1
|
Xu W, Cao Y, Shi H, Jia X, Zheng Y, Tan Z, Zhao R, Wu H. Skin-interfaced sweat monitoring patch constructed by flexible microfluidic capillary pump and Cu-MOF sensitized electrochemical sensor. Talanta 2025; 291:127895. [PMID: 40056654 DOI: 10.1016/j.talanta.2025.127895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The limitations of skin-interfaced sweat monitoring are mainly reflected in the effective collection of sweat and the high sensitivity of the detection. This work proposes a new type of sweat monitoring patch based on a flexible microfluidic chip fabricated by a capillary pump and a copper-based metal-based organic framework (Cu-MOF) sensitized electrochemical sensor. The sweat in the microchannel is driven by a capillary pump to ensure the smooth collection and transportation. The sweat collection channel adopts the ingenious design of wedge-shaped structure, which helps to spontaneously generate Laplacian forces to direct sweat to the detection area. The detection area combines upper and lower capillary pumps, which aim to improve the efficiency of sweat collection. The controllable preparation of Cu-MOF was realized by using a micro-mixer, and the glucose sensor was prepared with it as the probe. The Cu-MOF/PANI layered electrode was prepared, which effectively improved the sensitivity of glucose detection and achieved a significant detection limit of 2.84 μM in the concentration range of 0-1 mM. Sodium and potassium selective electrode were also integrated into a unified screen-printed electrode, and a portable electrochemical detection module, a Bluetooth transmission module, and a mobile phone receiving application were developed. The sweat monitoring patch shows potential in applications such as sports performance monitoring, healthcare, and personalized medicine, opening new avenues for non-invasive health monitoring and early disease detection.
Collapse
Affiliation(s)
- Weizheng Xu
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Yu Cao
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Huanhuan Shi
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China.
| | - Xuanhao Jia
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Yun Zheng
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Zhongjian Tan
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Rui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Hongwen Wu
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, People's Republic of China.
| |
Collapse
|
2
|
Wang J, Ye J, Li Z, Li X, Luo Y, Zhou Z, Liu C, Xu T, Zhang X. An Integrated Janus Bioelectronic Bandage for Unidirectional Pumping and Monitoring of Wound Exudate. NANO LETTERS 2025; 25:5156-5164. [PMID: 40119807 DOI: 10.1021/acs.nanolett.4c06147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Single-functional wound dressings provide limited therapeutic benefits for chronic wound healing. Effective care for chronic wounds requires a multifunction that integrates exudate management, therapeutic treatment, and continuous monitoring. Here, we introduce an integrated Janus bioelectronic wound care bandage designed to achieve self-pumping exudate management via an electrospinning Janus dressing with opposite wettability, antibacterial properties through silver nanoparticles (AgNPs), and the monitoring of multiplex biomarkers in wounds via electrochemical sensors positioned on the drainage side. The limits of detection (LOD) of sensors are 0.15 mM for glucose, 6.85 μM for UA, and 60.76 mV/decade for pH (4-8), respectively. We demonstrated in mice full-thickness wound models that this bandage effectively promoted wound healing, achieving a wound closure rate of 90.35% on day 14, and monitored the dynamic changes of three biomarkers within wounds in situ over a period of 3 days.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Jintao Ye
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Zhuoheng Li
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Xinwang Li
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yong Luo
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhongzeng Zhou
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Synthetic Biology Research Center of Shenzhen University, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
3
|
Li D, Liu W, Peng T, Liu Y, Zhong L, Wang X. Janus Textile: Advancing Wearable Technology for Autonomous Sweat Management and Beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409730. [PMID: 40042440 DOI: 10.1002/smll.202409730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/09/2025] [Indexed: 04/03/2025]
Abstract
To alleviate the discomfort caused by excessive sweating, there is a growing emphasis on developing wearable textiles that can evacuate sweat autonomously. These advanced fabrics, unlike their absorbent and retention-prone predecessors, harness the Janus structure-distinguished by its asymmetric wettability-to facilitate one-way transport of liquid. This unique characteristic has significant potential in addressing issues related to excessive bodily moisture and propelling the realm of smart wearables. This review offers a comprehensive overview of the advancements in Janus-structured textiles within the wearable field, delving into the mechanisms behind their unidirectional liquid transport, which rely on chemical gradient and curvature gradient strategies, alongside the methodologies for achieving asymmetric wettability. It further spotlights the multifaceted applications of Janus-based textiles in wearables, including moisture and thermal management, wound care, and sweat analysis. In addition to examining existing hurdles, the review also explores avenues for future innovation, envisioning a new era of Janus textiles tailored for personalized comfort and health monitoring capabilities.
Collapse
Affiliation(s)
- Dan Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Tianhan Peng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yunya Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Lieshuang Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
4
|
Chen B, Qian Z, Song G, Niu X, Yu Y, Wang S, Wu J, Ma S, Liang Y, Ren L, Ren L. Bioinspired Flexible Epidermal Electronics with Superior Gas Permeability and Unidirectional Water Transport Capability. NANO LETTERS 2025; 25:3817-3825. [PMID: 40012259 DOI: 10.1021/acs.nanolett.4c05791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Epidermal electronics are extensively used in human-machine interfaces and wearable sensors. However, managing sweat and gas permeability at the skin-device interface to ensure comfort and prevent skin damage during prolonged use remains a key challenge. Inspired by the fog collection mechanism of cactus spines and trichomes, this work develops a biomimetic, flexible epidermal electronic device with high gas permeability and unidirectional water transport capability. The device exhibits excellent flexibility (Young's modulus: 0.02 MPa), breathability (electrode: 3551.63 g day-1 m-2, substrate: 3795.38 g day-1 m-2), unidirectional water transport (1.09 s), and antigravity water transport (2.50 s). Notably, during continuous sweating (5 h) and extended wear (7 days), it demonstrates outstanding electromyography (EMG) signal acquisition, with a signal-to-noise ratio (SNR) approximately 58 times higher than that of commercial electrodes. This offers promising potential for advancing high-performance, wearable human-machine interface electronics.
Collapse
Affiliation(s)
- Boya Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhihui Qian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Guangsheng Song
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Xiaoru Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yingqing Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shengli Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jianan Wu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Suqian Ma
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Yunhong Liang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
5
|
Liu J, Xu Z, Wang H, Zhao Y, Lin T. Directional Liquid Transport in Thin Fibrous Matrices: Enhancement of Advanced Applications. ACS NANO 2025; 19:5913-5937. [PMID: 39912713 DOI: 10.1021/acsnano.4c17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Directional liquid transport fibrous matrices (DLTFMs) have the unique ability to direct liquid movement in a single direction through their thickness. Beyond their inherent liquid transport function, DLTFMs can also enhance the effectiveness of additional functionalities. This review focuses on recent advances in DLTFMs, particularly the role of DLTs in enhancing secondary functions. We begin with a brief overview of the historical development and major achievements in DLTFM research, followed by an outline of the classification, fabrication techniques, and basic functions derived from their natural liquid transport properties. The integration of DLT to enhance secondary functionalities such as responsiveness, thermal regulation, and wearable technology for innovative applications in various sectors is then discussed. The review concludes with a discussion of key challenges and prospects in the field, including the durability and reliability of DLT performance, the precise regulation of fluid transport rates, the resilience and longevity of DLTFMs in harsh environments, and the impact of DLT variations on performance enhancement. The goal of this review is to stimulate further innovative studies on DLTFMs and to promote their practical implementation in a variety of industries.
