1
|
Khalili F, Vendrell O, Hosseini MS, Jamshidi Z. Quantum Dynamics of Plasmonic Coupling in Silver Nanoparticle Dimers: Enhanced Energy and Population Transfer via Emitter Interaction. J Phys Chem Lett 2025; 16:2661-2671. [PMID: 40047806 DOI: 10.1021/acs.jpclett.4c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Plasmonic nanoparticles (NPs), characterized by significant localized surface plasmon excitations, can generate exceptionally large electromagnetic fields. In the plasmonic cavity, the enhancement of population and energy transfer across closely spaced metallic NPs significantly influence the optical response of the emitter. The theoretical investigation of transport properties in plasmonic nanocavities in atomic-scale level of calculation is important to characterize the optical response of the system. We model the coupling of plasmonic excitations of silver NPs in a bowtie configuration and generate new bright and dark states according to symmetry. By varying the separation distance, the rate of population and energy transfer between two NPs are analyzed within the framework of quantum dynamics multiconfiguration time-dependent Hartree (MCTDH) algorithm. The coupling of the emitter with bright and dark states of the plasmonic cavity is investigated based on the dipole-dipole approximation. The Hermitian Hamiltonian parametrized with first-principles calculations is applied to model the whole system. These results can reveal a connection between atomistic properties and optical response in the subnanometric-scale.
Collapse
Affiliation(s)
- Fatemeh Khalili
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | | | - Zahra Jamshidi
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| |
Collapse
|
2
|
Verlekar S, Sanz-Paz M, Zapata-Herrera M, Pilo-Pais M, Kołątaj K, Esteban R, Aizpurua J, Acuna GP, Galland C. Giant Purcell Broadening and Lamb Shift for DNA-Assembled Near-Infrared Quantum Emitters. ACS NANO 2025; 19:3172-3184. [PMID: 39797817 DOI: 10.1021/acsnano.4c09829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments. Engineering of plasmonic modes enables cavity-mediated fluorescence far detuned from the zero-phonon-line (ZPL)─at detunings that are up to 2 orders of magnitude larger than the fluorescence line width of the bare emitter and reach into the near-infrared. Our results point toward a regime where the emission line width can become dominated by the excited-state lifetime, as required for indistinguishable photon emission, bearing relevance to the development of nanoscale, ultrafast quantum light sources and to the quest toward single-molecule cavity QED. In the future, this approach may also allow the design of efficient quantum emitters at infrared wavelengths, where standard organic sources have a reduced performance.
Collapse
Affiliation(s)
- Sachin Verlekar
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maria Sanz-Paz
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Mario Zapata-Herrera
- Centro de Física de Materiales CFM-MPC, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karol Kołątaj
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Ruben Esteban
- Centro de Física de Materiales CFM-MPC, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Javier Aizpurua
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Dept. of Electricity and Electronics, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christophe Galland
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Center of Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Roelli P, Hu H, Verhagen E, Reich S, Galland C. Nanocavities for Molecular Optomechanics: Their Fundamental Description and Applications. ACS PHOTONICS 2024; 11:4486-4501. [PMID: 39584033 PMCID: PMC11583369 DOI: 10.1021/acsphotonics.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 11/26/2024]
Abstract
Vibrational Raman scattering-a process where light exchanges energy with a molecular vibration through inelastic scattering-is most fundamentally described in a quantum framework where both light and vibration are quantized. When the Raman scatterer is embedded inside a plasmonic nanocavity, as in some sufficiently controlled implementations of surface-enhanced Raman scattering (SERS), the coupled system realizes an optomechanical cavity where coherent and parametrically amplified light-vibration interaction becomes a resource for vibrational state engineering and nanoscale nonlinear optics. The purpose of this Perspective is to clarify the connection between the languages and parameters used in the fields of molecular cavity optomechanics (McOM) versus its conventional, "macroscopic" counterpart and to summarize the main results achieved so far in McOM and the most pressing experimental and theoretical challenges. We aim to make the theoretical framework of molecular cavity optomechanics practically usable for the SERS and nanoplasmonics community at large. While quality factors (Q) and mode volumes (V) essentially describe the performance of a nanocavity in enhancing light-matter interaction, we point to the light-cavity coupling efficiencies (η) and optomechanical cooperativities () as the key parameters for molecular optomechanics. As an illustration of the significance of these quantities, we investigate the feasibility of observing optomechanically induced transparency with a molecular vibration-a measurement that would allow for a direct estimate of the optomechanical cooperativity.
