1
|
Lin Y, Liang Z, Li J, Gu X, Wang J, Zhu Z, Chen Y. Metasurface-integrated silicon nitride waveguides for holography with full polarization control. OPTICS LETTERS 2025; 50:2550-2553. [PMID: 40232436 DOI: 10.1364/ol.551413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025]
Abstract
Here, a silicon-based metasurface integrated on a silicon nitride (SiNx) waveguide is proposed, enabling continuous control of light's phase and polarization. By utilizing resonant phase, geometric phase, and detour phase with fixed inter-unit spacing, the metasurface achieves full phase coverage under arbitrary polarization states while reducing design complexity. We demonstrate hologram images of letters under four polarization states: x-, y-, right circular, and left elliptical polarizations, achieving phase control with the same amplitude in corresponding polarizations. The results provide more possibilities for generating complex free space light fields via on-chip devices.
Collapse
|
2
|
Yang X, Anselmi N, Rocca P. Thinned Linear Optical Phased Array Design Through a Pareto-Optimal Synthesis Strategy. SENSORS (BASEL, SWITZERLAND) 2025; 25:1096. [PMID: 40006325 PMCID: PMC11859369 DOI: 10.3390/s25041096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
The design of a thinned linear optical phased array (OPA) comprising a collection of waveguide grating antennas (WGAs) is addressed in this work. Given a fully populated linear OPA with antennas located in a uniform grid, the problem of selecting which elements have to be removed or retained is formulated as an optimization one. To this end, the definition of the optimal thinning architecture is produced through a multi-objective optimization strategy with the goal of minimizing the number of required antenna elements while maintaining a low sidelobe level and narrow beam width. A set of representative results is presented, also considering realistic WGA modeling to assess the capabilities and the potentialities of the proposed approach.
Collapse
Affiliation(s)
- Xueqing Yang
- ELEDIA Research Unit, CNIT—University of Trento, Via Sommarive 9, 38123 Trento, Italy
- ELEDIA Research Center (ELEDIA@UniTN—University of Trento), DICAM—Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
| | - Nicola Anselmi
- ELEDIA Research Unit, CNIT—University of Trento, Via Sommarive 9, 38123 Trento, Italy
- ELEDIA Research Center (ELEDIA@UniTN—University of Trento), DICAM—Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
| | - Paolo Rocca
- ELEDIA Research Unit, CNIT—University of Trento, Via Sommarive 9, 38123 Trento, Italy
- ELEDIA Research Center (ELEDIA@UniTN—University of Trento), DICAM—Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
- ELEDIA Research Center (ELEDIA@XIDIAN—Xidian University), No. 2 South Taibai Road, Xi’an 710071, China
| |
Collapse
|
3
|
Rao R, Shi Y, Wang Z, Wan S, Li Z. On-Chip Cascaded Metasurfaces for Visible Wavelength Division Multiplexing and Color-Routing Meta-Display. NANO LETTERS 2025; 25:2452-2458. [PMID: 39884969 DOI: 10.1021/acs.nanolett.4c05946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Integrating metasurfaces on-chip offers a promising strategy for modulating and extracting guided waves, suggesting tremendous applications in compact wearable devices. However, despite the full acquisition of on-chip manipulation of optical parameters, including phase, amplitude, and polarization, the functionality of on-chip metasurfaces remains limited by the lack of wavelength selectivity. Here, an on-chip approach to differentiate wavelength components is proposed in the visible regime for wavelength division multiplexing (WDM). Through horizontally cascading on-chip meta-atoms with structural dimension variation and optimization, different wavelength components propagating along the waveguide would be selectively extracted, realizing meta-demultiplexing functionality. More intriguingly, color nanoprinting images or holographic displays can be correspondingly enabled. This approach surpasses conventional free-space meta-devices in terms of exhibiting improved wavelength-selective allocation and eliminating the energy waste caused by spatial multiplexing. We envision that such an on-chip cascading strategy paves the way for next-generation WDM devices in photonic integrated circuits and wearable miniature meta-displays.
