1
|
Wang L, Zhang X, Chen S, Ye Q, Basappa B, Zhu T, Lobie PE, Pandey V. Combining Mitomycin C with inhibition of BAD phosphorylation enhances apoptotic cell death in advanced cervical cancer. Transl Oncol 2024; 49:102103. [PMID: 39181117 PMCID: PMC11388011 DOI: 10.1016/j.tranon.2024.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Mitomycin C (MMC), a DNA-damaging chemotherapeutic, is commonly used clinically for recurrent cervical carcinoma (CC), either alone or in combination. MMC generates DNA damage resulting in CC cell death yet also induces increased AKT-BAD phosphorylation associated with drug resistance and reduced clinical benefit. The present study evaluates the efficacy of combined MMC and a BAD phosphorylation inhibitor in CC. METHODS The association and function of phosphorylation of BAD on serine 99 (pBADS99) for cell survival of both MMC-resistant or sensitive-CC cells was explored. BAD was mutated to BADS99A to examine the requirement of BADS99 for CC cell survival and a novel small-molecule inhibitor of pBADS99 was utilized. Cell proliferation, survival, foci formation, and patient-derived organoids (PDOs) assays were utilized to determine efficacy, synergy and related mechanisms. RESULTS MMC IC50 was positively correlated to the cell line pBADS99/BAD ratio. Increased BADS99 phosphorylation was observed in both MMC-sensitive or -resistant CC cells after MMC treatment. Inhibition of pBADS99 in CC cell lines produced synergistic apoptosis through BAD-mediated apoptotic pathways and enhanced DNA damage in response to MMC. The concurrent use of pharmacological inhibition of pBADS99 and MMC was synergistic, resulting in diminished cell viability and inducing apoptotic cell death in MMC-sensitive and -resistant CC cell lines or patient-derived organoids. CONCLUSION A combination of MMC with inhibition of BAD phosphorylation potentiated efficacy compared to single agent treatment. The potential further development of such strategies may provide outcome benefits to patients with CC.
Collapse
Affiliation(s)
- Liqiong Wang
- Department of Gynecology and Obstetrics, the University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, Guangdong, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China; Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Shu Chen
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qiuhua Ye
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006 Karnataka, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China; Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, PR China; Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Peter E Lobie
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China; Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Luo D, Li S, Guo J, Yue H, Shi L, Liu R, Wang J, Shi X. The role and mechanism of AZD5363 anti-leukemia activity in T-cell acute lymphoblastic leukemia. Eur J Pharmacol 2024; 963:176268. [PMID: 38096965 DOI: 10.1016/j.ejphar.2023.176268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and heterogeneous hematologic malignancy. Chemotherapy resistance and refractory relapses are the most important challenges in T-ALL. PI3K/Akt/mTOR pathway has been implicated in regulating cell survival, T-ALL development and resistance to chemotherapy. We explored the effects of AZD5363 (a potent pan-Akt inhibitor) alone and in combination with autophagy inhibitor hydroxycholoroquine sulfate (HCQ) in cultured CCRF-CEM, Jurkat and PF382 cells and a T-ALL xenograft mouse model. METHODS A xenograft mouse model was used to investigate the effect of AZD5363 on T-ALL progression. MTT assay, flow cytometry, siRNA, transmission electron microscopy and western blotting were performed in cultured CCRF-CEM, Jurkat and PF382 cells. The interaction between AZD5363 and HCQ was explored by molecular docking. RESULTS AZD5363 delayed T-ALL progression and increased the expression of cleaved caspase-3 and LC3B-II in mice. AZD5363 decreased cells viability by arresting cell cycle in the G1 phase and inducing apoptosis, and, significantly increased the number of autophagosomes (p < 0.01). The increased expression of cleaved caspase-3 and LC3B-II, and phosphorylation of Akt and mTOR were significantly, inhibited by AZD5363. HCQ blocked AZD5363-induced autophagy and enhanced AZD5363-induced cell death (p < 0.01). CONCLUSIONS AZD5363 suppressed T-ALL progression and its anti-leukemia activity was enhanced by HCQ in T-ALL cells, which might provide a potential therapeutic strategy for human T-ALL.