Collapse
Affiliation(s)
- Junye Liu
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- College of Biological, Chemical Sciences and Engineering, China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Hongxia Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Tong Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Martínez-Estrada M, Gil I, Fernández-García R. An Embroidered Electrochemical Sensor to Measure Glucose Made with Commercially Available Textile Materials. BIOSENSORS 2025; 15:109. [PMID: 39997011 PMCID: PMC11853155 DOI: 10.3390/bios15020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
A textile electrochemical sensor manufactured with commercially available textile materials is presented to determine glucose concentration. The sensor design consists of three electrodes manufactured with two different conductive yarns, one made with a silver coating and the other with stainless steel fibres. Different combinations of them are used to prepare three different electrochemical textile sensor combinations. The first sensor is built only with silver-coated yarn and used as a reference sensor. The other two sensors are prepared with different combinations of conductive yarns. The textile sensors perform a cyclic voltammetric test, where it is demonstrated that the glucose concentration over the sensor can be related with the increase in the current measured. The results allow us to identify feeding voltages where the concentration-current relation is close to linear. The textile sensor shows a sensitivity between 0.0145 and 0.0452 μA/(mg/dL) for the 45-180 mg/dL glucose concentration range and 0.0012 and 0.0035 μA/(mg/dL) for the 180-1800 mg/dL range for the different sensor types presented. The regression coefficients for the sensitivities range between 0.9266 and 0.9954. This research demonstrates the feasibility to develop a fully integrated textile electrochemical sensor made completely with commercially available textile materials.
Collapse
Affiliation(s)
- Marc Martínez-Estrada
- Departament of Electronic Engineering, Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual, Universitat Politecnica de Catalunya, c/Colom 1, 08222 Terrassa, Spain; (I.G.); (R.F.-G.)
| | | | | |
Collapse
|
7
|
Jiang D, Liu X, Zhan W, Fu M, Liu J, He J, Li Y, Li Y, Chen X, Yu C. Skin-Interfaced Wearable Sensor for Long-Term Reliable Monitoring of Uric Acid and pH in Sweat. NANO LETTERS 2025; 25:1427-1435. [PMID: 39818914 DOI: 10.1021/acs.nanolett.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Wearable sweat sensors offering real-time monitoring of biomarker levels suffer from stability and accuracy issues, primarily due to low biomarker concentrations, fluctuating sweat pH, and material detachment from sensor deformation. Here, we developed a wearable sensing system integrated with two advanced electrodes and a flexible microchannel for long-term reliable monitoring of sweat pH and uric acid (UA). By printing the ink doped with nanomaterials (Co3O4@CuCo2O4 and polyaniline), we achieved highly stable electrodes for the direct analysis of perspiration, without additional surface modification. Additionally, real-time pH analysis provided a means for sensitivity calibration, reducing the effect of individual metabolism and exercise intensity. As a result, the wearable sensing system for effective gout management was validated by accurately tracking the UA fluctuations in serum and sweat of hyperuricemia patients and healthy individuals. These findings offer a reliable method for tracking biomarkers to assess personal health.
Collapse
Affiliation(s)
- Danfeng Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, PR China
| | - Wenjun Zhan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Mengmeng Fu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jiacheng Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jialun He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yunlong Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yingguo Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xiao Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| |
Collapse
|
8
|
Mei X, Zhou L, Zhu L, Wang B. Composite Nanofiber Membrane-Based Microfluidic Fluorescence Sensors for Sweat Analysis. Anal Chem 2025; 97:492-498. [PMID: 39726214 DOI: 10.1021/acs.analchem.4c04616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Microfluidic chips play a crucial role in wearable sensors for sweat collection. However, previously reported wearable microfluidic chips, such as those based on poly(dimethylsiloxane) (PDMS) and paper, encounter sweat accumulation at the skin-sensor interface in practical applications, which consequently affects both sensing stability and wearing comfort. Herein, we propose a composite nanofiber membrane (CNMF)-based microfluidic chip for in situ sweat collection. The CNMF with directional water transport capability was integrated with patterned PDMS to prepare microfluidic chips. On one hand, sweat can be automatically transported to the analysis area along the designed pathway. On the other hand, sweat transfers from the hydrophobic membrane close to the skin to the hydrophilic membrane, effectively avoiding sweat accumulation and facilitating a comfortable skin microenvironment. Subsequently, we constructed a CNMF-based microfluidic fluorescence sensor for the analysis of multiple targets in human sweat. A portable 3D-printed device was employed for the visual signal output. Results indicated that the microfluidic sensor exhibits excellent reliability for collecting and analyzing sweat. This work provides new insights into the construction of wearable microfluidic chips with enhanced wearing comfort.
Collapse
Affiliation(s)
- Xuecui Mei
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontiers Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Liang Zhu
- School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bin Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontiers Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
9
|
Guo X, Zhang Q, Zhang C, Mi M, Li X, Zhang X, Ramakrishna S, Ji D, Qin X. Pumpless microfluidic sweat sensing yarn. Biosens Bioelectron 2024; 266:116713. [PMID: 39232436 DOI: 10.1016/j.bios.2024.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Textile sweat sensors possess immense potential for non-invasive health monitoring. Rapid in-situ sweat capture and prevention of its evaporation are crucial for accurate and stable real-time monitoring. Herein, we introduce a unidirectional, pump-free microfluidic sweat management system to tackle this challenge. A nanofiber sheath layer on micrometer-scale sensing filaments enables this pumpless microfluidic design. Utilizing the capillary effect of the nanofibers allows for the swift capture of sweat, while the differential configuration of the hydrophilic and hydrophobic properties of the sheath and core yarns prevents sweat evaporation. The Laplace pressure difference between the cross-scale fibers facilitates the management system to ultimately expulse sweat. This results in microfluidic control of sweat without the need for external forces, resulting in rapid (<5 s), sensitive (19.8 nA μM-1), and stable (with signal noise and drift suppression) sweat detection. This yarn sensor can be easily integrated into various fabrics, enabling the creation of health monitoring smart garments. The garments maintain good monitoring performance even after 20 washes. This work provides a solution for designing smart yarns for high-precision, stable, and non-invasive health monitoring.
Collapse
Affiliation(s)
- Xinyue Guo
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiangqiang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chentian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mingyue Mi
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinxin Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xueping Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Dongxiao Ji
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
10
|
Zhang Y, Wu D, Li J, Yu Y, Lv H, Xu A, Wang Q, Li W, Lv P, Wei Q. Biomass confined gradient porous Janus bacterial cellulose film integrating enhanced radiative cooling with perspiration-wicking for efficient thermal management. Carbohydr Polym 2024; 343:122482. [PMID: 39174140 DOI: 10.1016/j.carbpol.2024.122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Sophisticated structure design and multi-step manufacturing processes for balancing spectra-selective optical property and the necessary applicable performance for human thermal-wet regulation, is the major limitation in wide application of radiative cooling materials. Herein, we proposed a biomass confinement strategy to a gradient porous Janus cellulose film for enhanced optical performance without compromising thermal-wet comfortable. The bacterial cellulose confined grow in the micro-nano pores between PP nonwoven fabric and SiO2 achieving the cross-scale gradient porous Janus structure. This structure enables the inorganic scatterers even distribution forming multi-reflecting optical mechanism, thereby, gradient porous Janus film demonstrates a reflectivity of 93.1 % and emissivity of 88.1 %, attains a sub-ambient cooling temperature difference of 2.8 °C(daytime) and 8.5 °C(night). Film enables bare skin to avoid overheating by 7.7 °C compared to cotton fabric. It reaches a 17.2 °C building cooling temperature under 1 sun radiance. Moreover, biomass confined micro-nano gradient porous structure integrating with Janus wet gradient guarantees the driven force for directional water transportation, which satisfies the thermal-wet comfortable demands for human cooling application without any further complicated process. Overall, bacterial cellulose based biomass confining strategy provides a prospective method to obtain outdoor-service performance in cooling materials.
