1
|
Moschetto S, Squeo BM, Reginato F, Prosa M, Pasini M, Toffanin S. A Fluorescent Conjugated Polar Polymer for Probing Charge Injection in Multilayer Organic Light-Emitting Transistors. Molecules 2024; 29:3295. [PMID: 39064874 PMCID: PMC11279323 DOI: 10.3390/molecules29143295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Ambipolar organic light-emitting transistors (OLETs) are extremely appealing devices for applications from sensing to communication and display realization due to their inherent capability of coupling switching and light-emitting features. However, their limited external quantum efficiency (EQE) and brightness under ambipolar bias conditions hamper the progress of OLET technology. In this context, it was recently demonstrated in multi-stacked devices that the engineering of the interface between the topmost electron-transporting organic semiconductor (e-OS) and the emission layer (EML) is crucial in optimizing the recombination of the minority charges (i.e., electrons) and to enhance EQE and brightness. Here, we introduce a new light-emitting conjugated polar polymer (CPP) in a multi-stacked OLET to improve the electron injection from e-OS to EML and to study, simultaneously, electroluminescence-related processes such as exciton formation and quenching processes. Interestingly, we observed that the highly polar groups present in the conjugate polymer induced polarization-related relevant charge-trapping phenomena with consequent modulation of the entire electrostatic field distribution and unexpected optoelectronic features. In view of the extensive use of CPPs in OLETs, the use of multifunctional CPPs for probing photophysical processes at the functional interfaces in stacked devices may speed up the improvement of the light-emission properties in OLETs.
Collapse
Affiliation(s)
- Salvatore Moschetto
- Institute of Nanostructured Materials (ISMN), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (F.R.); (M.P.)
| | - Benedetta Maria Squeo
- Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC), National Research Council (CNR), via Corti 12, 20133 Milan, Italy; (B.M.S.); (M.P.)
| | - Francesco Reginato
- Institute of Nanostructured Materials (ISMN), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (F.R.); (M.P.)
| | - Mario Prosa
- Institute of Nanostructured Materials (ISMN), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (F.R.); (M.P.)
| | - Mariacecilia Pasini
- Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC), National Research Council (CNR), via Corti 12, 20133 Milan, Italy; (B.M.S.); (M.P.)
| | - Stefano Toffanin
- Institute of Nanostructured Materials (ISMN), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (F.R.); (M.P.)
| |
Collapse
|
2
|
Cigana B, Lapointe V, Majewski MB, Forgione P. A Modular and Catalytic Methodology To Access 2,5-Furan-Based Phenylene/Thiophene Oligomers through a One-Pot Decarboxylative Cross-Coupling from 5-Bromofurfural. J Org Chem 2024. [PMID: 38808994 DOI: 10.1021/acs.joc.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A library of 2,5-furan-based phenylene/thiophene oligomers were synthesized starting from 5-bromofurfural, a derivative of biomass-derived furfural. Varied electronic groups are coupled onto the furan motif, followed by the installation of a phenylene or thiophene central linker through a one-pot Pd-catalyzed decarboxylative cross-coupling reaction. Resulting oligomers containing the furan-phenylene-furan core possess high photoluminescent quantum yields in solution (83-98%), which are crucial for optoelectronic devices. Absorbance and photoluminescence maxima are tuned by changing peripheral functional groups and the center linker coupled onto the furan backbone.
