1
|
Huang C, Bai S, Shi Q. A Theoretical Model for Linear and Nonlinear Spectroscopy of Plexcitons. J Chem Theory Comput 2025; 21:3612-3624. [PMID: 40095974 DOI: 10.1021/acs.jctc.5c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
We present a theoretical model to investigate the dynamics and spectroscopic properties of a plexciton system consisting of a molecular exciton coupled to a single short-lived plasmonic mode. The exciton is described as a two-level system (TLS), while the plasmonic mode is treated as a dissipative harmonic oscillator. The hierarchical equations of motion method is employed to simulate energy transfer dynamics, absorption spectra, and two-dimensional electronic spectra (2DES) of the system across a range of coupling strengths. It is shown that increasing the exciton-plasmon coupling strength drives a transition in the absorption spectra from an asymmetric Fano line shape to a Rabi splitting pattern, while coupling the TLS to intramolecular vibrational modes reduces the central dip of the absorption spectra and makes the line shape more symmetric. The simulated 2DES exhibit distinct features compared to those of a coupled molecular dimer, highlighting the unique nonlinear response of plexciton systems. In addition, a "breathing mode" pattern observed in the strong coupling regime can serve as a direct evidence of Rabi oscillation.
Collapse
Affiliation(s)
- Chenghong Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Triana JF, Herrera F. Spontaneous single-molecule dissociation in infrared nanocavities. J Chem Phys 2025; 162:134103. [PMID: 40166992 DOI: 10.1063/5.0247008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
Ultrastrong light-matter interaction with molecular vibrations in infrared cavities has emerged as a tool for manipulating and controlling chemical reactivity. By studying the wavepacket dynamics of an individual polar diatomic molecule in a quantized infrared electromagnetic environment, we show that chemical bonds can efficiently dissociate in the absence of additional thermal or coherent energy sources, provided that the coupled system is prepared in a suitable diabatic state. Using hydrogen fluoride as a case study, we predict dissociation probabilities of up to 35% in less than 200 fs for a vibration-cavity system that is rapidly initialized with a low number of bare vibrational and cavity excitations. We develop a simple and general analytical model based on the multipolar formulation of quantum electrodynamics to show that the Bloch-Seigert shift of the bare vibrational ground state is a predictor of a threshold coupling strength below which no spontaneous dissociation is expected. The role of state-dependent permanent dipole moments in the light-matter interaction process is clarified. Our work paves the way toward the development of vacuum-assisted chemical reactors powered by ultrastrong light-matter interaction at the single-molecule level.
Collapse
Affiliation(s)
- Johan F Triana
- Department of Physics, Universidad Católica del Norte, Av. Angamos, 0610 Antofagasta, Chile
| | - Felipe Herrera
- Department of Physics, Universidad de Santiago de Chile, Av. Victor Jara, 3493 Santiago, Chile
- ANID-Millennium Institute for Research in Optics, Santiago, Chile
| |
Collapse
|
3
|
Bocanegra Vargas AF, Li TE. Polariton-induced Purcell effects via a reduced semiclassical electrodynamics approach. J Chem Phys 2025; 162:124101. [PMID: 40125669 DOI: 10.1063/5.0251767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Recent experiments have demonstrated that polariton formation provides a novel strategy for modifying local molecular processes when a large ensemble of molecules is confined within an optical cavity. Herein, a numerical strategy based on coupled Maxwell-Schrödinger equations is examined for simulating local molecular processes in a realistic cavity structure under collective strong coupling. In this approach, only a few molecules, referred to as quantum impurities, are treated quantum mechanically, while the remaining macroscopic molecular layer and the cavity structure are modeled using dielectric functions. When a single electronic two-level system embedded in a Lorentz medium is confined in a two-dimensional Bragg resonator, our numerical simulations reveal a polariton-induced Purcell effect: the radiative decay rate of the quantum impurity is significantly enhanced by the cavity when the impurity frequency matches the polariton frequency, while the rate can sometimes be greatly suppressed when the impurity is near resonance with the bulk molecules forming strong coupling. In addition, this approach demonstrates that the cavity absorption of light exhibits Rabi-splitting-dependent suppression due to the inclusion of a realistic cavity structure. Our simulations also identify a fundamental limitation of this approach-an inaccurate description of polariton dephasing rates into dark modes. This arises because the dark-mode degrees of freedom are not explicitly included when most molecules are modeled using simple dielectric functions. As the polariton-induced Purcell effect alters molecular radiative decay differently from the Purcell effect under weak coupling, this polariton-induced effect may facilitate understanding the origin of polariton-modified photochemistry under electronic strong coupling.
