1
|
Mehinrad P, Abdelfattah A, Sadat SMA, Shafaati T, Elmenoufy AH, Jay D, West F, Weinfeld M, Lavasanifar A. Nano-delivery of a novel inhibitor of ERCC1-XPF for targeted sensitization of colorectal cancer to platinum-based chemotherapeutics. Drug Deliv Transl Res 2025:10.1007/s13346-024-01782-9. [PMID: 39878858 DOI: 10.1007/s13346-024-01782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/31/2025]
Abstract
In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release. The activity of A4 and its nano-formulation on the inhibition of ERCC1/XPF dimerization was investigated. The cytotoxicity of carboplatin and oxaliplatin in colorectal cancer (CRC) cell lines, without or with pre-treatment with A4 or its nanoparticle formulation was assessed by conducting colony forming as well as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. Among the three nano-formulations of A4 under study, optimum properties were achieved with PEO-b-PBCL nanocarriers, showing an encapsulation efficiency of 83.1 ± 5.83%, loading content of 11.5 ± 0.37 w/w %, < 50% drug release within 24 hs, and an average diameter of < 150 nm. The chemo sensitizing effect of A4 and its nano-encapsulated counterparts were more noticeable when A4 was combined with carboplatin versus oxaliplatin. The results of cytotoxicity studies in HCT116 XPF-/- cells confirmed the specificity of A4 through an XPF-dependent mechanism in the sensitization of these cells to carboplatin at concentrations below 0.5 μM. The result of the study shows great potential for A4 and its PEO-b-PBCL nano-formulation in sensitization of CRC to platinum-based chemotherapeutics.
Collapse
Affiliation(s)
- Parnian Mehinrad
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ahmed Abdelfattah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Sams M A Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Tanin Shafaati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ahmed H Elmenoufy
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
- Department of Pharmaceutical Chemistry, College of Pharmacy, Misr University for Science and Technology, P.O. Box 77, 6th of October City, 12568, Egypt
| | - David Jay
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Frederick West
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
2
|
Demirtürk N, Varan G, Kağa S, Malanga M, Bilensoy E. Optimization and characterization of Rituximab targeted multidrug loaded cyclodextrin nanoparticles against Non-Hodgkin Lymphoma. Int J Pharm 2024; 662:124488. [PMID: 39032870 DOI: 10.1016/j.ijpharm.2024.124488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Currently, Non-Hodgkin Lymphoma (NHL) constitutes 85-90 % of all lymphomas. Clinical treatment of NHL is based on the "4-drug regimen" known as CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone). Rituximab (RTX) is added to increase the effectiveness and selectivity of the treatment and is the first-line standard treatment for NHL patients. However, success is often prevented by the development of drug resistance. In this study, it was aimed to overcome drug resistance by using two novel tumor-targeted derivatives: guanidine-amphiphilic cyclodextrin (ACD) and guanidine-cyclodextrin polymer (PCD) nanoparticles (NP). These constructs display promise in overcoming drug resistance and enhancing the effectiveness of R-CHOP treatment while potentially eliminating the need for corticosteroid. NP were found to be smaller than 200 nm by dynamic light scattering (DLS). Hemolytic activity and cytotoxicity data on L929 cells demonstrated the safety of the newly synthesized CD derivatives. Additional in vitro characterization studies, including surface charge, physical stability, drug loading capacity, drug release profile, and imaging, as well as conventional and 3D cell culture studies were carried out. Compared to drug solutions, the viability of Daudi human lymphoma cells was statistically significantly decreased in both drug-loaded ACD and PCD NP formulations (p < 0.05). Additionally, RTX-conjugated and drug-loaded ACD NPs exhibited the lowest cell viability due to RTX dependent cytotoxicity.
Collapse
Affiliation(s)
- Nurbanu Demirtürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey.
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Sadık Kağa
- Department of Biomedical Engineering, Faculty of Engineering, Afyon Kocatepe University, 03300 Afyon, Turkey
| | - Milo Malanga
- CarboHyde Zrt., Berlini u. 47-49, 1045 Budapest, Hungary
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
3
|
Sadat SMA, Vakili MR, Abd-El Hafeez SI, Paladino M, Hall DG, Weinfeld M, Lavasanifar A. Synergistic Nanomedicine Delivering Topoisomerase I Toxin (SN-38) and Inhibitors of Polynucleotide Kinase 3'-Phosphatase (PNKP) for Enhanced Treatment of Colorectal Cancer. Mol Pharm 2024; 21:3240-3255. [PMID: 38785196 DOI: 10.1021/acs.molpharmaceut.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 μM) and free SN-38 (at a concentration range of 0.001-1 μM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 μM when combined with PM/A83B4C63 at 10 or 20-40 μM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 μM for A83B4C63 and 0.05-1 μM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.
Collapse
Affiliation(s)
- Sams M A Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Sara I Abd-El Hafeez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Marco Paladino
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Dennis G Hall
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
4
|
Chountoulesi M, Selianitis D, Pispas S, Pippa N. Recent Advances on PEO-PCL Block and Graft Copolymers as Nanocarriers for Drug Delivery Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2298. [PMID: 36984177 PMCID: PMC10056975 DOI: 10.3390/ma16062298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Poly(ethylene oxide)-poly(ε-caprolactone) (PEO-PCL) is a family of block (or graft) copolymers with several biomedical applications. These types of copolymers are well-known for their good biocompatibility and biodegradability properties, being ideal for biomedical applications and for the formation of a variety of nanosystems intended for controlled drug release. The aim of this review is to present the applications and the properties of different nanocarriers derived from PEO-PCL block and graft copolymers. Micelles, polymeric nanoparticles, drug conjugates, nanocapsules, and hybrid polymer-lipid nanoparticles, such as hybrid liposomes, are the main categories of PEO-PCL based nanocarriers loaded with different active ingredients. The advantages and the limitations in preclinical studies are also discussed in depth. PEO-PCL based nanocarriers could be the next generation of delivery systems with fast clinical translation. Finally, current challenges and future perspectives of the PEO-PCL based nanocarriers are highlighted.
