prepared via a multistep synthesis for evaluating their ability to enter tumor cells. CDC-PTX-PB and UDC-PTX-PB flow cytometry clearly showed that both CDCA and UDCA conjugation to PTX improved its incoming into HCT116 cells, allowing the derivatives to enter the cells up to 99.9%, respect to 35% in the case of PTX. Mean fluorescence intensity analysis of cell populations treated with CDC-PTX-PB and UDC-PTX-PB also suggested that CDC-PTX-PB could have a greater ability to pass the plasmatic membrane than UDC-PTX-PB. Both hybrids showed significant lower toxicity with respect to PTX on the NIH-3T3 cell line.
Collapse
Affiliation(s)
- Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (F.C.); (E.R.); (A.R.); (P.S.)
| | - Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Lorenzo Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (F.C.); (E.R.); (A.R.); (P.S.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (F.C.); (E.R.); (A.R.); (P.S.)
| | - Arianna Romani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (F.C.); (E.R.); (A.R.); (P.S.)
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (F.C.); (E.R.); (A.R.); (P.S.)
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
- Correspondence: (M.L.N.); (D.P.)
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
- Correspondence: (M.L.N.); (D.P.)
| |
Collapse
|
11
|
Mitochondria-targeted ROS- and GSH-responsive diselenide-crosslinked polymer dots for programmable paclitaxel release. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Ruiz-Garcia H, Alvarado-Estrada K, Krishnan S, Quinones-Hinojosa A, Trifiletti DM. Nanoparticles for Stem Cell Therapy Bioengineering in Glioma. Front Bioeng Biotechnol 2020; 8:558375. [PMID: 33365304 PMCID: PMC7750507 DOI: 10.3389/fbioe.2020.558375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Gliomas are a dismal disease associated with poor survival and high morbidity. Current standard treatments have reached a therapeutic plateau even after combining maximal safe resection, radiation, and chemotherapy. In this setting, stem cells (SCs) have risen as a promising therapeutic armamentarium, given their intrinsic tumor homing as well as their natural or bioengineered antitumor properties. The interplay between stem cells and other therapeutic approaches such as nanoparticles holds the potential to synergize the advantages from the combined therapeutic strategies. Nanoparticles represent a broad spectrum of synthetic and natural biomaterials that have been proven effective in expanding diagnostic and therapeutic efforts, either used alone or in combination with immune, genetic, or cellular therapies. Stem cells have been bioengineered using these biomaterials to enhance their natural properties as well as to act as their vehicle when anticancer nanoparticles need to be delivered into the tumor microenvironment in a very precise manner. Here, we describe the recent developments of this new paradigm in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
13
|
Sasaki I, Daniel J, Marais S, Verlhac JB, Vaultier M, Blanchard-Desce M. Soft fluorescent organic nanodots as nanocarriers for porphyrins. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461950158x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Novel fluorescent organic nanoparticles made from citric acid and diethylenetriamine were used as biocompatible and highly water-soluble nanocarriers for hydrophobic tetraphenylporphyrin (TPP). The tetraphenylporphyrin units were covalently attached to the nanoparticles, generating conjugated nanoparticles which retain water solubility and preserve the photophysical properties of monomeric TPP. The conjugated nanoparticles show two distinct fluorescence features: blue emission from the nanoparticle when excited in the near-UV (360 nm) and characteristic far-red emission of the TPP when excited in the visible (Soret band or Q bands). The uptake of the conjugated nanoparticles in live human neuroblastoma cancer cells was evidenced using two-photon microscopy. These experiments demonstrate that the fluorescent organic nanoparticles do act as efficient nanocarriers, allowing cell internalization of hydrophobic porphyrins. These conjugated nanoparticles appear as promising nanotools for theranostic (based on the combination of imaging and monitoring of the nanoparticle fluorescence) and therapeutic (photodynamic therapy by selectively exciting the grafted porphyrin units) modalities.
Collapse
Affiliation(s)
- Isabelle Sasaki
- Univ. Bordeaux Institut des Sciences Moléculaires (CNRS UMR5255), Bâtiment A12, 351 Cours de la Libération, 33405 Talence CEDEX, France
| | - Jonathan Daniel
- Univ. Bordeaux Institut des Sciences Moléculaires (CNRS UMR5255), Bâtiment A12, 351 Cours de la Libération, 33405 Talence CEDEX, France
| | - Sébastien Marais
- CNRS, Univ. Bordeaux, Bordeaux Imaging Center, UMS 3420, 33000 Bordeaux, France
| | - Jean-Baptiste Verlhac
- Univ. Bordeaux Institut des Sciences Moléculaires (CNRS UMR5255), Bâtiment A12, 351 Cours de la Libération, 33405 Talence CEDEX, France
| | - Michel Vaultier
- Univ. Bordeaux Institut des Sciences Moléculaires (CNRS UMR5255), Bâtiment A12, 351 Cours de la Libération, 33405 Talence CEDEX, France
| | - Mireille Blanchard-Desce
- Univ. Bordeaux Institut des Sciences Moléculaires (CNRS UMR5255), Bâtiment A12, 351 Cours de la Libération, 33405 Talence CEDEX, France
| |
Collapse
|