Collapse
Affiliation(s)
- Danqing Luo
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shen Li
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Guo
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huixuan Yue
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lixiao Shi
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Rong Liu
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jianhua Wang
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Xiaodong Shi
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
3
|
Tan YQ, Chiou YS, Guo H, Zhang S, Huang X, Dukanya D, Kumar AM, Basappa S, Liu S, Zhu T, Basappa B, Pandey V, Lobie PE. Vertical pathway inhibition of receptor tyrosine kinases and BAD with synergistic efficacy in triple negative breast cancer. NPJ Precis Oncol 2024; 8:8. [PMID: 38200104 PMCID: PMC10781691 DOI: 10.1038/s41698-023-00489-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Aberrant activation of the PI3K/AKT signaling axis along with the sustained phosphorylation of downstream BAD is associated with a poor outcome of TNBC. Herein, the phosphorylated to non-phosphorylated ratio of BAD, an effector of PI3K/AKT promoting cell survival, was observed to be correlated with worse clinicopathologic indicators of outcome, including higher grade, higher proliferative index and lymph node metastasis. The structural optimization of a previously reported inhibitor of BAD-Ser99 phosphorylation was therefore achieved to generate a small molecule inhibiting the phosphorylation of BAD at Ser99 with enhanced potency and improved oral bioavailability. The molecule 2-((4-(2,3-dichlorophenyl)piperazin-1-yl)(pyridin-3-yl)methyl) phenol (NCK) displayed no toxicity at supra-therapeutic doses and was therefore assessed for utility in TNBC. NCK promoted apoptosis and G0/G1 cell cycle arrest of TNBC cell lines in vitro, concordant with gene expression analyses, and reduced in vivo xenograft growth and metastatic burden, demonstrating efficacy as a single agent. Additionally, combinatorial oncology compound library screening demonstrated that NCK synergized with tyrosine kinase inhibitors (TKIs), specifically OSI-930 or Crizotinib in reducing cell viability and promoting apoptosis of TNBC cells. The synergistic effects of NCK and TKIs were also observed in vivo with complete regression of a percentage of TNBC cell line derived xenografts and prevention of metastatic spread. In patient-derived TNBC xenograft models, NCK prolonged survival times of host animals, and in combination with TKIs generated superior survival outcomes to single agent treatment. Hence, this study provides proof of concept to further develop rational and mechanistic based therapeutic strategies to ameliorate the outcome of TNBC.
Collapse
Grants
- This research was supported by the National Natural Science Foundation of China (82172618 to P.E.L. and 82102768 to Y.Q.T.), China; the Shenzhen Key Laboratory of Innovative Oncotherapeutics (ZDSYS20200820165400003 to P.E.L.) (Shenzhen Science and Technology Innovation Commission), China; Shenzhen Development and Reform Commission Subject Construction Project ([2017]1434 to P.E.L.), China; Universities Stable Funding Key Projects (WDZC20200821150704001 to P.E.L.), China; Guangdong Basic and Applied Basic Research Foundation (2020A1515111064 to Y.Q.T.), China; The Shenzhen Bay Laboratory, Oncotherapeutics (21310031 to P.E.L.), China; Overseas Research Cooperation Project (HW2020008 to V.P.) (Tsinghua Shenzhen International Graduate School), China; Research Fund, Kaohsiung Medical University (KMU-Q112002 to Y.C.), Taiwan and China Postdoctoral Science Foundation (2022M721894 to X.H.), China.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yi-Shiou Chiou
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Hui Guo
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Xiaoming Huang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Dukanya Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Arun M Kumar
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Shreeja Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Zhang X, Wang L, Chen S, Huang P, Ma L, Ding H, Basappa B, Zhu T, Lobie PE, Pandey V. Combined inhibition of BADSer99 phosphorylation and PARP ablates models of recurrent ovarian carcinoma. COMMUNICATIONS MEDICINE 2022; 2:82. [PMID: 35791346 PMCID: PMC9250505 DOI: 10.1038/s43856-022-00142-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background Poly (ADP-ribose) polymerase inhibitors (PARPis) have been approved for the treatment of recurrent epithelial ovarian cancer (EOC), regardless of BRCA status or homologous recombination repair deficiency. However, the low response of platinum-resistant EOC, the emergence of resistance in