Collapse
Affiliation(s)
- Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| |
Collapse
|
5
|
Li L, Yan X, Xia M, Shen B, Cao Y, Wu X, Sun J, Zhang Y, Zhang M. Nanoparticle/Nanocarrier Formulation as an Antigen: The Immunogenicity and Antigenicity of Itself. Mol Pharm 2022; 19:148-159. [PMID: 34886673 DOI: 10.1021/acs.molpharmaceut.1c00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In antibody preparation, the immunogenicity of small molecules is limited due to the instability of adjuvant/hapten emulsions. Nanoparticle-based adjuvants overcome instability and effectively improve immune responses. Immunogenicity and antigenicity are fundamentally important, yet understudied, facets of nanoparticle formulations themselves. Herein, we studied the immunogenicity and antigenicity of nanoparticle formulations. In experiments in a rabbit model, simple inorganic nanoparticle (e.g., gold nanoparticle (AuNP) and silver nanoparticle (AgNP)) immunogens induced higher titers of antiserum. Moreover, several promising nanoparticle drug carrier immunogens (e.g., SiO2, oleylamine graft polysuccinimide (PSIOAm), oleylamine and N-(3-aminopropyl)imidazole cograft polysuccinimide (PSIOAm-NAPI), Fe3O4@O-dextran, etc.) showed excellent immunogenicity. Cross-reactivity calculations revealed that the antigenicity properties of AgNP and AuNP antigens are highly size-dependent. Meanwhile, four nanoparticle drug carriers generate antibody-specific immune responses to their antigens. The reactivity of the anti-NP antibodies with nanoparticle antigens was confirmed using immunoassays. This study systematically identified the immunogenicity and antigenicity of the nanoparticle formulation itself. These findings provide insights into the immunological properties of the nanoparticle formulation itself in an organism.
Collapse
Affiliation(s)
- Lei Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xi Yan
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Meng Xia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Bi Shen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yiting Cao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xiayu Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jinwen Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yue Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mingcui Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
6
|
Sadat SMA, Vakili MR, Paiva IM, Weinfeld M, Lavasanifar A. Development of Self-Associating SN-38-Conjugated Poly(ethylene oxide)-Poly(ester) Micelles for Colorectal Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12111033. [PMID: 33138058 PMCID: PMC7694018 DOI: 10.3390/pharmaceutics12111033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), which is the active metabolite of irinotecan, has been hampered because of its practical water-insolubility. In this study, we successfully synthesized two self-associating SN-38-polymer drug conjugates to improve the water-solubility of SN-38, while retaining its anticancer activity. The polymeric micellar SN-38 conjugates were composed of either methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) conjugated to SN-38 at the PBCL end (mPEO-b-PBCL/SN-38) or mPEO-block-poly(α-carboxyl-ε-caprolactone) attached to SN-38 from the pendent-free carboxyl site (mPEO-b-PCCL/SN-38). The chemical structure of block copolymers was confirmed by 1H NMR. The physicochemical characterizations of their self-assembled structures including size, surface charge, polydispersity, critical micellar concentration, conjugation content and efficiency, morphology, kinetic stability, and in vitro release of SN-38 were compared between the two formulations. In vitro anticancer activities were evaluated by measuring cellular cytotoxicity and caspase activation by MTS and Caspase-Glo 3/7 assays, respectively. The hemolytic activity of both micellar structures against rat red blood cells was also measured. The results showed the formation of SN-38-polymeric micellar conjugates at diameters < 50 nm with a narrow size distribution and sustained release of SN-38 for both structures. The loading content of SN-38 in mPEO-b-PBCL and mPEO-b-PCCL were 11.47 ± 0.10 and 12.03 ± 0.17 (% w/w), respectively. The mPEO-b-PBCL/SN-38, end-capped micelles were kinetically more stable than mPEO-b-PCCL/SN-38. The self-assembled mPEO-b-PBCL/SN-38 and mPEO-b-PCCL/SN-38 micelles resulted in significantly higher cytotoxic effects than irinotecan against human colorectal cancer cell lines HCT116, HT-29, and SW20. The CRC cells were found to be 70-fold to 330-fold more sensitive to micellar SN-38 than irinotecan, on average. Both SN-38-incorporated micelles showed two-fold higher caspase-3/7 activation levels than irinotecan. The mPEO-b-PBCL/SN-38 micelles were not hemolytic, but mPEO-b-PCCL/SN-38 showed some hemolysis. The overall results from this study uphold mPEO-b-PBCL/SN-38 over mPEO-b-PCCL/SN-38 micellar formulation as an effective delivery system of SN-38 that warrants further preclinical investigation.
Collapse
Affiliation(s)
- Sams M. A. Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
- Correspondence: (M.R.V.); (A.L.); Tel.: +1-5879204349 (M.R.V.); +1-7804922742 (A.L.); Fax: +1-7804921217 (M.R.V.); +1-7804921217 (A.L.)
| | - Igor M. Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Correspondence: (M.R.V.); (A.L.); Tel.: +1-5879204349 (M.R.V.); +1-7804922742 (A.L.); Fax: +1-7804921217 (M.R.V.); +1-7804921217 (A.L.)
| |
Collapse
|