Collapse
Affiliation(s)
- Runlong Rao
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Yangyang Shi
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zejing Wang
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Shuai Wan
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Guan C, Cai T, Zhu L, Han J, Ding C, Burokur SN, Wu Q, Ding X. Guided and Space Waves Multiplexed Metasurface for Advanced Electromagnetic Functionalities in Microwave Region. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417724. [PMID: 39703139 DOI: 10.1002/adma.202417724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Indexed: 12/21/2024]
Abstract
Nowadays, metasurfaces have attracted considerable attention due to their promising and advanced control of electromagnetic (EM) waves. However, it is still challenging to shape guided waves into desired free-space mode, while simultaneously manipulating spatial incident waves using a single metasurface. Herein, a class of metasurfaces capable of multiplexing guided and space waves is proposed to achieve advanced EM functionalities in microwave regions, which can find great application potentials in radar systems, wireless communications, and wireless power transfer (WPT). The proposed metasurface, composed of specially designed meta-atoms with polarization-dependent radiation and reflection properties, provides the capability to fully manipulate complex amplitude of guided waves and reflection phase of space incident wave independently and simultaneously, thus enabling arbitrary radiation and reflection functionalities without encountering crosstalk issues. As examples of potential applications, three advanced EM functionalities operating in both far-field and near-field regions are presented: low-sidelobe microwave antenna with reduced radar cross section (RCS), multifunctional WPT, and feed multiplexed holograms, respectively. The far-field characteristics of the low sidelobe level antennas showing radiated beams at ± 30° together with RCS reduction under arbitrarily polarized incidences are validated by both simulations and measurements. A good agreement between experiments and simulations is also observed for the near-field intensity distribution of the hologram, which further validates the feasibility of near-field shaping. The findings significantly expand the capabilities of metasurfaces in manipulating EM waves and stimulate advanced multifunctional metadevices facing more challenging and diversified application demands.
Collapse
Affiliation(s)
- Chunsheng Guan
- Air and Missile Defense College, Air Force Engineering University, Xi'an, 710051, P. R. China
| | - Tong Cai
- Air and Missile Defense College, Air Force Engineering University, Xi'an, 710051, P. R. China
| | - Lei Zhu
- School of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Jianqiao Han
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chang Ding
- Air Force Engineering University, Xi'an, 710051, P. R. China
| | | | - Qun Wu
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xumin Ding
- Advanced Microscopy and Instrumentation Research Center, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Key Laboratory of Millimeter Waves Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
5
|
Barulina E, Nguyen DD, Shuklin F, Podobrii M, Novikov S, Chernov A, Kim I, Barulin A. Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:7781. [PMID: 39686317 DOI: 10.3390/s24237781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Single-molecule fluorescence spectroscopy offers unique capabilities for the low-concentration sensing and probing of molecular dynmics. However, employing such a methodology for versatile sensing and diagnostics under point-of-care demands device miniaturization to lab-on-a-chip size. In this study, we numerically design metalenses with high numerical aperture (NA = 1.1), which are composed of silicon nitride nanostructures deposited on a waveguide and can selectively focus guided light into an aqueous solution at two wavelengths of interest in the spectral range of 500-780 nm. Despite the severe chromatic focal shift in the lateral directions owing to the wavelength-dependent propagation constant in a waveguide, segmented on-chip metalenses provide perfectly overlapping focal volumes that meet the requirements for epi-fluorescence light collection. We demonstrate that the molecule detection efficiencies of metalenses designed for the excitation and emission wavelengths of ATTO 490LS, Alexa 555, and APC-Cy7 tandem fluorophores are sufficient to collect several thousand photons per second per molecule at modest excitation rate constants. Such sensitivity provides reliable diffusion fluorescence correlation spectroscopy analysis of single molecules on a chip to extract their concentration and diffusion properties in the nanomolar range. Achromatic on-chip metalenses open new avenues for developing ultra-compact and sensitive devices for precision medicine and environmental monitoring.
Collapse
Affiliation(s)
- Elena Barulina
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592 Moscow, Russia
| | - Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Fedor Shuklin
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592 Moscow, Russia
| | - Mikhail Podobrii
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592 Moscow, Russia
| | - Sergey Novikov
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592 Moscow, Russia
| | - Alexander Chernov
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592 Moscow, Russia
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Aleksandr Barulin
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592 Moscow, Russia
| |
Collapse
|
6
|
Ji J, Li J, Wang Z, Li X, Sun J, Wang J, Fang B, Chen C, Ye X, Zhu S, Li T. On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix. Nat Commun 2024; 15:8271. [PMID: 39333470 PMCID: PMC11437200 DOI: 10.1038/s41467-024-52476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
On-chip metasurface for guided wave radiation works as an upgrade of conventional grating couplers, enriching the interconnection between guided wave and free-space optical field. However, the number of controllable parameters in equivalent Jones matrix of on-chip metasurface is limited that restricts the channels for multiplexing. Here, a supercell design based on detour phase and geometric phase has been proposed to reach full-parametric modulation of Jones matrix. As proof of concept, four independent sets of amplitude-phase channels have been experimentally demonstrated through a single on-chip metasurface. Moreover, through joint modulation of three phase mechanisms including detour phase, geometric phase and propagation phase, the Jones matrix could be decoupled from forward- and backward-propagating guided waves for direction multiplexing. This work paves the way for guided wave radiation towards high-capacity multiplexing and may further extend its application in optical communications, optical displays and augmented/virtual reality.