Collapse
Affiliation(s)
- Yuxin Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Dingsheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China; Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Anhui 241000, PR China
| | - Jie Li
- Jiangsu Textiles Quality Services Inspection Testing Institute, Nanjing 210007, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Hongxiang Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Ao Xu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Wei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China.
| |
Collapse
|
11
|
Yu W, Li Q, Ren J, Feng K, Gong J, Li Z, Zhang J, Liu X, Xu Z, Yang L. A sensor platform based on SERS detection/janus textile for sweat glucose and lactate analysis toward portable monitoring of wellness status. Biosens Bioelectron 2024; 263:116612. [PMID: 39096763 DOI: 10.1016/j.bios.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Herein we report a wearable sweat sensor of a Janus fabric based on surface enhanced Raman scattering (SERS) technology, mainly detecting the two important metabolites glucose and lactate. Janus fabric is composed of electrospinning PU on a piece of medical gauze (cotton), working as the unidirectional moisture transport component (R = 1305%) to collect and transfer sweat efficiently. SERS tags with different structures act as the probe to recognize and detect the glucose and lactate in high sensitivity. Core-shell structured gold nanorods with DTNB inside (AuNRs@DTNB@Au) are used to detect lactate, while gold nanorods with MPBA (AuNRs@MPBA) are used to detect glucose. Through the characteristic SERS information, two calibration functions were established for the concentration determination of glucose and lactate. The concentrations of glucose and lactate in sweat of a 23 years volunteer during three-stage interval running are tested to be 95.5, 53.2, 30.5 μM and 4.9, 13.9, 10.8 mM, indicating the glucose (energy) consumption during exercise and the rapid accumulation of lactate at the early stage accompanied by the subsequent relief. As expected, this sensing system is able to provide a novel strategy for effective acquisition and rapid detection of essential biomarkers in sweat.
Collapse
Affiliation(s)
- Wenze Yu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China.
| | - Jianing Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Kexin Feng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Shandong, Qingdao, 266071, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Zhiwei Xu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Li Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
12
|
Yang L, Hu Z, Xiang Z, Zhou J, Wang X, Liu Q, Gan L, Shi S, Yang W, Zhang Y, Wu J. A high-entropy electrode material for electrobiochemical and eletrophysiological signals detection. CHEMICAL ENGINEERING JOURNAL 2024; 499:156209. [DOI: 10.1016/j.cej.2024.156209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
13
|
Ma R, Li D, Xu C, Yang J, Huang J, Guo Z. Fabricated advanced textile for personal thermal management, intelligent health monitoring and energy harvesting. Adv Colloid Interface Sci 2024; 332:103252. [PMID: 39053159 DOI: 10.1016/j.cis.2024.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Fabrics are soft against the skin, flexible, easily accessible and able to wick away perspiration, to some extent for local private thermal management. In this review, we classify smart fabrics as passive thermal management fabrics and active thermal management fabrics based on the availability of outside energy consumption in the manipulation of heat generation and dissipation from the human body. The mechanism and research status of various thermal management fabrics are introduced in detail, and the article also analyses the advantages and disadvantages of various smart thermal management fabrics, achieving a better and more comprehensive comprehension of the current state of research on smart thermal management fabrics, which is quite an important reference guide for our future research. In addition, with the progress of science and technology, the social demand for fabrics has shifted from keeping warm to improving health and quality of life. E-textiles have potential value in areas such as remote health monitoring and life signal detection. New e-textiles are designed to mimic the skin, sense biological data and transmit information. At the same time, the ultra-moisturizing properties of the fabric's thermal management allow for applications beyond just the human body to energy. E-textiles hold great promise for energy harvesting and storage. The article also introduces the application of smart fabrics in life forms and energy harvesting. By combining electronic technology with textiles, e-textiles can be manufactured to promote human well-being and quality of life. Although smart textiles are equipped with more intelligent features, wearing comfort must be the first thing to be ensured in the multi-directional application of textiles. Eventually, we discuss the dares and prospects of smart thermal management fabric research.
Collapse
Affiliation(s)
- Rong Ma
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Deke Li
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730050, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
14
|
Huang K, Si Y, Hu J. Fluid Unidirectional Transport Induced by Structure and Ambient Elements across Porous Materials: From Principles to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402527. [PMID: 38812415 DOI: 10.1002/adma.202402527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Spontaneous or nonspontaneous unidirectional fluid transport across multidimension can occur under specific structural designs and ambient elements for porous materials. While existing reviews have extensively summarized unidirectional fluid transport on surfaces, there is an absence of literature summarizing fluid's unidirectional transport across porous materials. This review introduces wetting phenomena observed on natural biological surfaces or porous structures. Subsequently, it offers an overview of diverse principles and potential applications in this field, emphasizing various physical and chemical structural designs (surface energy, capillary size, topographic curvature) and ambient elements (underwater, under oil, pressure, and solar energy). Applications encompass moisture-wicking fabric, sensors, skincare, fog collection, oil-water separation, electrochemistry, liquid-based gating, and solar evaporators. Additionally, significant principles and formulas from various studies are compelled to offer readers valuable references. Simultaneously, potential advantages and challenges are critically assessed in these applications and the perspectives are presented.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
15
|
Pang Y, Li Y, Chen K, Wu M, Zhang J, Sun Y, Xu Y, Wang X, Wang Q, Ning X, Kong D. Porous Microneedles Through Direct Ink Drawing with Nanocomposite Inks for Transdermal Collection of Interstitial Fluid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305838. [PMID: 38258379 DOI: 10.1002/smll.202305838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/19/2023] [Indexed: 01/24/2024]
Abstract
Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.