BRCA-deficient cancer, and therapy-associated toxicities in patients limit the clinical utility of PARPis in recurrent EOC. Methods The association of phosphorylated (p) BADS99 with clinicopathological parameters and survival outcomes in an EOC cohort was assessed by immunohistochemistry. The therapeutic synergy, and mechanisms thereof, between a pBADS99 inhibitor and PARPis in EOC was determined in vitro and in vivo using cell line and patient-derived models. Results A positive correlation between pBADS99 in EOC with higher disease stage and poorer survival is observed. Increased pBADS99 in EOC cells is significantly associated with BRCA-deficiency and decreased Cisplatin or Olaparib sensitivity. Pharmacological inhibition of pBADS99 synergizes with PARPis to enhance PARPi IC50 and decreases survival, foci formation, and growth in ex vivo culture of EOC cells and patient-derived organoids (PDOs). Combined inhibition of pBADS99 and PARP in EOC cells or PDOs enhances DNA damage but impairs PARPi stimulated DNA repair with a consequent increase in apoptosis. Inhibition of BADS99 phosphorylation synergizes with Olaparib to suppress the xenograft growth of platinum-sensitive and resistant EOC. Combined pBADS99-PARP inhibition produces a complete response in a PDX derived from a patient with metastatic and chemoresistant EOC. Conclusions A rational and efficacious combination strategy involving combined inhibition of pBADS99 and PARP for the treatment of recurrent EOC is presented. Ovarian cancer is difficult to successfully treat because it often recurs as the cancer becomes resistant to drugs used to treat it. As such, new drugs or combinations of drugs are needed to treat patients with recurrent ovarian cancer. Here, a drug combination is reported that is effective in experimental models of ovarian cancer, including those derived from patients. The combination approach uses drugs that have previously been approved for use in patients, known as PARP inhibitors, and another drug to inhibit cancer cell survival by targeting activation of a specific protein involved in cancer cell survival. The net effect of this drug combination in ovarian cancer models is greater than the sum of the drugs used individually. With further testing, this combination may offer a potential strategy to treat patients with recurrent ovarian cancer. Zhang et al. test the therapeutic potential of an inhibitor of BAD phosphorylation, NPB, in epithelial ovarian cancer. The authors show that the small molecule synergises with PARP inhibition to kill patient-derived ovarian cancer organoids and suppress the growth of xenograft tumours, including a cisplatin-resistant model.
Collapse
|
5
|
Inhibition of BAD-Ser99 phosphorylation synergizes with PARP inhibition to ablate PTEN-deficient endometrial carcinoma. Cell Death Dis 2022; 13:558. [PMID: 35725817 PMCID: PMC9209517 DOI: 10.1038/s41419-022-04982-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Loss of phosphatase and tensin homolog (PTEN) impairs DNA double-strand repair and confers sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPis). However, PARPis also hyperactivate the MAPK and PI3K/AKT/mTOR pathways in PTEN-deficient endometrial carcinoma (EC), which allows the emergence of PARPi resistance. BCL-2-associated death promoter (BAD), integrates the common cell survival effects of the RAS/MEK/MAPK and PI3K/AKT/mTOR pathways. Herein, it was observed that increased BADSer99 (BADS99) phosphorylation in EC cells was significantly associated with PTEN-deficient status. Forced expression of phosphorylation deficient human BADS99A in PTEN-deficient EC cells significantly increased CASPASE 3/7 activity and decreased EC cell viability. Using NPB as a pharmacological inhibitor of pBADS99 phosphorylation, it was demonstrated that NPB synergized with PARPis (Olaparib, Rucaparib and Talazoparib) to enhance PARPi IC50 up to 60-fold and decreased survival, foci formation, and growth in 3D ex vivo culture of PTEN-deficient EC cells. Combined NPB-PARPi treatment of PTEN-deficient EC cells stimulated apoptosis and promoted DNA damage by impairment of homologous recombination. Using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease system it was demonstrated that deletion of PTEN in PTEN replete EC cells enhanced the efficacy of combined NPB-PARPi treatment. Furthermore, combined inhibition of BADS99 phosphorylation and PARP ablated xenograft growth of PTEN-deficient EC cells. Similarly, a combination of NPB and PARPis significantly suppressed the growth of PTEN deficient patient-derived EC organoids. Hence, combined inhibition of BADS99 phosphorylation and PARP represents a rational and efficacious strategy to improve the prognosis of recurrent EC patients.