Collapse
Affiliation(s)
- Jitao Ji
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Jian Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zhizhang Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Xueyun Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Jiacheng Sun
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Junyi Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Bin Fang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Chen Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xin Ye
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Tao Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
7
|
Deng L, Cai Z, Liu Y. Functionality Expansion of Guided Mode Radiation via On-Chip Metasurfaces. NANO LETTERS 2024; 24:9042-9049. [PMID: 39008655 PMCID: PMC11273620 DOI: 10.1021/acs.nanolett.4c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
On-chip metasurfaces play a crucial role in bridging the guided mode and free-space light, enabling full control over the wavefront of scattered free-space light in an optimally compact manner. Recently, researchers have introduced various methods and on-chip metasurfaces to engineer the radiation of guided modes, but the total functions that a single metasurface can achieve are still relatively limited. In this work, we propose a novel on-chip metasurface design that can multiplex up to four distinct functions. We can efficiently control the polarization state, phase, angular momentum, and beam profile of the radiated waves by tailoring the geometry of V-shaped nanoantennas integrated on a slab waveguide. We demonstrate several innovative on-chip metasurfaces for switchable focusing/defocusing and for multifunctional generators of orbital angular momentum beams. Our on-chip metasurface design is expected to advance modern integrated photonics, offering applications in optical data storage, optical interconnection, augmented reality, and virtual reality.
Collapse
Affiliation(s)
- Lin Deng
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ziqiang Cai
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yongmin Liu
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Liu L, Liu W, Wang F, Peng X, Choi DY, Cheng H, Cai Y, Chen S. Ultra-robust informational metasurfaces based on spatial coherence structures engineering. LIGHT, SCIENCE & APPLICATIONS 2024; 13:131. [PMID: 38834550 DOI: 10.1038/s41377-024-01485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Optical information transmission is vital in modern optics and photonics due to its concurrent and multi-dimensional nature, leading to tremendous applications such as optical microscopy, holography, and optical sensing. Conventional optical information transmission technologies suffer from bulky optical setup and information loss/crosstalk when meeting scatterers or obstacles in the light path. Here, we theoretically propose and experimentally realize the simultaneous manipulation of the coherence lengths and coherence structures of the light beams with the disordered metasurfaces. The ultra-robust optical information transmission and self-reconstruction can be realized by the generated partially coherent beam with modulated coherence structure even 93% of light is recklessly obstructed during light transmission, which brings new light to robust optical information transmission with a single metasurface. Our method provides a generic principle for the generalized coherence manipulation on the photonic platform and displays a variety of functionalities advancing capabilities in optical information transmission such as meta-holography and imaging in disordered and perturbative media.
Collapse
Affiliation(s)
- Leixin Liu
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Collaborative Innovation Center of Light Manipulation and Applications, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Wenwei Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300071, China.
| | - Fei Wang
- School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xiaofeng Peng
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Collaborative Innovation Center of Light Manipulation and Applications, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Duk-Yong Choi
- Laser Physics Centre, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Hua Cheng
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300071, China
| | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Collaborative Innovation Center of Light Manipulation and Applications, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300071, China.
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
9
|
Ma ZY, Liu XJ, Peng YQ, Zhang DS, Liu ZZ, Xiao JJ. On-chip integrated metasystem for spin-dependent multi-channel color holography. OPTICS LETTERS 2024; 49:3114-3117. [PMID: 38824341 DOI: 10.1364/ol.520289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
On-chip integrated metasurface driven by in-plane guided waves is of great interests in various light-field manipulation applications such as colorful augmented reality and holographic display. However, it remains a challenge to design colorful multichannel holography by a single on-chip metasurface. Here we present metasurfaces integrated on top of a guided-wave photonic slab that achieves multi-channel colorful holographic light display. An end-to-end scheme is used to inverse design the metasurface for projecting off-chip preset multiple patterns. Particular examples are presented for customized patterns that were encoded into the metasurface with a single-cell meta-atom, working simultaneously at RGB color channels and for several different diffractive distances, with polarization dependence. Holographic images are generated at 18 independent channels with such a single-cell metasurface. The proposed design scheme is easy to implement, and the resulting device is viable for fabrication, promising plenty of applications in nanophotonics.