Collapse
Affiliation(s)
- Yushuang Pang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Kerong Chen
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Ming Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yurui Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xinghai Ning
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Shi S, Ming Y, Wu H, Zhi C, Yang L, Meng S, Si Y, Wang D, Fei B, Hu J. A Bionic Skin for Health Management: Excellent Breathability, In Situ Sensing, and Big Data Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306435. [PMID: 37607262 DOI: 10.1002/adma.202306435] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Developing an intelligent wearable system is of great significance to human health management. An ideal health-monitoring patch should possess key characteristics such as high air permeability, moisture-wicking function, high sensitivity, and a comfortable user experience. However, such a patch that encompasses all these functions is rarely reported. Herein, an intelligent bionic skin patch for health management is developed by integrating bionic structures, nano-welding technology, flexible circuit design, multifunctional sensing functions, and big data analysis using advanced electrospinning technology. By controlling the preparation of nanofibers and constructing bionic secondary structures, the resulting nanofiber membrane closely resembles human skin, exhibiting excellent air/moisture permeability, and one-side sweat-wicking properties. Additionally, the bionic patch is endowed with a high-precision signal acquisition capabilities for sweat metabolites, including glucose, lactic acid, and pH; skin temperature, skin impedance, and electromyographic signals can be precisely measured through the in situ sensing electrodes and flexible circuit design. The achieved intelligent bionic skin patch holds great potential for applications in health management systems and rehabilitation engineering management. The design of the smart bionic patch not only provides high practical value for health management but also has great theoretical value for the development of the new generation of wearable electronic devices.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yang Ming
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dong Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- College of Textile Science and Engineering, Key Laboratory of Eco-Textile Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
17
|
Sun Y, Wang J, Lu Q, Zhang J, Li Y, Pang Y, Yang C, Wang Q, Kong D. Stretchable and Sweat-Wicking Patch for Skin-Attached Colorimetric Analysis of Sweat Biomarkers. ACS Sens 2024; 9:1515-1524. [PMID: 38447091 DOI: 10.1021/acssensors.3c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Stretchable sweat sensors are promising technology that can acquire biomolecular insights for health and fitness monitoring by intimate integration with the body. However, current sensors often require microfabricated microfluidic channels to control sweat flow during lab-on-body analysis, which makes effective and affordable sweat sampling a significant practical challenge. Here, we present stretchable and sweat-wicking patches that utilize bioinspired smart wettable membranes for the on-demand manipulation of sweat flow. In a scalable process, the membrane is created by stacking hydrophobic elastomer nanofibers onto soft microfoams with predefined two-dimensional superhydrophobic and superhydrophilic patterns. The engineered heterogeneous wettability distribution allows these porous membranes to achieve enhanced extraction and selective collection of sweat in embedded assays. Despite the simplified architecture, the color reactions between sweat and chemical indicators are inhibited from directly contacting the skin to achieve a largely improved operation safety. The sensing patches can simultaneously quantify pH, urea, and calcium in sweat through digital colorimetric analysis with smartphone images. The construction with all compliant materials renders these patches soft and stretchy to achieve conformal attachment to the skin. Successfully analyzing sweat compositions after physical exercises illustrates the practical suitability of these skin-attachable sensors for health tracking and point-of-care diagnosis.
Collapse
Affiliation(s)
- Yuping Sun
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jianhui Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianying Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yushuang Pang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Niu J, Lin S, Chen D, Wang Z, Cao C, Gao A, Cui S, Liu Y, Hong Y, Zhi X, Cui D. A Fully Elastic Wearable Electrochemical Sweat Detection System of Tree-Bionic Microfluidic Structure for Real-Time Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306769. [PMID: 37932007 DOI: 10.1002/smll.202306769] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body. However, existing wearable sweat detection systems face challenges in efficiently collecting and detecting fresh sweat in real-time. Additionally, they often lack the necessary deformation capabilities, resulting in discomfort for the wearer. Here, a fully elastic wearable electrochemical sweat detection system is developed that integrates a sweat-collecting microfluidic chip, a multi-parameter electrochemical sensor, a micro-heater, and a sweat detection elastic circuit board system. The unique tree-bionic structure of the microfluidic chip significantly enhances the efficiency of fresh sweat collection and discharge, enabling real-time detection by the electrochemical sensors. The sweat multi-parameter electrochemical sensor offers high-precision and high-sensitivity measurements of sodium ions, potassium ions, lactate, and glucose. The electronic system is built on an elastic circuit board that matches perfectly to wrinkled skin, ensuring improved wearing comfort and enabling multi-channel data sampling, processing, and wireless transmission. This state-of-the-art system represents a significant advancement in the field of elastic wearable sweat detection and holds promising potential for extending its capabilities to the detection of other sweat markers or various wearable applications.
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuping Hong
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao Zhi
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
19
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
20
|
Zhu C, Zheng J, Fu J. Electrospinning Nanofibers as Stretchable Sensors for Wearable Devices. Macromol Biosci 2024; 24:e2300274. [PMID: 37653597 DOI: 10.1002/mabi.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Wearable devices attract great attention in intelligent medicine, electronic skin, artificial intelligence robots, and so on. However, boundedness of traditional sensors based on rigid materials unconstrained self-multilayer structure assembly and dense substrate in stretchability and permeability limits their applications. The network structure of the elastomeric nanofibers gives them excellent air permeability and stretchability. By introducing metal nanofillers, intrinsic conductive polymers, carbon materials, and other methods to construct conductive paths, stretchable conductors can be effectively prepared by elastomeric nanofibers, showing great potential in the field of flexible sensors. This perspective briefly introduces the representative preparations of conductive thermoplastic polyurethane, nylon, and hydrogel nanofibers by electrospinning and the application of integrated electronic devices in biological signal detection. The main challenge is to unify the stretchability and conductivity of the fiber structure.
Collapse
Affiliation(s)
- Canjie Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| |
Collapse
|
21
|
Wang L, Luo Y, Song Y, He X, Xu T, Zhang X. Hydrogel-Functionalized Bandages with Janus Wettability for Efficient Unidirectional Drug Delivery and Wound Care. ACS NANO 2024; 18:3468-3479. [PMID: 38227490 DOI: 10.1021/acsnano.3c10766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Chronic wounds have imposed a severe physical and economic burden on the global healthcare system, which are usually treated by the delivery of drugs or bioactive molecules to the wound bed through wound dressings. In this work, we have demonstrated a hydrogel-functionalized bandage with Janus wettability in a bilayer structure to achieve unidirectional drug delivery and multifunctional wound care. The Janus patterned bandage with porous gradient wetting channels on the upper layer is responsible for the unidirectional transport of the drug from the outside to the wound bed (up to 90% drug transport efficiency) while preventing drug diffusion in unwanted directions (<8%). The hydrogel composed of chitosan quaternary ammonium salt (HACC), poly(vinyl alcohol) (PVA), and poly(acrylic acid) (PAA) at the bottom layer further functionalized such a bandage with biocompatibility, excellent antibacterial properties, and hemostatic ability to promote wound healing. Especially, the hydrogel-functionalized bandage with Janus wettability exhibits excellent mechanical flexibility (∼198% strain), which can comply well with skin deformation (stretching, bending, or twisting) and maintain unidirectional drug delivery behavior without any leakage. The in vivo full-thickness skin wound model confirms that the hydrogel-functionalized bandage can significantly facilitate epithelialization and collagen deposition and improve drug delivery efficiency, thus promoting wound closure and healing (the wound healing ratio was 98.10% at day 15). Such a synergistic strategy of unidirectional drug delivery and multifunctional wound care provides a more efficient, economical, and direct method to promote wound healing, which could be used as a potential high-performance wound dressing for clinical application.