Collapse
Affiliation(s)
| | - Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
4
|
Khalili F, Vendrell O, Hosseini MS, Jamshidi Z. Quantum Dynamics of Plasmonic Coupling in Silver Nanoparticle Dimers: Enhanced Energy and Population Transfer via Emitter Interaction. J Phys Chem Lett 2025; 16:2661-2671. [PMID: 40047806 DOI: 10.1021/acs.jpclett.4c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Plasmonic nanoparticles (NPs), characterized by significant localized surface plasmon excitations, can generate exceptionally large electromagnetic fields. In the plasmonic cavity, the enhancement of population and energy transfer across closely spaced metallic NPs significantly influence the optical response of the emitter. The theoretical investigation of transport properties in plasmonic nanocavities in atomic-scale level of calculation is important to characterize the optical response of the system. We model the coupling of plasmonic excitations of silver NPs in a bowtie configuration and generate new bright and dark states according to symmetry. By varying the separation distance, the rate of population and energy transfer between two NPs are analyzed within the framework of quantum dynamics multiconfiguration time-dependent Hartree (MCTDH) algorithm. The coupling of the emitter with bright and dark states of the plasmonic cavity is investigated based on the dipole-dipole approximation. The Hermitian Hamiltonian parametrized with first-principles calculations is applied to model the whole system. These results can reveal a connection between atomistic properties and optical response in the subnanometric-scale.
Collapse
Affiliation(s)
- Fatemeh Khalili
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | | | - Zahra Jamshidi
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| |
Collapse
|
5
|
Romanelli M, Corni S. Identifying Differences between Semiclassical and Full-Quantum Descriptions of Plexcitons. J Phys Chem Lett 2024; 15:9326-9334. [PMID: 39236151 DOI: 10.1021/acs.jpclett.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Strong light-matter coupling between molecules and plasmonic nanoparticles gives rise to new hybrid eigenstates of the coupled system, commonly referred to as polaritons or, more precisely, plexcitons. Over the past decade, it has been amply shown that molecular electron dynamics and photophysics can be drastically affected by such interactions, thus paving the way for light-induced control of molecular excited state properties and reactivity. Here, by combining the ab initio molecular description and classical or quantum modeling of arbitrarily shaped plasmonic nanostructures within the stochastic Schrödinger equation, we present two approaches, one semiclassical and one full-quantum, to follow in real time the electronic dynamics of plexcitons while realistically taking plasmonic dissipative losses into account. The full-quantum theory is compared with the semiclassical analogue under different interaction regimes, showing (numerically and theoretically) that even in the weak-field and weak-coupling limit a small-yet-observable difference arises.
Collapse
Affiliation(s)
- Marco Romanelli
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy
- Padua Quantum Technologies Research Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Zaier R, Bancerek M, Kluczyk-Korch K, Antosiewicz TJ. Influence of molecular structure on the coupling strength to a plasmonic nanoparticle and hot carrier generation. NANOSCALE 2024; 16:12163-12173. [PMID: 38835327 DOI: 10.1039/d4nr01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Strong coupling between metal nanoparticles and molecules mixes their excitations, creating new eigenstates with modified properties such as altered chemical reactivity, different relaxation pathways or modified phase transitions. Here, we explore excited state plasmon-molecule coupling and discuss how strong coupling together with a changed orientation and number of an asymmetric molecule affects the generation of hot carriers in the system. We used a promising plasmonic material, magnesium, for the nanoparticle and coupled it with CPDT molecules, which are used in organic optoelectronic materials for organic electronic applications due to their facile modification, electron-rich structure, low band gap, high electrical conductivity and good charge transport properties. By employing computational quantum electronic tools we demonstrate the existence of a strong coupling mediated charge transfer plasmon whose direction, magnitude, and spectral position can be tuned. We find that the orientation of CPDT changes the nanoparticle-molecule gap for which maximum charge separation occurs, while larger gaps result in trapping hot carriers within the moieties due to weaker interactions. This research highlights the potential for tuning hot carrier generation in strongly coupled plasmon-molecule systems for enhanced energy generation or excited state chemistry.