Collapse
Affiliation(s)
- Brandon Cigana
- Department of Chemistry and Biochemistry and Centre for Nanoscience Research (CeNSR), Concordia University, Montréal, QC H4B 1R6, Canada
- Centre for Green Chemistry and Catalysis, McGill University, Montréal, QC H3A 0B8, Canada
| | - Victoria Lapointe
- Department of Chemistry and Biochemistry and Centre for Nanoscience Research (CeNSR), Concordia University, Montréal, QC H4B 1R6, Canada
| | - Marek B Majewski
- Department of Chemistry and Biochemistry and Centre for Nanoscience Research (CeNSR), Concordia University, Montréal, QC H4B 1R6, Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry and Centre for Nanoscience Research (CeNSR), Concordia University, Montréal, QC H4B 1R6, Canada
- Centre for Green Chemistry and Catalysis, McGill University, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
3
|
Trukhanov VA, Sosorev AY, Dominskiy DI, Fedorenko RS, Tafeenko VA, Borshchev OV, Ponomarenko SA, Paraschuk DY. Dual Optoelectronic Organic Field-Effect Device: Combination of Electroluminescence and Photosensitivity. Molecules 2024; 29:2533. [PMID: 38893409 PMCID: PMC11173939 DOI: 10.3390/molecules29112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Merging the functionality of an organic field-effect transistor (OFET) with either a light emission or a photoelectric effect can increase the efficiency of displays or photosensing devices. In this work, we show that an organic semiconductor enables a multifunctional OFET combining electroluminescence (EL) and a photoelectric effect. Specifically, our computational and experimental investigations of a six-ring thiophene-phenylene co-oligomer (TPCO) revealed that this material is promising for OFETs, light-emitting, and photoelectric devices because of the large oscillator strength of the lowest-energy singlet transition, efficient luminescence, pronounced delocalization of the excited state, and balanced charge transport. The fabricated OFETs showed a photoelectric response for wavelengths shorter than 530 nm and simultaneously EL in the transistor channel, with a maximum at ~570 nm. The devices demonstrated an EL external quantum efficiency (EQE) of ~1.4% and a photoelectric responsivity of ~0.7 A W-1, which are among the best values reported for state-of-the-art organic light-emitting transistors and phototransistors, respectively. We anticipate that our results will stimulate the design of efficient materials for multifunctional organic optoelectronic devices and expand the potential applications of organic (opto)electronics.
Collapse
Affiliation(s)
- Vasiliy A. Trukhanov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia
| | - Andrey Y. Sosorev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia
| | - Dmitry I. Dominskiy
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia
| | - Roman S. Fedorenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia
| | - Victor A. Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Oleg V. Borshchev
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia
| | - Sergey A. Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia
| | - Dmitry Y. Paraschuk
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia
| |
Collapse
|
4
|
Li Q, Zhang Y, Lin J, Zou Y, Wang P, Qin Z, Wang Y, Li Y, Zhang Y, Gao C, Zang Y, Hu W, Dong H. Dibenzothiophene Sulfone-Based Ambipolar-Transporting Blue-Emissive Organic Semiconductors Towards Simple-Structured Organic Light-Emitting Transistors. Angew Chem Int Ed Engl 2023; 62:e202308146. [PMID: 37632256 DOI: 10.1002/anie.202308146] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
The development of blue-emissive ambipolar organic semiconductor is an arduous target due to the large energy gap, but is an indispensable part for electroluminescent device, especially for the transformative display technology of simple-structured organic light-emitting transistor (SS-OLET). Herein, we designed and synthesized two new dibenzothiophene sulfone-based high mobility blue-emissive organic semiconductors (DNaDBSOs), which demonstrate superior optical property with solid-state photoluminescent quantum yield of 46-67 % and typical ambipolar-transporting properties in SS-OLETs with symmetric gold electrodes. Comprehensive experimental and theoretical characterizations reveal the natural of ambipolar property for such blue-emissive DNaDBSOs-based materials is ascribed to a synergistic effect on lowering LUMO level and reduced electron injection barrier induced by the interfacial dipoles effect on gold electrodes due to the incorporation of appropriate DBSO unit. Finally, efficient electroluminescence properties with high-quality blue emission (CIE (0.179, 0.119)) and a narrow full-width at half-maximum of 48 nm are achieved for DNaDBSO-based SS-OLET, showing good spatial control of the recombination zone in conducting channel. This work provides a new avenue for designing ambipolar emissive organic semiconductors by incorporating the synergistic effect of energy level regulation and molecular-metal interaction, which would advance the development of superior optoelectronic materials and their high-density integrated optoelectronic devices and circuits.