Collapse
Affiliation(s)
- Lirong Wang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Yong Luo
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yongchao Song
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xuecheng He
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Tailin Xu
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xueji Zhang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
22
|
Sun Y, Wang J, Lu Q, Fang T, Wang S, Yang C, Lin Y, Wang Q, Lu YQ, Kong D. Stretchable and Smart Wettable Sensing Patch with Guided Liquid Flow for Multiplexed in Situ Perspiration Analysis. ACS NANO 2024; 18:2335-2345. [PMID: 38189251 DOI: 10.1021/acsnano.3c10324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration. To overcome these limitations, a stretchable and smart wettable patch has been proposed for multiplexed in situ perspiration analysis. The patch includes a porous membrane in the form of a patterned microfoam and a nanofiber layer laminate, which extracts sweat selectively from the skin and directs its continuous flow across the device. The integrated electrochemical sensor array measures multiple biomarkers simultaneously such as pH, K+, and Na+. The soft sensing patch comprises compliant materials and structures that allow deformability of up to 50% strain, which enables a stable and seamless interface with the curvilinear human body. During continuous physical exercise, the device has demonstrated a special operating mode by actively accumulating sweat from the skin for multiplex electrochemical analysis of biomarker profiles. The smart wettable membrane provides an affordable solution to address the sampling challenges of in situ perspiration analysis.
Collapse
Affiliation(s)
- Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jianhui Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianying Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Shaolei Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Han Y, Fang X, Li H, Zha L, Guo J, Zhang X. Sweat Sensor Based on Wearable Janus Textiles for Sweat Collection and Microstructured Optical Fiber for Surface-Enhanced Raman Scattering Analysis. ACS Sens 2023; 8:4774-4781. [PMID: 38051949 DOI: 10.1021/acssensors.3c01863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Wearable sweat sensors provide real-time monitoring of biomarkers, enabling individuals to gain real-time insight into their health status. Current sensors primarily rely on electrochemical mechanisms, limiting their capacity for the concurrent detection of multiple analytes. Surface-enhanced Raman scattering spectroscopy offers an alternative approach by providing molecular fingerprint information to facilitate the identification of intricate analytes. In this study, we combine a wearable Janus fabric for efficient sweat collection and a grapefruit optical fiber embedded with Ag nanoparticles as a sensitive SERS probe. The Janus fabric features a superhydrophobic side in contact with the skin and patterned superhydrophilic regions on the opposite surface, facilitating the unidirectional flow of sweat toward these hydrophilic zones. Grapefruit optical fibers feature sharp tips with the ability to penetrate transparent dressings. Its microchannels extract sweat through capillary force, and nanoliter-scale volumes of sweat are sufficient to completely fill them. The Raman signal of sweat components is greatly enhanced by the plasmonic hot spots and accumulates along the fiber length. We demonstrate sensitive detection of sodium lactate and urea in sweat with a detection limit much lower than the physiological concentration levels. Moreover, the platform shows its capability for multicomponent detection and extends to the analysis of real human sweat.
Collapse
Affiliation(s)
- Yu Han
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Fang
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Hanlin Li
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Lei Zha
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Jinxin Guo
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xinping Zhang
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
24
|
Saha T, Del Caño R, De la Paz E, Sandhu SS, Wang J. Access and Management of Sweat for Non-Invasive Biomarker Monitoring: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206064. [PMID: 36433842 DOI: 10.1002/smll.202206064] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Sweat is an important biofluid presents in the body since it regulates the internal body temperature, and it is relatively easy to access on the skin unlike other biofluids and contains several biomarkers that are also present in the blood. Although sweat sensing devices have recently displayed tremendous progress, most of the emerging devices primarily focus on the sensor development, integration with electronics, wearability, and data from in vitro studies and short-term on-body trials during exercise. To further the advances in sweat sensing technology, this review aims to present a comprehensive report on the approaches to access and manage sweat from the skin toward improved sweat collection and sensing. It is begun by delineating the sweat secretion mechanism through the skin, and the historical perspective of sweat, followed by a detailed discussion on the mechanisms governing sweat generation and management on the skin. It is concluded by presenting the advanced applications of sweat sensing, supported by a discussion of robust, extended-operation epidermal wearable devices aiming to strengthen personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Rafael Del Caño
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
- Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, Cordoba, E-14014, Spain
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Samar S Sandhu
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| |
Collapse
|
25
|
Hou Z, Gao T, Liu X, Guo W, Bai L, Wang W, Yang L, Yang H, Wei D. Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels. Int J Biol Macromol 2023; 252:126473. [PMID: 37619684 DOI: 10.1016/j.ijbiomac.2023.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 μmol/L-200.0 μmol/L), low detection limits (0.9 μmol/L) and high sensitivity (24.4 μA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.
Collapse
Affiliation(s)
- Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Teng Gao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Xinyue Liu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenzhe Guo
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
26
|
Ma X, Wang P, Huang L, Ding R, Zhou K, Shi Y, Chen F, Zhuang Q, Huang Q, Lin Y, Zheng Z. A monolithically integrated in-textile wristband for wireless epidermal biosensing. SCIENCE ADVANCES 2023; 9:eadj2763. [PMID: 37948514 PMCID: PMC10637736 DOI: 10.1126/sciadv.adj2763] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Textile bioelectronics that allow comfortable epidermal contact hold great promise in noninvasive biosensing. However, their applications are limited mainly because of the large intrinsic electrical resistance and low compatibility for electronics integration. We report an integrated wristband that consists of multifunctional modules in a single piece of textile to realize wireless epidermal biosensing. The in-textile metallic patterning and reliable interconnect encapsulation contribute to the excellent electrical conductivity, mechanical robustness, and waterproofness that are competitive with conventional flexible devices. Moreover, the well-maintained porous textile architectures deliver air permeability of 79 mm s-1 and moisture permeability of 270 g m-2 day-1, which are more than one order of magnitude higher than medical tapes, thus ensuring superior wearing comfort. The integrated in-textile wristband performed continuous sweat potassium monitoring in the range of 0.3 to 40 mM with long-term stability, demonstrating its great potential for wearable fitness monitoring and point-of-care testing.
Collapse
Affiliation(s)
- Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Pengwei Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Liting Huang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuqing Shi
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Qiuna Zhuang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| |
Collapse
|
27
|
Clark KM, Ray TR. Recent Advances in Skin-Interfaced Wearable Sweat Sensors: Opportunities for Equitable Personalized Medicine and Global Health Diagnostics. ACS Sens 2023; 8:3606-3622. [PMID: 37747817 PMCID: PMC11211071 DOI: 10.1021/acssensors.3c01512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities.
Collapse
Affiliation(s)
- Kaylee M. Clark
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John. A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI 96813, USA
| |
Collapse
|
28
|
Zhou Y, Cai Y, Tu T, Zhang S, Li T, Fang L, Wang D, Liang Y, Wang Z, Jiang Y, Zhou C, Liang B. Expanded Carbon Nanotube Fiber at the Liquid-Air Interface for High-Performance Fiber-Based Supercapacitors and Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41839-41849. [PMID: 37590959 DOI: 10.1021/acsami.3c06815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Carbon nanotube fibers (CNTFs) are widely utilized in flexible and wearable electronics due to their outstanding electrical and mechanical properties. However, the spinning process of CNTFs has limited the CNTs from exposure, leading to an ultralow usage efficiency of individual CNTs. Here, we propose an electrochemical expansion strategy of a single CNTF at the liquid-air interface, forming a macroscopic spindle-shaped CNTF (SS-CNTF) with an enlarged volume of up to 5000-fold upon the spindle. The obtained spindle-shaped structure endows CNTF with a high specific surface area together with excellent conductivity and good mechanical properties. Therefore, the SS-CNTF-based devices exhibit outstanding performances both in energy storage (electrical double-layer supercapacitor, energy density: 11.22 Wh kg-1, power density: 203.9 kW kg-1) and electrochemical sensing (ascorbic acid: 1.26 μA μM-1 cm-2; dopamine: 103.91 μA μM-1 cm-2; uric acid: 11.53 μA μM-1 cm-2). The novel architecture of SS-CNTF prepared by one-step electrochemical expansion at the liquid-air interface enabled its high performance in multiple applications, providing new insight into the development of CNTF-based devices.