Collapse
Affiliation(s)
- Rania Zaier
- Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland.
| | - Maria Bancerek
- Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland.
| | | | | |
Collapse
|
7
|
Liu R, Geng M, Ai J, Fan X, Liu Z, Lu YW, Kuang Y, Liu JF, Guo L, Wu L. Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling. Nat Commun 2024; 15:4103. [PMID: 38755130 PMCID: PMC11099047 DOI: 10.1038/s41467-024-46831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Experimental realization of strong coupling between a single exciton and plasmons remains challenging as it requires deterministic positioning of the single exciton and alignment of its dipole moment with the plasmonic fields. This study aims to combine the host-guest chemistry approach with the cucurbit[7]uril-mediated active self-assembly to precisely integrate a single methylene blue molecule in an Au nanodimer at the deterministic position (gap center of the nanodimer) with the maximum electric field (EFmax) and perfectly align its transition dipole moment with the EFmax, yielding a large spectral Rabi splitting of 116 meV for a single-molecule exciton-matching the analytical model and numerical simulations. Statistical analysis of vibrational spectroscopy and dark-field scattering spectra confirm the realization of the single exciton strong coupling at room temperature. Our work may suggest an approach for achieving the strong coupling between a deterministic single exciton and plasmons, contributing to the development of room-temperature single-qubit quantum devices.
Collapse
Affiliation(s)
- Renming Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China.
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China.
| | - Ming Geng
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Jindong Ai
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Xinyi Fan
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Zhixiang Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Yu-Wei Lu
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, 518045, China
| | - Yanmin Kuang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Jing-Feng Liu
- College of Electronic Engineering, South China Agricultural University, Guangzhou, 510642, China.
| | - Lijun Guo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China.
| | - Lin Wu
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore.
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, No. 16-16 Connexis, Singapore, 138632, Republic of Singapore.
| |
Collapse
|
8
|
Jamshidi Z, Kargar K, Mendive-Tapia D, Vendrell O. Coupling Molecular Systems with Plasmonic Nanocavities: A Quantum Dynamics Approach. J Phys Chem Lett 2023; 14:11367-11375. [PMID: 38078674 DOI: 10.1021/acs.jpclett.3c02935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Plasmonic nanoparticles have the capacity to confine electromagnetic fields to the subwavelength regime and provide strong coupling with few or even a single emitter at room temperature. The photophysical properties of the emitters are highly dependent on the relative distance and orientation between them and the nanocavity. Therefore, there is a need for accurate and general light-matter interaction models capable of guiding their design in application-oriented devices. In this work, we present a Hermitian formalism within the framework of quantum dynamics and based on first-principles electronic structure calculations. Our vibronic approach considers the quantum nature of the plasmonic excitations and the dynamics of nonradiative channels to model plasmonic nanocavities and their dipolar coupling to molecular electronic states. Thus, the quantized and dissipative nature of the nanocavity is fully addressed.