Collapse
|
10
|
Yu G, Guo J, Shi J, Mao X, Ding H, Zheng H, Shen C. On-chip multi-trap optical tweezers based on a guided wave-driven metalens. OPTICS LETTERS 2024; 49:1225-1228. [PMID: 38426979 DOI: 10.1364/ol.517932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Optical tweezer arrays (OTAs) have emerged as a powerful tool for quantum simulation, quantum computation, and quantum many-body physics. Conventional OTAs require bulky and costly optical components to generate multiple optical traps, such as spatial light modulators (SLMs). An integrated way to achieve on-chip OTAs is a sought-after goal for compact optical manipulation. In this Letter, we have numerically demonstrated compact on-chip multi-trap optical tweezers based on a guided wave-driven metalens. The presented on-chip optical tweezers are capable of capturing multiple polystyrene nanospheres in parallel. Moreover, we proposed an analytical design method to generate customized focal points from the integrated photonics chip into free space. Different trapping patterns are demonstrated to validate our proposed off-chip emission scheme. Our approach offers a promising solution to realize on-chip optical tweezers and provides a prospective way to realize elaborate emission control of guided waves into free-space beams.
Collapse
|
11
|
So S, Mun J, Park J, Rho J. Revisiting the Design Strategies for Metasurfaces: Fundamental Physics, Optimization, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206399. [PMID: 36153791 DOI: 10.1002/adma.202206399] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the capabilities of metasurfaces in light modulation with subwavelength thickness have been proven, and metasurfaces are expected to miniaturize conventional optical components and add various functionalities. Herein, various metasurface design strategies are reviewed thoroughly. First, the scalar diffraction theory is revisited to provide the basic principle of light propagation. Then, widely used design methods based on the unit-cell approach are discussed. The methods include a set of simplified steps, including the phase-map retrieval and meta-atom unit-cell design. Then, recently emerging metasurfaces that may not be accurately designed using unit-cell approach are introduced. Unconventional metasurfaces are examined where the conventional design methods fail and finally potential design methods for such metasurfaces are discussed.
Collapse
Affiliation(s)
- Sunae So
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junghyun Park
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, 16678, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
12
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Sheikh Ansari A, Iyer AK, Gholipour B. Asymmetric transmission in nanophotonics. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2639-2667. [PMID: 39635494 PMCID: PMC11502039 DOI: 10.1515/nanoph-2022-0820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/13/2023] [Indexed: 12/07/2024]
Abstract
In a reciprocal medium, transmission of electromagnetic (EM) waves is symmetric along opposite directions which restrict design and implementation of various systems in optics and photonics. Asymmetric transmission (AT) is essential for designing isolators and circulators in optics and photonics, and it benefits other applications such as photovoltaic systems, lasers, cloaking, and EM shielding. While bulky nonreciprocal devices based on magnetic field biases have been well known, creating AT in subwavelength structures is more challenging, and structures with a subwavelength thickness that show AT have drawn a lot of attention over the last decade. Various approaches have been reported to create metasurfaces featuring nonreciprocal transmission, such as plasmonic and dielectric metasurfaces that enhance Faraday rotation, nonlinear metasurfaces with intensity-dependent refractive indices, and implementing spatiotemporal modulation in a metasurface. On the other hand, AT has also been reported in reciprocal structures by creating multiple paths for the transmission of EM waves by changing the polarization of light or redirecting light to higher-order diffraction orders. Here, we present a review of various approaches implemented for realizing AT in subwavelength structures in both reciprocal and nonreciprocal systems. We also discuss the main design principles and limitations of AT achieved in various approaches.