Collapse
Affiliation(s)
- Yue Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tingting Tu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Shanshan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tianyu Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P. R. China
| | - Dong Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Zhaoyang Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yu Jiang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Congcong Zhou
- National Engineering Research Center for Innovation and Application of Minimally Invasive Devices, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P. R. China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, P. R. China
| |
Collapse
|
29
|
Song Z, Zhou S, Qin Y, Xia X, Sun Y, Han G, Shu T, Hu L, Zhang Q. Flexible and Wearable Biosensors for Monitoring Health Conditions. BIOSENSORS 2023; 13:630. [PMID: 37366995 DOI: 10.3390/bios13060630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun 130021, China
| | - Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanping Sun
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Shu
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
30
|
Zhang Y, Liao J, Li Z, Hu M, Bian C, Lin S. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection. Talanta 2023; 260:124610. [PMID: 37146456 DOI: 10.1016/j.talanta.2023.124610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Wearable sweat electrochemical sensors have attracted wide attention due to their advantages of non-invasive, portable, real-time monitoring, etc. However, existing sensors still have some problems with efficient sweat collection. Microfluidic channel technology and electrospinning technology are commonly used to collect sweat efficiently, but there are some limitations such as complex channel design and multiple spinning parameters. Besides, existing sensors are mostly based on flexible polymers, such as, PET, PDMS, PI and PI, which have limited wearability and permeability. Based on the above, all fabric and dual-function flexible wearable sweat electrochemical sensor is proposed in this paper. This sensor uses fabric as the raw material to implement the directional transport of sweat and the multi-component integrated detection dual functions. Meanwhile, the high-efficiency collection of sweat is obtained by a Janus fabric, wherein one side of the selected silk is superhydrophobic graft treated and the other side is hydrophilic plasma treated. Therefore, the resulting Janus fabric can effectively transfer sweat from the skin side to the electrode, and the minimum sweat droplet can reach 0.2 μL to achieve micro-volume collection. Besides, the patterned sensor, made of silk-based carbon cloth, is fabricated using a simple laser engraving, which could detect Na+, pH, and glucose instantaneously. As a result, these proposed sensors can achieve good sensing performance and high-efficiency sweat collection dual functionality; moreover, it has good flexibility and comfortable wearability.
Collapse
Affiliation(s)
- Yingwen Zhang
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jianjun Liao
- School of Ecological and Environmental Sciences, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Zehao Li
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mingxu Hu
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Chao Bian
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiwei Lin
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
31
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
32
|
Mao Y, Chen T, Hu Y, Son K. Ultra-thin 2D bimetallic MOF nanosheets for highly sensitive and stable detection of glucose in sweat for dancer. DISCOVER NANO 2023; 18:62. [PMID: 37382700 PMCID: PMC10409940 DOI: 10.1186/s11671-023-03838-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 06/30/2023]
Abstract
The measurement of glucose concentration in sweat is expected to replace the existing blood glucose detection, which realize the effective way of non-invasive monitoring of human glucose concentration in dancing. High precision glucose detection can be achieved by adjusting the electrode material of the sensor. Thus, in this work, the bimetallic organic frameworks (bi-MOFs) materials containing Mn and Ni ions (NiMn-MOF) with ultrathin nanosheets have been exquisitely designed. The ultrathin nanosheet and heterogeneous metal ions in the structure optimize the electronic structure, which improves the electrical conductivity of MOFs. The success of the preparation strategy leads the good electrocatalytic performance of NiMn-MOF for glucose detection. Detailedly, NiMn-MOF shows high sensitivity of 1576 μA mM-1 cm-2 in the linear range from 0 to 0.205 mM and the wide linear region of 0.255-2.655 mM and 3.655-5.655 mM were also observed. In addition, the high repeatability, reproductivity, long-term stability and ultra-low limited of detection (LOD, 0.28 μM, S/N = 3) provide foundation for the practical sensor application of this NiMn-MOF nanosheets. Remarkably, as designed NiMn-MOF sensor can accurately measure glucose in sweat showing great potential in the field of wearable glucose monitoring during dancing.
Collapse
Affiliation(s)
- Yufei Mao
- Department of Dance, Hanyang University, Seoul, 04763, Korea
| | - Tangchun Chen
- Department of Dance, Sichuan Conservatory of Music, Chengdu, 610500, China
| | - Yifan Hu
- Department of Music, Changshu Institute of Technology, Changshu, 215500, China
| | - KwanJung Son
- Department of Dance, Hanyang University, Seoul, 04763, Korea.
- Department of Dance, Sichuan Conservatory of Music, Chengdu, 610500, China.
- Department of Music, Changshu Institute of Technology, Changshu, 215500, China.
| |
Collapse
|
33
|
Xi P, He X, Fan C, Zhu Q, Li Z, Yang Y, Du X, Xu T. Smart Janus fabrics for one-way sweat sampling and skin-friendly colorimetric detection. Talanta 2023; 259:124507. [PMID: 37058940 DOI: 10.1016/j.talanta.2023.124507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Functionalized textiles with biofluid management capability have attracted tremendous attention in recent years due to their significant roles in health monitoring and dehydration prevention. Here we propose a one-way colorimetric sweat sampling and sensing system based on a Janus fabric using interfacial modification techniques. The opposite wettability of Janus fabric enables sweat to be quickly moved from the skin surface to the hydrophilic side and colorimetric patches. The unidirectional sweat-wicking performance of Janus fabric not only facilitates adequate sweat sampling but also inhibits the backflow of hydrated colorimetric regent from the assay patch toward the skin, eliminating potential epidermal contaminations. On this basis, visual and portable detection of sweat biomarkers including chloride, pH, and urea is also achieved. The results show that the true concentrations of chloride, pH, and urea in sweat are ∼10 mM, ∼7.2, and ∼10 mM, respectively. The detection limits of chloride and urea are 1.06 mM and 3.05 mM. This work bridges the gap between sweat sampling and a friendly epidermal microenvironment, providing a promising way for multifunctional textiles.