Collapse
Affiliation(s)
- Zahra Jamshidi
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Kimia Kargar
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - David Mendive-Tapia
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Ruggenthaler M, Sidler D, Rubio A. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem Rev 2023; 123:11191-11229. [PMID: 37729114 PMCID: PMC10571044 DOI: 10.1021/acs.chemrev.2c00788] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 09/22/2023]
Abstract
In this review, we present the theoretical foundations and first-principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental physical and mathematical principles, we first review in great detail ab initio nonrelativistic QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of (in principle exact but in practice) approximate computational methods such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and, at the same time, have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key ideas behind those ab initio QED methods, we highlight their benefits for understanding photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods, we identify open theoretical questions and how a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first-principles QED.
Collapse
Affiliation(s)
- Michael Ruggenthaler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Sidler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
10
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
11
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
12
|
Sáez-Blázquez R, de Bernardis D, Feist J, Rabl P. Can We Observe Nonperturbative Vacuum Shifts in Cavity QED? PHYSICAL REVIEW LETTERS 2023; 131:013602. [PMID: 37478455 DOI: 10.1103/physrevlett.131.013602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/02/2023] [Indexed: 07/23/2023]
Abstract
We address the fundamental question of whether or not it is possible to achieve conditions under which the coupling of a single dipole to a strongly confined electromagnetic vacuum can result in nonperturbative corrections to the dipole's ground state. To do so we consider two simplified, but otherwise rather generic cavity QED setups, which allow us to derive analytic expressions for the total ground-state energy and to distinguish explicitly between purely electrostatic and genuine vacuum-induced contributions. Importantly, this derivation takes the full electromagnetic spectrum into account while avoiding any ambiguities arising from an ad hoc mode truncation. Our findings show that while the effect of confinement per se is not enough to result in substantial vacuum-induced corrections, the presence of high-impedance modes, such as plasmons or engineered LC resonances, can drastically increase these effects. Therefore, we conclude that with appropriately designed experiments it is at least in principle possible to access a regime where light-matter interactions become nonperturbative.
Collapse
Affiliation(s)
- Rocío Sáez-Blázquez
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
| | - Daniele de Bernardis
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Peter Rabl
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, 85748 Garching, Germany
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| |
Collapse
|
13
|
Arumona AE, Czajkowski KM, Antosiewicz TJ. Material- and shape-dependent optical modes of hyperbolic spheroidal nano-resonators. OPTICS EXPRESS 2023; 31:23459-23474. [PMID: 37475429 DOI: 10.1364/oe.494389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Hyperbolic nanoresonators, composed of anisotropic materials with opposite signs of permittivity, have unique optical properties due to a large degree of freedom that hyperbolic dispersion provides in designing their response. Here, we focus on uniaxial hyperbolic nanoresonators composed of a model silver-silica multilayer in the form of spheroids with a broad aspect ratio encompassing both prolate and oblate particles. The origin and evolution of the optical response and mode coupling are investigated using both numerical (T-matrix and FDTD) and theoretical methods. We show the tunability of the optical resonances and the interplay of the shape and material anisotropy in determining the spectral response. Depending on the illumination conditions as well as shape and material anisotropy, a single hyperbolic spheroid can show a dominant electric resonance, behaving as a pure metallic nanoparticle, or a strong dipolar magnetic resonance even in the quasistatic regime. The quasistatic magnetic response of indicates a material-dependent origin of the mode, which is obtained due to coupling of the magnetic and electric multipoles. Such coupling characteristics can be employed in various modern applications based on metasurfaces.
Collapse
|
14
|
Miwa K, Sakamoto S, Ishizaki A. Control and Enhancement of Single-Molecule Electroluminescence through Strong Light-Matter Coupling. NANO LETTERS 2023; 23:3231-3238. [PMID: 37039831 DOI: 10.1021/acs.nanolett.2c05089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The energetic positions of molecular electronic states at molecule/electrode interfaces are crucial factors for determining the transport and optoelectronic properties of molecular junctions. Strong light-matter coupling offers a potential for manipulating these factors, enabling a boost in the efficiency and versatility of these junctions. Here, we investigate electroluminescence from single-molecule junctions in which the molecule is strongly coupled with the vacuum electromagnetic field in a plasmonic nanocavity. We demonstrate an improvement in the electroluminescence efficiency by employing the strong light-matter coupling in conjunction with the characteristic feature of single-molecule junctions to selectively control the formation of the lowest-energy excited state. The mechanism of efficiency improvement is discussed based on the energetic position and composition of the formed polaritonic states. Our findings indicate the possibility to manipulate optoelectronic conversion in molecular junctions by strong light-matter coupling and contribute to providing design principles for developing efficient molecular optoelectronic devices.