Collapse
Affiliation(s)
- Abbas Sheikh Ansari
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Ashwin K. Iyer
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Behrad Gholipour
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Yang Y, Zhong L, Cui Y, Wang Y, Chen D, Lau KY, Liu X, Ma Z, Barillaro G, Chen Z, Qiu J. Low-loss skimming waveguides with controllable mode leakage for on-chip saturable absorbers. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3069-3076. [PMID: 39635051 PMCID: PMC11501599 DOI: 10.1515/nanoph-2023-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/11/2023] [Indexed: 12/07/2024]
Abstract
Emerging 3D photonic circuits would greatly benefit from the ability to integrate skimming waveguides with low loss and controllable inscription depth into photonic circuits. These waveguides allow for the interaction of guiding light directly with external modulation signals and enable programmable photonic circuits. Here, we report the fabrication of a novel photonic-lattice-like skimming waveguide (PLLSW) using femtosecond laser writing. Our method enables fine control of cross-sectional symmetry and writing depth of waveguides, achieving a minimum depth of 1 μm and a low insertion loss of 1 dB. Based on the PLLSW, we demonstrate on-chip light modulation by designing an evanescent-field-type saturable absorber through the coupling of a carbon nanotube film with the PLLSW, which exhibits saturation intensity from 20 to 200 MW/cm2 through the balanced twin-detector measurement. The strong nonlinear optical response of the PLLSW-based saturable absorber is further exploited to drive a Q-switched pulse laser at 1550 nm based on a fiber laser cavity. Our work demonstrates an effective method to integrate nonlinear optical materials into a glass chip for all-optical switching based on 3D waveguides, which holds great potential for the construction of large-scale programmable photonic circuits in the future.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Yudong Cui
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Daoyuan Chen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kuen Yao Lau
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhijun Ma
- Zhejiang Lab, Hangzhou, 311121, China
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Toscana, Italy
| | - Zhi Chen
- Zhejiang Lab, Hangzhou, 311121, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
15
|
Fang B, Shu F, Wang Z, Ji J, Jin Z, Hong Z, Shen C, Cheng Q, Li T. On-chip non-uniform geometric metasurface for multi-channel wavefront manipulations. OPTICS LETTERS 2023; 48:3119-3122. [PMID: 37262295 DOI: 10.1364/ol.488475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Metasurfaces integrated with waveguides have been recently explored as a means to control the conversion between guided modes and radiation modes for versatile functionalities. However, most efforts have been limited to constructing a single free-space wavefront using guided waves, which hinders the functional diversity and requires a complex configuration. Here, a new, to the best of our knowledge, type of non-uniformly arranged geometric metasurface enabling independent multi-channel wavefront engineering of guided wave radiation is ingeniously proposed. By endowing three structural degrees of freedom into a meta-atom, two mechanisms (the Pancharatnam-Berry phase and the detour phase) of the metasurface are perfectly joined together, giving rise to three phase degrees of freedom to manipulate. Therefore, an on-chip polarization demultiplexed metalens, a wavelength-multiplexed metalens, and RGB-colored holography with an improved information capacity are successively demonstrated. Our results enrich the functionalities of an on-chip metasurface and imply the prospect of advancements in multiplexing optical imaging, augmented reality (AR) holographic displays, and information encryption.
Collapse
|
16
|
Chen S, Huang J, Yin S, Milosevic MM, Pi H, Yan J, Chong HMH, Fang X. Metasurfaces integrated with a single-mode waveguide array for off-chip wavefront shaping. OPTICS EXPRESS 2023; 31:15876-15887. [PMID: 37157678 DOI: 10.1364/oe.488959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Integration of metasurfaces and SOI (silicon-on-insulator) chips can leverage the advantages of both metamaterials and silicon photonics, enabling novel light shaping functionalities in planar, compact devices that are compatible with CMOS (complementary metal-oxide-semiconductor) production. To facilitate light extraction from a two-dimensional metasurface vertically into free space, the established approach is to use a wide waveguide. However, the multi-modal feature of such wide waveguides can render the device vulnerable to mode distortion. Here, we propose a different approach, where an array of narrow, single-mode waveguides is used instead of a wide, multi-mode waveguide. This approach tolerates nano-scatterers with a relatively high scattering efficiency, for example Si nanopillars that are in direct contact with the waveguides. Two example devices are designed and numerically studied as demonstrations: the first being a beam deflector that deflects light into the same direction regardless of the direction of input light, and the second being a light-focusing metalens. This work shows a straightforward approach of metasurface-SOI chip integration, which could be useful for emerging applications such as metalens arrays and neural probes that require off-chip light shaping from relatively small metasurfaces.