Collapse
Affiliation(s)
- Qingbin Li
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihan Zhang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junfeng Lin
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Zou
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pu Wang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengsheng Qin
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongshuai Wang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Yu Zhang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaping Zang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Yang W, Luo D, Li G, Luo Q, Banwell MG, Chen L. Synthesis of Pyridin-1(2 H)-ylacrylates and the Effects of Different Functional Groups on Their Fluorescence. Molecules 2023; 28:6511. [PMID: 37764287 PMCID: PMC10536652 DOI: 10.3390/molecules28186511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
While fluorescent organic materials have many potential as well as proven applications and so have attracted significant attention, pyridine-olefin conjugates remain a less studied subset of such systems. Herein, therefore, we report on the development of the straightforward syntheses of pyridin-1(2H)-ylacrylates and the outcomes of a study of the effects of substituents on their fluorescent properties. Such compounds were prepared using a simple, metal-free and three-component coupling reaction involving 2-aminopyridines, sulfonyl azides and propiolates. The fluorescent properties of the ensuing products are significantly affected by the positions of substituents on the cyclic framework, with those located in central positions having the greatest impact. Electron-withdrawing groups tend to induce blue shifts while electron-donating ones cause red shifts. This work highlights the capacity that the micro-modification of fluorescent materials provides for fine-tuning their properties such that they may be usefully applied to, for example, the study of luminescent materials.
Collapse
Affiliation(s)
- Weiguang Yang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Danyang Luo
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Guanrong Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Martin G. Banwell
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
- Institute for Advanced and Applied Chemical Synthesis (IAACS), Jinan University, Guangzhou 510632, China
| | - Lanmei Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| |
Collapse
|
6
|
Chen L, Qin Z, Huang H, Zhang J, Yin Z, Yu X, Zhang XS, Li C, Zhang G, Huang M, Dong H, Yi Y, Jiang L, Fu H, Zhang D. High-Performance Ambipolar and n-Type Emissive Semiconductors Based on Perfluorophenyl-Substituted Perylene and Anthracene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300530. [PMID: 36967566 DOI: 10.1002/advs.202300530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Indexed: 05/27/2023]
Abstract
Emissive organic semiconductors are highly demanding for organic light-emitting transistors (OLETs) and electrically pumped organic lasers (EPOLs). However, it remains a great challenge to obtain organic semiconductors with high carrier mobility and high photoluminescence quantum yield simultaneously. Here, a new design strategy is reported for highly emissive ambipolar and even n-type semiconductors by introducing perfluorophenyl groups into polycyclic aromatic hydrocarbons such as perylene and anthracene. The results reveal that 3,9-diperfluorophenyl perylene (5FDPP) exhibits the ambipolar semiconducting property with hole and electron mobilities up to 0.12 and 1.89 cm2 V-1 s-1 , and a photoluminescence quantum yield of 55%. One of the crystal forms of 5FDPA exhibits blue emission with an emission quantum yield of 52% and simultaneously shows the n-type semiconducting property with an electron mobility up to 2.65 cm2 V-1 s-1 , which is the highest value among the reported organic emissive n-type semiconductors. Furthermore, crystals of 5FDPP are utilized to fabricate OLETs by using Ag as source-drain electrodes. The electroluminescence is detected in the transporting channels with an external quantum efficiency (EQE) of up to 2.2%, and the current density is up to 145 kA cm-2 , which are among the highest values for single-component OLETs with symmetric electrodes.
Collapse
Affiliation(s)
- Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Huang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheng Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaobo Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Miaofei Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Du Y, Yuan D, Awais MA, Yu L. New semi-ladder polymers for ambipolar organic light-emitting transistors. Chem Commun (Camb) 2022; 58:11347-11353. [PMID: 36134950 DOI: 10.1039/d2cc04087e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic light-emitting transistors (OLETs) combine the light-emitting and gate-modulated electrical switching functions in a single device. Over the past two decades, progress has been made in developing new fluorescent semiconductors and device engineering to improve the properties of OLETs. In this paper, we give a brief review of the achievement and disadvantages of the present polymer-based OLETs, while highlighting the recent developments in semi-ladder polymers from our lab for new electroluminescent materials. The special folded molecular structures and unique aggregation states make these polymers suitable for exploration as OLET materials. A short conclusion is provided with a discussion on the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Yachu Du
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA.