Collapse
|
6
|
Wang B, Yan Y, Ding CF. Metal-organic framework-based sample preparation in proteomics. J Chromatogr A 2022; 1671:462971. [DOI: 10.1016/j.chroma.2022.462971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
|
7
|
Sluchanko NN, Tugaeva KV, Gushchin I, Remeeva A, Kovalev K, Cooley RB. Crystal structure of human 14-3-3ζ complexed with the noncanonical phosphopeptide from proapoptotic BAD. Biochem Biophys Res Commun 2021; 583:100-105. [PMID: 34735870 DOI: 10.1016/j.bbrc.2021.10.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Several signaling pathways control phosphorylation of the proapoptotic protein BAD and its phosphorylation-dependent association with 14-3-3 proteins in the cytoplasm. The stability of the 14-3-3/BAD complex determines the cell fate: unphosphorylated BAD escapes from 14-3-3, migrates to the mitochondria and initiates apoptosis. While the 14-3-3/BAD interaction represents a promising drug target, it lacks structural characterization. Among several phosphosites identified in vivo, Ser75 and Ser99 of human BAD match the consensus sequence RXXpSXP recognized by 14-3-3 and, therefore, represent canonical 14-3-3-binding sites. Yet, BAD contains other serines phosphorylatable in vivo, whose role is less understood. Here, we report a 2.36 Å crystal structure of 14-3-3ζ complexed with a BAD fragment which includes residues Ser74 and Ser75, both being substrates for protein kinases. While the BAD peptide is anchored to 14-3-3 by phosphoserine as expected, the BAD peptide was unexpectedly phosphorylated at Ser74 instead of Ser75, revealing noncanonical binding within the amphipathic groove and leading to a one-step positional shift and reorganization of the interface. This observation exemplifies plasticity of the amphipathic 14-3-3 groove in accommodating various peptides and suggests the redundancy of Ser74 and Ser75 phosphosites with respect to binding of BAD to 14-3-3.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia; European Molecular Biology Laboratory, 22607, Hamburg, Germany
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
8
|
Girimanchanaika SS, Dukanya D, Swamynayaka A, Govindachar DM, Madegowda M, Periyasamy G, Rangappa KS, Pandey V, Lobie PE, Basappa B. Investigation of NPB Analogs That Target Phosphorylation of BAD-Ser99 in Human Mammary Carcinoma Cells. Int J Mol Sci 2021; 22:ijms222011002. [PMID: 34681659 PMCID: PMC8540132 DOI: 10.3390/ijms222011002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022] Open
Abstract
The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported. Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively. The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore, these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional theory calculations suggested possibilities for other analogs of NPB that may be more suitable for further development.
Collapse
Affiliation(s)
- Swamy Savvemala Girimanchanaika
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
| | - Dukanya Dukanya
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
| | - Ananda Swamynayaka
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India; (A.S.); (M.M.)
| | | | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India; (A.S.); (M.M.)
| | - Ganga Periyasamy
- Department of Chemistry, Bangalore University, Bangalore 560056, India; (D.M.G.); (G.P.)
| | | | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peter E. Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzen Bay Laboratory, Shenzhen 518055, China
- Correspondence: (P.E.L.); (B.B.)
| | - Basappa Basappa
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
- Correspondence: (P.E.L.); (B.B.)
| |
Collapse
|
9
|
Zhuang QS, Sun XB, Chong QY, Banerjee A, Zhang M, Wu ZS, Zhu T, Pandey V, Lobie PE. ARTEMIN Promotes Oncogenicity and Resistance to 5-Fluorouracil in Colorectal Carcinoma by p44/42 MAPK Dependent Expression of CDH2. Front Oncol 2021; 11:712348. [PMID: 34422665 PMCID: PMC8377398 DOI: 10.3389/fonc.2021.712348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
ARTEMIN (ARTN), one of the glial-cell derived neurotrophic factor family of ligands, has been reported to be associated with a number of human malignancies. In this study, the enhanced expression of ARTN in colorectal carcinoma (CRC) was observed; the expression of ARTN positively correlated with lymph node metastases and advanced tumor stages and predicted poor prognosis. Forced expression of ARTN in CRC cells enhanced oncogenic behavior, mesenchymal phenotype, stem cell-like properties and tumor growth and metastasis in a xenograft model. These functions were conversely inhibited by depletion of endogenous ARTN. Forced expression of ARTN reduced the sensitivity of CRC cells to 5-FU treatment; and 5-FU resistant CRC cells harbored enhanced expression of ARTN. The oncogenic functions of ARTN were demonstrated to be mediated by p44/42 MAP kinase dependent expression of CDH2 (CADHERIN 2, also known as N-CADHERIN). Inhibition of p44/42 MAP kinase activity or siRNA mediated depletion of endogenous CDH2 reduced the enhanced oncogenicity and chemoresistance consequent to forced expression of ARTN induced cell functions; and forced expression of CDH2 rescued the reduced mesenchymal properties and resistance to 5-FU after ARTN depletion. In conclusion, ARTN may be of prognostic and theranostic utility in CRC.
Collapse
Affiliation(s)
- Qiu-Shi Zhuang
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xin-Bao Sun
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Arindam Banerjee
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Min Zhang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Tao Zhu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|