Collapse
Affiliation(s)
- Philippe Roelli
- Nano-optics
Group, CIC nanoGUNE BRTA, E-20018 Donostia-San
Sebastián, Spain
| | - Huatian Hu
- Center
for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti 14, Arnesano, 73010, Italy
| | - Ewold Verhagen
- Center
for Nanophotonics, NWO Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christophe Galland
- Institute
of Physics, Swiss Federal Institute of Technology
Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Center of
Quantum Science and Engineering, Swiss Federal
Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Xiang B, Xiong W. Molecular Polaritons for Chemistry, Photonics and Quantum Technologies. Chem Rev 2024; 124:2512-2552. [PMID: 38416701 PMCID: PMC10941193 DOI: 10.1021/acs.chemrev.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Molecular polaritons are quasiparticles resulting from the hybridization between molecular and photonic modes. These composite entities, bearing characteristics inherited from both constituents, exhibit modified energy levels and wave functions, thereby capturing the attention of chemists in the past decade. The potential to modify chemical reactions has spurred many investigations, alongside efforts to enhance and manipulate optical responses for photonic and quantum applications. This Review centers on the experimental advances in this burgeoning field. Commencing with an introduction of the fundamentals, including theoretical foundations and various cavity architectures, we discuss outcomes of polariton-modified chemical reactions. Furthermore, we navigate through the ongoing debates and uncertainties surrounding the underpinning mechanism of this innovative method of controlling chemistry. Emphasis is placed on gaining a comprehensive understanding of the energy dynamics of molecular polaritons, in particular, vibrational molecular polaritons─a pivotal facet in steering chemical reactions. Additionally, we discuss the unique capability of coherent two-dimensional spectroscopy to dissect polariton and dark mode dynamics, offering insights into the critical components within the cavity that alter chemical reactions. We further expand to the potential utility of molecular polaritons in quantum applications as well as precise manipulation of molecular and photonic polarizations, notably in the context of chiral phenomena. This discussion aspires to ignite deeper curiosity and engagement in revealing the physics underpinning polariton-modified molecular properties, and a broad fascination with harnessing photonic environments to control chemistry.
Collapse
Affiliation(s)
- Bo Xiang
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92126, United States
- Materials
Science and Engineering Program, University
of California, San Diego, California 92126, United States
- Department
of Electrical and Computer Engineering, University of California, San
Diego, California 92126, United States
| |
Collapse
|
5
|
Jamshidi Z, Kargar K, Mendive-Tapia D, Vendrell O. Coupling Molecular Systems with Plasmonic Nanocavities: A Quantum Dynamics Approach. J Phys Chem Lett 2023; 14:11367-11375. [PMID: 38078674 DOI: 10.1021/acs.jpclett.3c02935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Plasmonic nanoparticles have the capacity to confine electromagnetic fields to the subwavelength regime and provide strong coupling with few or even a single emitter at room temperature. The photophysical properties of the emitters are highly dependent on the relative distance and orientation between them and the nanocavity. Therefore, there is a need for accurate and general light-matter interaction models capable of guiding their design in application-oriented devices. In this work, we present a Hermitian formalism within the framework of quantum dynamics and based on first-principles electronic structure calculations. Our vibronic approach considers the quantum nature of the plasmonic excitations and the dynamics of nonradiative channels to model plasmonic nanocavities and their dipolar coupling to molecular electronic states. Thus, the quantized and dissipative nature of the nanocavity is fully addressed.