Collapse
Affiliation(s)
- Pengyu Xi
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xuecheng He
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chuan Fan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Zehua Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
34
|
Dong J, Peng Y, Wang D, Li L, Zhang C, Lai F, He G, Zhao X, Yan XP, Ma P, Hofkens J, Huang Y, Liu T. Quasi-Homogeneous and Hierarchical Electronic Textiles with Porosity-Hydrophilicity Dual-Gradient for Unidirectional Sweat Transport, Electrophysiological Monitoring, and Body-Temperature Visualization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206572. [PMID: 36592428 DOI: 10.1002/smll.202206572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
On-skin electronics based on impermeable elastomers and stacking structures often suffer from inferior sweat-repelling capabilities and severe mechanical mismatch between sub-layers employed, which significantly impedes their lengthy wearing comfort and functionality. Herein, inspired by the transpiration system of vascular plants and the water diode phenomenon, a hierarchical nonwoven electronic textile (E-textile) with multi-branching microfibers and robust interlayer adhesion is rationally developed. The layer-by-layer electro-airflow spinning method and selective oxygen plasma treatment are utilized to yield a porosity-hydrophilicity dual-gradient. The resulting E-textile shows unidirectional, nonreversible, and anti-gravity water transporting performance even upon large-scale stretching (250%), excellent mechanical matching between sub-layers, as well as a reversible color-switching ability to visualize body temperature. More importantly, the conducting and skin-conformal E-textile demonstrates accurate and stable detecting capability for biomechanical and bioelectrical signals when applied as an on-skin bioelectrode, including different human activities, electrocardiography, electromyogram, and electrodermal activity signals. Further, the E-textile can be efficiently implemented in human-machine interfaces to build a gesture-controlled dustbin and a smart acousto-optic alarm. Hence, this hierarchically-designed E-textile with integrated functionalities offers a practical and innovative method for designing comfortable and daily applicable on-skin electronics.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xu Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
35
|
Zha X, Yang W, Shi L, Zeng Q, Xu J, Yang Y. 2D bimetallic organic framework nanosheets for high-performance wearable power source and real-time monitoring of glucose. Dalton Trans 2023; 52:2631-2640. [PMID: 36744545 DOI: 10.1039/d2dt03311a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetics often prick their fingertips to measure the glucose levels in their blood. However, this traditional method not only causes prolonged pain but also increases the risk of infection. Hence, in this study, a non-invasive flexible glucose biosensor with high sensitivity was fabricated. Specifically, NiCo metal-organic frameworks (NiCo-MOFs) served as the electrode material of a micro-supercapacitor and sensing material of a glucose sensor. The electrochemical tests verified that the prominent sensitivity of the NiCo bimetal product is 1422.2 μA mM-1 cm-2. The micro-supercapacitor based on the as-fabricated NiCo-MOFs showed a high energy density of 11.5 mW h cm-2 at the power density 0.26 mW cm-2. In addition, the as-designed glucose device exhibited an excellent sensitivity of 0.31 μA μM-1. Furthermore, a flexible energy storage and glucose detection system was successfully prepared by further integrating the micro-supercapacitor and glucose sensor. The smart detector could accurately and conveniently measure the glucose concentration in sweat in real-time. Therefore, the wearable real-time sensing device displays feasible application for non-invasive glucose monitoring and health management.
Collapse
Affiliation(s)
- Xiaoting Zha
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Wenyao Yang
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Liuwei Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Qi Zeng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Jianhua Xu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Yajie Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China. .,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| |
Collapse
|
36
|
Abstract
Flexible sweat sensors have found widespread potential applications for long-term wear and tracking and real-time monitoring of human health. However, the main substrate currently used in common flexible sweat sensors is thin film, which has disadvantages such as poor air permeability and the need for additional wearables. In this Review, the recent progress of sweat sensors has been systematically summarized by the types of monitoring methods of sweat sensors. In addition, this Review introduces and compares the performance of sweat sensors based on thin film and textile substrates such as fiber/yarn. Finally, opportunities and suggestions for the development of flexible sweat sensors are presented by summarizing the integration methods of sensors and human body monitoring sites.
Collapse
Affiliation(s)
- Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Haibo Sun
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Qianqian Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Xin Niu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Yin He
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
37
|
Faham S, Salimi A, Ghavami R. Electrochemical-based remote biomarker monitoring: Toward Internet of Wearable Things in telemedicine. Talanta 2023; 253:123892. [PMID: 36095939 DOI: 10.1016/j.talanta.2022.123892] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Internet of Wearable Things (IoWT) will be a major breakthrough for remote medical monitoring. In this scenario, wearable biomarker sensors have been developing not only to diagnose point-of-care (POC) of diseases, but also to continuously manage them. On-body tracking of biomarkers in biofluids is regarded as a proper substitution of conventional biomarker sensors for dynamic sampling and analyzing due to their high sensitivity, conformability, and affordability, creating ever-rising the market demand for them. In a wireless body area network (WBAN), data is captured from all sensors on the body to a smartphone/laptop, and sent the sensed data to a cloud for storing, processing, and retrieving, and ultimately displayed the data on custom applications (Apps). Wearable IoT biomarker sensors are used for early diseases diagnosis and continuous monitoring in developing countries in which people hardly access to healthcare systems. In this review, we aim to highlight a wide range of wearable electrochemical biomarker sensors, accompanied by microfluidics for continuous sampling, which will pave the way toward developing wearable IoT biomarker sensors to track health status. The current challenges and future perspective in skin-conformal biomarker sensors will be discussing their potential applicability for IoWT in cloud-based telemedicine.
Collapse
Affiliation(s)
- Shadab Faham
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Raouf Ghavami
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| |
Collapse
|
38
|
Zhang H, Yang W, Liu Q, Gao Y, Yue Z, Xu B. Mechanical Janus Structures by Soft-Hard Material Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208339. [PMID: 36385516 DOI: 10.1002/adma.202208339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Engineering Janus structures that possess anisotropic features in functions have attracted growing attention for a wide range of applications in sensors, catalysis, and biomedicine, and are yet usually designed at the nanoscale with distinct physical or chemical functionalities in their opposite sides. Inspired by the seamless integration of soft and hard materials in biological structures, here a mechanical Janus structure composed of soft and hard materials with a dramatic difference in mechanical properties at an additively manufacturable macroscale is presented. In the combination of extensive experimental, theoretical, and computational studies, the design principle of soft-hard materials integrated mechanical Janus structures is established and their unique rotation mechanism is addressed. The systematic studies of assembling the Janus structure units into superstructures with well-ordered organizations by programming the local rotations are further shown, providing a direct route of designing superstructures by leveraging mechanical Janus structures with unique soft-hard material integration. Applications are conducted to demonstrate the features and functionalities of assembled superstructures with local ordered organizations in regulating and filtering acoustic wave propagations, thereby providing exemplification applications of mechanical Janus design in functional structures and devices.