Collapse
|
17
|
Huang H, Overvig AC, Xu Y, Malek SC, Tsai CC, Alù A, Yu N. Leaky-wave metasurfaces for integrated photonics. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01360-z. [PMID: 37157023 DOI: 10.1038/s41565-023-01360-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 05/10/2023]
Abstract
Metasurfaces have been rapidly advancing our command over the many degrees of freedom of light; however, so far, they have been mostly limited to manipulating light in free space. Metasurfaces integrated on top of guided-wave photonic systems have been explored to control the scattering of light off-chip with enhanced functionalities-namely, the point-by-point manipulation of amplitude, phase or polarization. However, these efforts have so far been limited to controlling one or two optical degrees of freedom at best, as well as device configurations much more complex compared with conventional grating couplers. Here we introduce leaky-wave metasurfaces, which are based on symmetry-broken photonic crystal slabs that support quasi-bound states in the continuum. This platform has a compact form factor equivalent to the one of grating couplers, but it provides full command over the amplitude, phase and polarization (four optical degrees of freedom) across large apertures. We present devices for phase and amplitude control at a fixed polarization state, and devices controlling all the four optical degrees of freedom for operation at a wavelength of 1.55 μm. Merging the fields of guided and free-space optics through the hybrid nature of quasi-bound states in the continuum, our leaky-wave metasurfaces may find applications in imaging, communications, augmented reality, quantum optics, LIDAR and integrated photonic systems.
Collapse
Affiliation(s)
- Heqing Huang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Adam C Overvig
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Yuan Xu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Stephanie C Malek
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Cheng-Chia Tsai
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA.
- Physics Program, Graduate Center of the City University of New York, New York, NY, USA.
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Ji J, Wang Z, Sun J, Chen C, Li X, Fang B, Zhu SN, Li T. Metasurface-Enabled On-Chip Manipulation of Higher-Order Poincaré Sphere Beams. NANO LETTERS 2023; 23:2750-2757. [PMID: 36951420 DOI: 10.1021/acs.nanolett.3c00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An integrated way to generate and manipulate higher-order Poincaré sphere beams (HOPBs) is a sought-after goal in photonic integrated circuits for high-capacity communication systems. Here, we demonstrate a novel method for on-chip generation and manipulation of HOPBs through combining metasurface with optical waveguides on lithium niobate on insulator platform. With phase modulation by a diatomic geometric metasurface, guided waves are extracted into free space with a high signal-to-noise ratio in the form of two orthogonal circularly polarized optical vortices which are linearly superposed into HOPBs. Meanwhile, a dual-port waveguide crossing is established to reconfigure the output states into an arbitrary point on a higher-order Poincaré sphere based on in-plane interference of two guided waves. Our approach provides a promising solution to generate and manipulate the HOPBs in a compact manner, which would be further enhanced by employing the electro-optical modulation on a lithium niobate waveguide to access a fully tunable scheme.
Collapse
Affiliation(s)
- Jitao Ji
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Zhizhang Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jiacheng Sun
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Chen Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xueyun Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Bin Fang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shi-Ning Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Tao Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Chen X, Lin D, Zhang T, Zhao Y, Liu H, Cui Y, Hou C, He J, Liang S. Grating waveguides by machine learning for augmented reality. APPLIED OPTICS 2023; 62:2924-2935. [PMID: 37133137 DOI: 10.1364/ao.486285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We propose a machine-learning-based method for grating waveguides and augmented reality, significantly reducing the computation time compared with existing finite-element-based numerical simulation methods. Among the slanted, coated, interlayer, twin-pillar, U-shaped, and hybrid structure gratings, we exploit structural parameters such as grating slanted angle, grating depth, duty cycle, coating ratio, and interlayer thickness to construct the gratings. The multi-layer perceptron algorithm based on the Keras framework was used with a dataset comprised of 3000-14,000 samples. The training accuracy reached a coefficient of determination of more than 99.9% and an average absolute percentage error of 0.5%-2%. At the same time, the hybrid structure grating we built achieved a diffraction efficiency of 94.21% and a uniformity of 93.99%. This hybrid structure grating also achieved the best results in tolerance analysis. The high-efficiency artificial intelligence waveguide method proposed in this paper realizes the optimal design of a high-efficiency grating waveguide structure. It can provide theoretical guidance and technical reference for optical design based on artificial intelligence.