Collapse
Affiliation(s)
- Zahra Jamshidi
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Kimia Kargar
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - David Mendive-Tapia
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Zheng P, Liang L, Arora S, Ray K, Semancik S, Barman I. Pyramidal hyperbolic metasurfaces enhance spontaneous emission of nitrogen-vacancy centers in nanodiamond. ADVANCED OPTICAL MATERIALS 2023; 11:2202548. [PMID: 37920689 PMCID: PMC10619965 DOI: 10.1002/adom.202202548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 11/04/2023]
Abstract
Nitrogen-vacancy (NV) centers in nanodiamond hold great promise for creating superior biological labels and quantum sensing methods. Yet, inefficient photon generation and extraction from excited NV centers restricts the achievable sensitivity and temporal resolution. Herein, we report an entirely complementary route featuring pyramidal hyperbolic metasurface to modify the spontaneous emission of NV centers. Fabricated using nanosphere lithography, the metasurface consists of alternatively stacked silica-silver thin films configured in a pyramidal fashion, and supports both spectrally broadband Purcell enhancement and spatially extended intense local fields owing to the hyperbolic dispersion and plasmonic coupling. The enhanced photophysical properties are manifested as a simultaneous amplification to the spontaneous decay rate and emission intensity of NV centers. We envision the reported pyramidal metasurface could serve as a versatile platform for creating chip-based ultrafast single-photon sources and spin-enhanced quantum biosensing strategies, as well as aiding in further fundamental understanding of photoexcited species in condensed phases.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Le Liang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- The Institute of Advanced Studies, Wuhan University, China, 430072
| | - Saransh Arora
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Krishanu Ray
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Steve Semancik
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
7
|
Sánchez-Barquilla M, Fernández-Domínguez AI, Feist J, García-Vidal FJ. A Theoretical Perspective on Molecular Polaritonics. ACS PHOTONICS 2022; 9:1830-1841. [PMID: 35726239 PMCID: PMC9204811 DOI: 10.1021/acsphotonics.2c00048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, much theoretical research has focused on studying the strong coupling between organic molecules (or quantum emitters, in general) and light modes. The description and prediction of polaritonic phenomena emerging in this light-matter interaction regime have proven to be difficult tasks. The challenge originates from the enormous number of degrees of freedom that need to be taken into account, both in the organic molecules and in their photonic environment. On one hand, the accurate treatment of the vibrational spectrum of the former is key, and simplified quantum models are not valid in many cases. On the other hand, most photonic setups have complex geometric and material characteristics, with the result that photon fields corresponding to more than just a single electromagnetic mode contribute to the light-matter interaction in these platforms. Moreover, loss and dissipation, in the form of absorption or radiation, must also be included in the theoretical description of polaritons. Here, we review and offer our own perspective on some of the work recently done in the modeling of interacting molecular and optical states with increasing complexity.
Collapse
Affiliation(s)
- Mónica Sánchez-Barquilla
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Antonio I. Fernández-Domínguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Francisco J. García-Vidal
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
- Institute
of High Performance Computing, Agency for
Science, Technology, and Research (A*STAR), Connexis, Singapore, 138632 Singapore
| |
Collapse
|
8
|
Fregoni J, Garcia-Vidal FJ, Feist J. Theoretical Challenges in Polaritonic Chemistry. ACS PHOTONICS 2022; 9:1096-1107. [PMID: 35480492 PMCID: PMC9026242 DOI: 10.1021/acsphotonics.1c01749] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Polaritonic chemistry exploits strong light-matter coupling between molecules and confined electromagnetic field modes to enable new chemical reactivities. In systems displaying this functionality, the choice of the cavity determines both the confinement of the electromagnetic field and the number of molecules that are involved in the process. While in wavelength-scale optical cavities the light-matter interaction is ruled by collective effects, plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling. Due to these very distinct situations, a multiscale theoretical toolbox is then required to explore the rich phenomenology of polaritonic chemistry. Within this framework, each component of the system (molecules and electromagnetic modes) needs to be treated in sufficient detail to obtain reliable results. Starting from the very general aspects of light-molecule interactions in typical experimental setups, we underline the basic concepts that should be taken into account when operating in this new area of research. Building on these considerations, we then provide a map of the theoretical tools already available to tackle chemical applications of molecular polaritons at different scales. Throughout the discussion, we draw attention to both the successes and the challenges still ahead in the theoretical description of polaritonic chemistry.