Collapse
Affiliation(s)
- Kuniyuki Miwa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Souichi Sakamoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
15
|
Hu D, Huo P. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. J Chem Theory Comput 2023; 19:2353-2368. [PMID: 37000936 PMCID: PMC10134431 DOI: 10.1021/acs.jctc.3c00137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 04/03/2023]
Abstract
We present a mixed quantum-classical simulation of polariton dynamics for molecule-cavity hybrid systems. In particular, we treat the coupled electronic-photonic degrees of freedom (DOFs) as the quantum subsystem and the nuclear DOFs as the classical subsystem and use the trajectory surface hopping approach to simulate non-adiabatic dynamics among the polariton states due to the coupled motion of nuclei. We use the accurate nuclear gradient expression derived from the Pauli-Fierz quantum electrodynamics Hamiltonian without making further approximations. The energies, gradients, and derivative couplings of the molecular systems are obtained from the on-the-fly simulations at the level of complete active space self-consistent field (CASSCF), which are used to compute the polariton energies and nuclear gradients. The derivatives of dipoles are also necessary ingredients in the polariton nuclear gradient expression but are often not readily available in electronic structure methods. To address this challenge, we use a machine learning model with the Kernel ridge regression method to construct the dipoles and further obtain their derivatives, at the same level as the CASSCF theory. The cavity loss process is modeled with the Lindblad jump superoperator on the reduced density of the electronic-photonic quantum subsystem. We investigate the azomethane molecule and its photoinduced isomerization dynamics inside the cavity. Our results show the accuracy of the machine-learned dipoles and their usage in simulating polariton dynamics. Our polariton dynamics results also demonstrate the isomerization reaction of azomethane can be effectively tuned by coupling to an optical cavity and by changing the light-matter coupling strength and the cavity loss rate.
Collapse
Affiliation(s)
- Deping Hu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
16
|
Kim Y, Barulin A, Kim S, Lee LP, Kim I. Recent advances in quantum nanophotonics: plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:413-439. [PMID: 39635391 PMCID: PMC11501129 DOI: 10.1515/nanoph-2022-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2024]
Abstract
The fundamental understanding of molecular quantum electrodynamics via the strong light-matter interactions between a nanophotonic cavity and quantum emitters opens various applications in quantum biology, biophysics, and chemistry. However, considerable obstacles to obtaining a clear understanding of coupling mechanisms via reliable experimental quantifications remain to be resolved before this field can truly blossom toward practical applications in quantitative life science and photochemistry. Here, we provide recent advancements of state-of-the-art demonstrations in plexcitonic and vibro-polaritonic strong couplings and their applications. We highlight recent studies on various strong coupling systems for altering chemical reaction landscapes. Then, we discuss reports dedicated to the utilization of strong coupling methods for biomolecular sensing, protein functioning studies, and the generation of hybrid light-matter states inside living cells. The strong coupling regime provides a tool for investigating and altering coherent quantum processes in natural biological processes. We also provide an overview of new findings and future avenues of quantum biology and biochemistry.
Collapse
Affiliation(s)
- Yangkyu Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Sangwon Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA94720, USA
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
17
|
Abstract
Picocavities are sub-nanometer-scale optical cavities recently found to trap light, which are formed by single-atom defects on metallic facets. Here, we develop simple picocavity models and discuss what is known and unknown about this new domain of atom-scale optics, as well as the challenges for developing comprehensive theories. We provide simple analytic expressions for many of their key properties and discuss a range of applications from molecular electronics to photocatalysis where picocavities are important.
Collapse
Affiliation(s)
- Jeremy J. Baumberg
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|