Collapse
|
20
|
Hsieh PY, Fang SL, Lin YS, Huang WH, Shieh JM, Yu P, Chang YC. Metasurfaces on silicon photonic waveguides for simultaneous emission phase and amplitude control. OPTICS EXPRESS 2023; 31:12487-12496. [PMID: 37157407 DOI: 10.1364/oe.487589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chip-scale photonic systems that manipulate free-space emission have recently attracted attention for applications such as free-space optical communications and solid-state LiDAR. Silicon photonics, as a leading platform for chip-scale integration, needs to offer more versatile control of free-space emission. Here we integrate metasurfaces on silicon photonic waveguides to generate free-space emission with controlled phase and amplitude profiles. We demonstrate experimentally structured beams, including a focused Gaussian beam and a Hermite-Gaussian TEM10 beam, as well as holographic image projections. Our approach is monolithic and CMOS-compatible. The simultaneous phase and amplitude control enable more faithful generation of structured beams and speckle-reduced projection of holographic images.
Collapse
|
21
|
Ou K, Wan H, Wang G, Zhu J, Dong S, He T, Yang H, Wei Z, Wang Z, Cheng X. Advances in Meta-Optics and Metasurfaces: Fundamentals and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1235. [PMID: 37049327 PMCID: PMC10097126 DOI: 10.3390/nano13071235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Meta-optics based on metasurfaces that interact strongly with light has been an active area of research in recent years. The development of meta-optics has always been driven by human's pursuits of the ultimate miniaturization of optical elements, on-demand design and control of light beams, and processing hidden modalities of light. Underpinned by meta-optical physics, meta-optical devices have produced potentially disruptive applications in light manipulation and ultra-light optics. Among them, optical metalens are most fundamental and prominent meta-devices, owing to their powerful abilities in advanced imaging and image processing, and their novel functionalities in light manipulation. This review focuses on recent advances in the fundamentals and applications of the field defined by excavating new optical physics and breaking the limitations of light manipulation. In addition, we have deeply explored the metalenses and metalens-based devices with novel functionalities, and their applications in computational imaging and image processing. We also provide an outlook on this active field in the end.
Collapse
Affiliation(s)
- Kai Ou
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Hengyi Wan
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Guangfeng Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jingyuan Zhu
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Siyu Dong
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Hui Yang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Zheng S, Zhao Z, Zhang W. Versatile generation and manipulation of phase-structured light beams using on-chip subwavelength holographic surface gratings. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:55-70. [PMID: 39633633 PMCID: PMC11501405 DOI: 10.1515/nanoph-2022-0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 12/07/2024]
Abstract
Phase-structured light beams carrying orbital angular momentum (OAM) have a wide range of applications ranging from particle trapping to optical communication. Many techniques exist to generate and manipulate such beams but most suffer from bulky configurations. In contrast, silicon photonics enables the integration of various functional components on a monolithic platform, providing a way to miniaturize optical systems to chip level. Here, we propose a series of on-chip subwavelength holographic waveguide structures that can convert the in-plane guided modes into desired wavefronts and realize complex free-space functions, including the generation of complex phase-structured light beams, arbitrarily directed vortex beam emission and vortex beam focusing. We use a holographic approach to design subwavelength holographic surface gratings, and demonstrate broadband generation of Laguerre-Gaussian (LG) and linearly polarized (LP) modes. Moreover, by assigning appropriate geometric phase profiles to the spiral phase distribution, the off-chip vortex beam manipulation including arbitrarily directed emission and beam focusing scenarios can be realized. In the experiment, directed vortex beam emission is realized by using a fabricated tilt subwavelength holographic fork grating. The proposed waveguide structures enrich the functionalities of dielectric meta-waveguide structures, which can find potential applications in optical communication, optical trapping, nonlinear interaction and imaging.