Collapse
Affiliation(s)
- Jacopo Fregoni
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Francisco J. Garcia-Vidal
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Johannes Feist
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Sáez-Blázquez R, Cuartero-González Á, Feist J, García-Vidal FJ, Fernández-Domínguez AI. Plexcitonic Quantum Light Emission from Nanoparticle-on-Mirror Cavities. NANO LETTERS 2022; 22:2365-2373. [PMID: 35285655 PMCID: PMC8949753 DOI: 10.1021/acs.nanolett.1c04872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We investigate the quantum-optical properties of the light emitted by a nanoparticle-on-mirror cavity filled with a single quantum emitter. Inspired by recent experiments, we model a dark-field setup and explore the photon statistics of the scattered light under grazing laser illumination. Exploiting analytical solutions to Maxwell's equations, we quantize the nanophotonic cavity fields and describe the formation of plasmon-exciton polaritons (or plexcitons) in the system. This way, we reveal that the rich plasmonic spectrum of the nanocavity offers unexplored mechanisms for nonclassical light generation that are more efficient than the resonant interaction between the emitter natural transition and the brightest optical mode. Specifically, we find three different sample configurations in which strongly antibunched light is produced. Finally, we illustrate the power of our approach by showing that the introduction of a second emitter in the platform can enhance photon correlations further.
Collapse
Affiliation(s)
- Rocío Sáez-Blázquez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Vienna
Center for Quantum Science and Technology, Atominstitut, TU Wien, 1040 Vienna, Austria
| | - Álvaro Cuartero-González
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Mechanical
Engineering Department, ICAI, Universidad
Pontificia Comillas, 28015 Madrid, Spain
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Francisco J. García-Vidal
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Institute
of High Performance Computing, Agency for
Science, Technology, and Research (A*STAR), Singapore 138632, Singapore
| | - Antonio I. Fernández-Domínguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
10
|
Sun K, Dou C, Gelin MF, Zhao Y. Dynamics of disordered Tavis-Cummings and Holstein-Tavis-Cummings models. J Chem Phys 2022; 156:024102. [PMID: 35032972 DOI: 10.1063/5.0076485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By employing the time-dependent variational principle and the versatile multi-D2 Davydov trial states, in combination with the Green's function method, we study the dynamics of the Tavis-Cummings model and the Holstein-Tavis-Cummings model in the presence of diagonal disorder and cavity-qubit coupling disorder. For the Tavis-Cummings model, time evolution of the photon population, the optical absorption spectra, and the hetero-entanglement between the qubits and the cavity mode are calculated by using the Green's function method to corroborate numerically exact results of Davydov's Ansätze. For the Holstein-Tavis-Cummings model, only the latter is utilized to simulate effects of disorder on the photon population dynamics and the absorption spectra. We have demonstrated that the complementary employment of analytical and numerical methods permits uncovering a fairly comprehensive picture of a variety of complex behaviors in disordered multidimensional polaritonic cavity quantum electrodynamics systems.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Cunzhi Dou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
11
|
Chan WP, Chen JH, Chou WL, Chen WY, Liu HY, Hu HC, Jeng CC, Li JR, Chen C, Chen SY. Efficient DNA-Driven Nanocavities for Approaching Quasi-Deterministic Strong Coupling to a Few Fluorophores. ACS NANO 2021; 15:13085-13093. [PMID: 34313105 DOI: 10.1021/acsnano.1c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strong coupling between light and matter is the foundation of promising quantum photonic devices such as deterministic single photon sources, single atom lasers, and photonic quantum gates, which consist of an atom and a photonic cavity. Unlike atom-based systems, a strong coupling unit based on an emitter-plasmonic nanocavity system has the potential to bring these devices to the microchip scale at ambient conditions. However, efficiently and precisely positioning a single or a few emitters into a plasmonic nanocavity is challenging. In addition, placing a strong coupling unit on a designated substrate location is a demanding task. Here, fluorophore-modified DNA strands are utilized to drive the formation of particle-on-film plasmonic nanocavities and simultaneously integrate the fluorophores into the high field region of the nanocavities. High cavity yield and fluorophore coupling yield are demonstrated. This method is then combined with e-beam lithography to position the strong coupling units on designated locations of a substrate. Furthermore, polariton energy under the detuning of fluorophore embedded nanocavities can fit into a model consisting of three sets of two-level systems, implying vibronic modes may be involved in the strong coupling. Our system makes strong coupling units more practical on the microchip scale and at ambient conditions and provides a stable platform for investigating fluorophore-plasmonic nanocavity interaction.