| | - Dafei Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Mohammad A Awais
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA.
| | - Luping Yu
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
9
|
Gao C, Wong WWH, Qin Z, Lo SC, Namdas EB, Dong H, Hu W. Application of Triplet-Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100704. [PMID: 34596295 DOI: 10.1002/adma.202100704] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Organic semiconductor materials have been widely used in various optoelectronic devices due to their rich optical and/or electrical properties, which are highly related to their excited states. Therefore, how to manage and utilize the excited states in organic semiconductors is essential for the realization of high-performance optoelectronic devices. Triplet-triplet annihilation (TTA) upconversion is a unique process of converting two non-emissive triplet excitons to one singlet exciton with higher energy. Efficient optical-to-electrical devices can be realized by harvesting sub-bandgap photons through TTA-based upconversion. In electrical-to-optical devices, triplets generated after the combination of electrons and holes also can be efficiently utilized via TTA, which resulted in a high internal conversion efficiency of 62.5%. Currently, many interesting explorations and significant advances have been demonstrated in these fields. In this review, a comprehensive summary of these intriguing advances on developing efficient TTA upconversion materials and their application in optoelectronic devices is systematically given along with some discussions. Finally, the key challenges and perspectives of TTA upconversion systems for further improvement for optoelectronic devices and other related research directions are provided. This review hopes to provide valuable guidelines for future related research and advancement in organic optoelectronics.
Collapse
Affiliation(s)
- Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wallace W H Wong
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shih-Chun Lo
- Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ebinazar B Namdas
- Centre for Organic Photonics & Electronics, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
10
|
Qin Z, Gao H, Dong H, Hu W. Organic Light-Emitting Transistors Entering a New Development Stage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007149. [PMID: 34021637 DOI: 10.1002/adma.202007149] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/03/2021] [Indexed: 05/25/2023]
Abstract
Organic light-emitting transistors (OLETs) are possibly the smallest integrated optoelectronic devices that combine the switching and amplification mechanisms of organic field-effect transistors (OFETs) and the electroluminescent characteristic of organic light-emitting diodes (OLEDs). Such a unique architecture of OLETs makes them ideal for developing the next-generation display technology and electrically pumped lasers for miniaturized photonic devices and circuits. However, the development of OLETs has been slow. Recently, some exciting progress has been made with breakthroughs in high mobility emissive organic semiconductors, construction of high-performance OLETs, and fabrication of novel multifunctional OLETs. This recent slew of advances may represent the advent of a new development stage of OLETs and their related devices and circuits. In this paper, a detailed review of these fantastic advances is presented, with a special focus on the key points for developing high-performance OLETs. Finally, a brief conclusion is provided with a discussion on the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
11
|
Sun Q, Ren J, Jiang T, Peng Q, Ou Q, Shuai Z. Intermolecular Charge-Transfer-Induced Strong Optical Emission from Herringbone H-Aggregates. NANO LETTERS 2021; 21:5394-5400. [PMID: 34125544 DOI: 10.1021/acs.nanolett.1c01734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Luminescence in molecular aggregates can be quenched either by intermolecular charge transfer or by forming a dipole-forbidden lower Frenkel exciton in H-aggregate. Taking intermolecular charge transfer and excitonic coupling into a three-state model through localized diabatization, we demonstrate that the low-lying intermolecular charge-transfer state could couple with the upper bright Frenkel exciton to form dipole-allowed S1 that lies below the dark state, which accounts for the recent experimentally discovered strong luminescence in organic light-emitting transistors (OLETs) system with DPA and dNaAnt herringbone aggregates. The condition of forming such bright state is that the electron and hole transfer integrals, te and th, are of the same sign, and should be notably larger than the excitonic coupling (J), that is , te × th > 2J2. This theoretical finding not only rationalizes recent experiments but unravels an exciting scenario where strong luminescence and high charge mobilities become compatible, which is a preferable condition for both OLETs and electrically pumped lasing.