Collapse
Affiliation(s)
- Shuang Zheng
- Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Electronic and Information Technology in Satellite Navigation (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
- Chongqing Key Laboratory of Novel Civilian Radar, Chongqing 401120, China
| | - Zhenyu Zhao
- Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Electronic and Information Technology in Satellite Navigation (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
- Chongqing Key Laboratory of Novel Civilian Radar, Chongqing 401120, China
| | - Weifeng Zhang
- Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Electronic and Information Technology in Satellite Navigation (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
- Chongqing Key Laboratory of Novel Civilian Radar, Chongqing 401120, China
| |
Collapse
|
23
|
Hsieh PY, Fang SL, Lin YS, Huang WH, Shieh JM, Yu P, Chang YC. Integrated metasurfaces on silicon photonics for emission shaping and holographic projection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4687-4695. [PMID: 39634746 PMCID: PMC11501560 DOI: 10.1515/nanoph-2022-0344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 12/07/2024]
Abstract
The emerging applications of silicon photonics in free space, such as LiDARs, free-space optical communications, and quantum photonics, urge versatile emission shaping beyond the capabilities of conventional grating couplers. In these applications, silicon photonic chips deliver free-space emission to detect or manipulate external objects. Light needs to emit from a silicon photonic chip to the free space with specific spatial modes, which produce focusing, collimation, orbital angular momentum, or even holographic projection. A platform that offers versatile shaping of free-space emission, while maintaining the CMOS compatibility and monolithic integration of silicon photonics is in pressing need. Here we demonstrate a platform that integrates metasurfaces monolithically on silicon photonic integrated circuits. The metasurfaces consist of amorphous silicon nanopillars evanescently coupled to silicon waveguides. We demonstrate experimentally diffraction-limited beam focusing with a Strehl ratio of 0.82. The focused spot can be switched between two positions by controlling the excitation direction. We also realize a meta-hologram experimentally that projects an image above the silicon photonic chip. This platform can add a highly versatile interface to the existing silicon photonic ecosystems for precise delivery of free-space emission.
Collapse
Affiliation(s)
- Ping-Yen Hsieh
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Shun-Lin Fang
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Yu-Siang Lin
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Wen-Hsien Huang
- Taiwan Semiconductor Research Institute, Hsinchu30078, Taiwan
| | - Jia-Min Shieh
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
- Taiwan Semiconductor Research Institute, Hsinchu30078, Taiwan
| | - Peichen Yu
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - You-Chia Chang
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| |
Collapse
|
24
|
Abdelraouf OAM, Wang Z, Liu H, Dong Z, Wang Q, Ye M, Wang XR, Wang QJ, Liu H. Recent Advances in Tunable Metasurfaces: Materials, Design, and Applications. ACS NANO 2022; 16:13339-13369. [PMID: 35976219 DOI: 10.1021/acsnano.2c04628] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metasurfaces, a two-dimensional (2D) form of metamaterials constituted by planar meta-atoms, exhibit exotic abilities to tailor electromagnetic (EM) waves freely. Over the past decade, tremendous efforts have been made to develop various active materials and incorporate them into functional devices for practical applications, pushing the research of tunable metasurfaces to the forefront of nanophotonics. Those active materials include phase change materials (PCMs), semiconductors, transparent conducting oxides (TCOs), ferroelectrics, liquid crystals (LCs), atomically thin material, etc., and enable intriguing performances such as fast switching speed, large modulation depth, ultracompactness, and significant contrast of optical properties under external stimuli. Integration of such materials offers substantial tunability to the conventional passive nanophotonic platforms. Tunable metasurfaces with multifunctionalities triggered by various external stimuli bring in rich degrees of freedom in terms of material choices and device designs to dynamically manipulate and control EM waves on demand. This field has recently flourished with the burgeoning development of physics and design methodologies, particularly those assisted by the emerging machine learning (ML) algorithms. This review outlines recent advances in tunable metasurfaces in terms of the active materials and tuning mechanisms, design methodologies, and practical applications. We conclude this review paper by providing future perspectives in this vibrant and fast-growing research field.
Collapse
Affiliation(s)
- Omar A M Abdelraouf
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ziyu Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Hailong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ming Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiao Renshaw Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qi Jie Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
25
|
Free-Space Applications of Silicon Photonics: A Review. MICROMACHINES 2022; 13:mi13070990. [PMID: 35888807 PMCID: PMC9322159 DOI: 10.3390/mi13070990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023]
Abstract
Silicon photonics has recently expanded its applications to delivering free-space emissions for detecting or manipulating external objects. The most notable example is the silicon optical phased array, which can steer a free-space beam to achieve a chip-scale solid-state LiDAR. Other examples include free-space optical communication, quantum photonics, imaging systems, and optogenetic probes. In contrast to the conventional optical system consisting of bulk optics, silicon photonics miniaturizes an optical system into a photonic chip with many functional waveguiding components. By leveraging the mature and monolithic CMOS process, silicon photonics enables high-volume production, scalability, reconfigurability, and parallelism. In this paper, we review the recent advances in beam steering technologies based on silicon photonics, including optical phased arrays, focal plane arrays, and dispersive grating diffraction. Various beam-shaping technologies for generating collimated, focused, Bessel, and vortex beams are also discussed. We conclude with an outlook of the promises and challenges for the free-space applications of silicon photonics.
Collapse
|