Collapse
Affiliation(s)
- Wan-Ping Chan
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan 70101
| | - Jyun-Hong Chen
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan 70101
| | - Wei-Lun Chou
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan 70101
| | - Wen-Yuan Chen
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan 70101
| | - Hao-Yu Liu
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan 70101
| | - Hsiao-Ching Hu
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101
| | - Chien-Chung Jeng
- Department of Physics, National Chung Hsing University, Taichung, Taiwan 40227
| | - Jie-Ren Li
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101
| | - Chi Chen
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan 11529
| | - Shiuan-Yeh Chen
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan 70101
| |
Collapse
|
12
|
Medina I, García-Vidal FJ, Fernández-Domínguez AI, Feist J. Few-Mode Field Quantization of Arbitrary Electromagnetic Spectral Densities. PHYSICAL REVIEW LETTERS 2021; 126:093601. [PMID: 33750181 DOI: 10.1103/physrevlett.126.093601] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/11/2021] [Indexed: 05/23/2023]
Abstract
We develop a framework that provides a few-mode master equation description of the interaction between a single quantum emitter and an arbitrary electromagnetic environment. The field quantization requires only the fitting of the spectral density, obtained through classical electromagnetic simulations, to a model system involving a small number of lossy and interacting modes. We illustrate the power and validity of our approach by describing the population and electric field spatial dynamics in the spontaneous decay of an emitter placed in a complex hybrid plasmonic-photonic structure.
Collapse
Affiliation(s)
- Ivan Medina
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, Sao Pãulo, Brazil
| | - Francisco J García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Donostia International Physics Center (DIPC), E-20018 Donostia/San Sebastián, Spain
| | - Antonio I Fernández-Domínguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
13
|
Magdaleno AJ, Seitz M, Frising M, Herranz de la Cruz A, Fernández-Domínguez AI, Prins F. Efficient interlayer exciton transport in two-dimensional metal-halide perovskites. MATERIALS HORIZONS 2021; 8:639-644. [PMID: 34821281 DOI: 10.1039/d0mh01723j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) metal-halide perovskites are attractive for use in light harvesting and light emitting devices, presenting improved stability as compared to the more conventional three-dimensional perovskite phases. Significant attention has been paid to influencing the layer orientation of 2D perovskite phases, with the charge-carrier transport through the plane of the material being orders of magnitude more efficient than the interlayer transport. Importantly though, the thinnest members of the 2D perovskite family exhibit strong exciton binding energies, suggesting that interlayer energy transport mediated by dipole-dipole coupling may be relevant. We present transient microscopy measurements of the interlayer energy transport in the (PEA)2PbI4 perovskite. We find efficient interlayer exciton transport (0.06 cm2 s-1), which translates into a diffusion length that exceeds 100 nm and a sub-ps timescale for energy transfer. While still slower than the in-plane exciton transport (0.2 cm2 s-1), our results show that excitonic energy transport is considerably less anisotropic than charge-carrier transport for 2D perovskites.
Collapse
Affiliation(s)
- Alvaro J Magdaleno
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Torres-Sánchez J, Feist J. Molecular photodissociation enabled by ultrafast plasmon decay. J Chem Phys 2021; 154:014303. [DOI: 10.1063/5.0037856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- José Torres-Sánchez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|