Collapse
Affiliation(s)
- Qi Sun
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qi Ou
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
12
|
Yuan D, Awais MA, Sharapov V, Liu X, Neshchadin A, Chen W, Yu L. Synergy between Photoluminescence and Charge Transport Achieved by Finely Tuning Polymeric Backbones for Efficient Light-Emitting Transistor. J Am Chem Soc 2021; 143:5239-5246. [PMID: 33755466 DOI: 10.1021/jacs.1c01659] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lack of design principle for developing high-performance polymer materials displaying strong fluorescence and high ambipolar charge mobilities limited their performance in organic light-emitting transistors (OLETs), electrically pumped organic laser, and other advanced electronic devices. A series of semiladder polymers by copolymerization of weak acceptors (TPTQ or TPTI) and weak donors (fluorene (F) or carbazole (C)) have been developed for luminescent and charge transporting properties. It was found that enhanced planarity, high crystallinity, and a delicate balance in interchain aggregation obtained in the new copolymer, TPTQ-F, contributed to high ambipolar charge mobilities and photoluminescent quantum yield. TPTQ-F showed excellent performance in solution-processed multilayered OLET devices with an external quantum efficiency (EQE) of 5.3%.
Collapse
Affiliation(s)
- Dafei Yuan
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Mohammad A Awais
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Valerii Sharapov
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xunshan Liu
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andriy Neshchadin
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Luping Yu
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Yuan D, Awais MA, Sharapov V, Liu X, Neshchadin A, Chen W, Bera M, Yu L. Foldable semi-ladder polymers: novel aggregation behavior and high-performance solution-processed organic light-emitting transistors. Chem Sci 2020; 11:11315-11321. [PMID: 34094373 PMCID: PMC8162540 DOI: 10.1039/d0sc04068a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A critical issue in developing high-performance organic light-emitting transistors (OLETs) is to balance the trade-off between charge transport and light emission in a semiconducting material. Although traditional materials for organic light-emitting diodes (OLEDs) or organic field-effect transistors (OFETs) have shown modest performance in OLET devices, design strategies towards high-performance OLET materials and the crucial structure–performance relationship remain unclear. Our research effort in developing cross-conjugated weak acceptor-weak donor copolymers for luminescent properties lead us to an unintentional discovery that these copolymers form coiled foldamers with intramolecular H-aggregation, leading to their exceptional OLET properties. An impressive external quantum efficiency (EQE) of 6.9% in solution-processed multi-layer OLET devices was achieved. Coiled foldamers with intramolecular H-aggregation in semi-ladder copolymers lead towards the highest EQE of 6.9% in solution-processed multi-layer OLETs.![]()
Collapse
Affiliation(s)
- Dafei Yuan
- Department of Chemistry, The James Franck Institute, The University of Chicago 929 E 57th Street Chicago Illinois 60601 USA
| | - Mohammad A Awais
- Department of Chemistry, The James Franck Institute, The University of Chicago 929 E 57th Street Chicago Illinois 60601 USA
| | - Valerii Sharapov
- Department of Chemistry, The James Franck Institute, The University of Chicago 929 E 57th Street Chicago Illinois 60601 USA
| | - Xunshan Liu
- Department of Chemistry, The James Franck Institute, The University of Chicago 929 E 57th Street Chicago Illinois 60601 USA
| | - Andriy Neshchadin
- Department of Chemistry, The James Franck Institute, The University of Chicago 929 E 57th Street Chicago Illinois 60601 USA
| | - Wei Chen
- Materials Science Division, Argonne National Laboratory 9700 Cass Avenue Lemont Illinois 60439 USA
| | - Mrinal Bera
- NSF's ChemMatCARS, The University of Chicago Chicago Illinois 60637 USA
| | - Luping Yu
- Department of Chemistry, The James Franck Institute, The University of Chicago 929 E 57th Street Chicago Illinois 60601 USA
| |
Collapse
|