Collapse
Affiliation(s)
- Haozhe Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Weizhu Yang
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, P. R. China
| | - Qingchang Liu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Yuan Gao
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Zhufeng Yue
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, P. R. China
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
39
|
Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules 2023; 28:1259. [PMID: 36770925 PMCID: PMC9920341 DOI: 10.3390/molecules28031259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Sweat contains a broad range of important biomarkers, which may be beneficial for acquiring non-invasive biochemical information on human health status. Therefore, highly selective and sensitive electrochemical nanosensors for the non-invasive detection of sweat metabolites have turned into a flourishing contender in the frontier of disease diagnosis. A large surface area, excellent electrocatalytic behavior and conductive properties make nanomaterials promising sensor materials for target-specific detection. Carbon-based nanomaterials (e.g., CNT, carbon quantum dots, and graphene), noble metals (e.g., Au and Pt), and metal oxide nanomaterials (e.g., ZnO, MnO2, and NiO) are widely used for modifying the working electrodes of electrochemical sensors, which may then be further functionalized with requisite enzymes for targeted detection. In the present review, recent developments (2018-2022) of electrochemical nanosensors by both enzymatic as well as non-enzymatic sensors for the effectual detection of sweat metabolites (e.g., glucose, ascorbic acid, lactate, urea/uric acid, ethanol and drug metabolites) have been comprehensively reviewed. Along with this, electrochemical sensing principles, including potentiometry, amperometry, CV, DPV, SWV and EIS have been briefly presented in the present review for a conceptual understanding of the sensing mechanisms. The detection thresholds (in the range of mM-nM), sensitivities, linear dynamic ranges and sensing modalities have also been properly addressed for a systematic understanding of the judicious design of more effective sensors. One step ahead, in the present review, current trends of flexible wearable electrochemical sensors in the form of eyeglasses, tattoos, gloves, patches, headbands, wrist bands, etc., have also been briefly summarized, which are beneficial for on-body in situ measurement of the targeted sweat metabolites. On-body monitoring of sweat metabolites via wireless data transmission has also been addressed. Finally, the gaps in the ongoing research endeavors, unmet challenges, outlooks and future prospects have also been discussed for the development of advanced non-invasive self-health-care-monitoring devices in the near future.
Collapse
Affiliation(s)
- Riyanka Das
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Somrita Nag
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
40
|
Yin J, Li J, Reddy VS, Ji D, Ramakrishna S, Xu L. Flexible Textile-Based Sweat Sensors for Wearable Applications. BIOSENSORS 2023; 13:bios13010127. [PMID: 36671962 PMCID: PMC9856321 DOI: 10.3390/bios13010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/12/2023]
Abstract
The current physical health care system has gradually evolved into a form of virtual hospitals communicating with sensors, which can not only save time but can also diagnose a patient's physical condition in real time. Textile-based wearable sensors have recently been identified as detection platforms with high potential. They are developed for the real-time noninvasive detection of human physiological information to comprehensively analyze the health status of the human body. Sweat comprises various chemical compositions, which can be used as biomarkers to reflect the relevant information of the human physiology, thus providing references for health conditions. Combined together, textile-based sweat sensors are more flexible and comfortable than other conventional sensors, making them easily integrated into the wearable field. In this short review, the research progress of textile-based flexible sweat sensors was reviewed. Three mechanisms commonly used for textile-based sweat sensors were firstly contrasted with an introduction to their materials and preparation processes. The components of textile-based sweat sensors, which mainly consist of a sweat transportation channel and collector, a signal-selection unit, sensing elements and sensor integration and communication technologies, were reviewed. The applications of textile-based sweat sensors with different mechanisms were also presented. Finally, the existing problems and challenges of sweat sensors were summarized, which may contribute to promote their further development.
Collapse
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
41
|
Xia L, Li L, Xiao Y, Xiao F, Ji W, Jiang S, Wang H. Ethylene-vinyl alcohol copolymer/gelatin/cellulose acetate bionic trilayer fibrous membrane for moisture-adjusting. Carbohydr Polym 2023; 300:120269. [DOI: 10.1016/j.carbpol.2022.120269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
|
42
|
Wang X, Tang M. Bioceramic materials with ion-mediated multifunctionality for wound healing. SMART MEDICINE 2022; 1:e20220032. [PMID: 39188732 PMCID: PMC11235610 DOI: 10.1002/smmd.20220032] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 08/28/2024]
Abstract
Regeneration of both anatomic and functional integrity of the skin tissues after injury represents a huge challenge considering the sophisticated healing process and variability of specific wounds. In the past decades, numerous efforts have been made to construct bioceramic-based wound dressing materials with ion-mediated multifunctionality for facilitating the healing process. In this review, the state-of-the-art progress on bioceramic materials with ion-mediated bioactivity for wound healing is summarized. Followed by a brief discussion on the bioceramic materials with ion-mediated biological activities, the emerging bioceramic-based materials are highlighted for wound healing applications owing to their ion-mediated bioactivities, including anti-infection function, angiogenic activity, improved skin appendage regeneration, antitumor effect, and so on. Finally, concluding remarks and future perspectives of bioceramic-based wound dressing materials for clinical practice are briefly discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Min Tang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
43
|
Wang J, Wang L, Li G, Yan D, Liu C, Xu T, Zhang X. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS Sens 2022; 7:3102-3107. [PMID: 36218347 DOI: 10.1021/acssensors.2c01533] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the field of wearable sensing, small and precise sensors can greatly reduce the burden on the wearer and improve the sense of experience, which is the future direction of sensing development. Herein, we introduce an ultra-small wearable biosensor system that integrates an MS02 chip for real-time and highly accurate sweat detection. The whole system mainly includes flexible electrodes and a printed circle board (PCB). The size of the PCB is only 1.5 cm × 0.8 cm, which greatly minimizes the size of the sweat system and improves wearing comfort. Notably, this miniaturized system is comparable to a commercial electrochemical workstation, ensuring the reliability and accuracy of real-time analysis. The core processing MS02 chip, with a dimension of 1.2 mm × 1.1 mm, is used to perform electrochemical signal processing. By performing electrochemical characterization and measurements of the ultra-small wearable biosensor system, on-body monitoring of four biomarkers (glucose, lactate, Na+, and K+) in sweat of human volunteers has been successfully achieved. With the help of this electrochemical sensor system, mass of biochemical data from perspiration can be acquired to better understand the body's response to daily activities, which will facilitate the early prediction of abnormal physiological changes in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Lirong Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Guanhua Li
- Shenzhen Refresh Intelligent Technology Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Dan Yan
- Shenzhen Refresh Intelligent Technology Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
44
|
Dong J, Peng Y, Pu L, Chang K, Li L, Zhang C, Ma P, Huang Y, Liu T. Perspiration-Wicking and Luminescent On-Skin Electronics Based on Ultrastretchable Janus E-Textiles. NANO LETTERS 2022; 22:7597-7605. [PMID: 36083829 DOI: 10.1021/acs.nanolett.2c02647] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable electronics have attracted surging attention for next-generation smart wearables, yet traditional flexible devices fabricated on hermetical elastic substrates cannot satisfy lengthy wearing comfort and signal stability due to their poor moisture and air permeability. Herein, perspiration-wicking and luminescent on-skin electrodes are fabricated on superelastic nonwoven textiles with a Janus configuration. Through the electrospin-assisted face-to-face assembly of all-SEBS microfibers with differentiated diameters and composition, porosity and wettability asymmetry are constructed across the textile, endowing it with antigravity water transport capability for continuous sweat release. Also, the phosphor particles evenly encapsulated in the elastic fibers empower the Janus textile with stable light-emitting capability under extreme stretching in a dark environment. Additionally, the precise printing of highly conductive liquid metal (LM) circuits onto the matrix not only equips the electronic textile with broad detectability for various biophysical and electrophysiological signals but also enables successful implementation of human-machine interface (HMIs) to control a mechanical claw.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Lei Pu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Kangqi Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Yeung KK, Li J, Huang T, Hosseini II, Al Mahdi R, Alam MM, Sun H, Mahshid S, Yang J, Ye TT, Gao Z. Utilizing Gradient Porous Graphene Substrate as the Solid-Contact Layer To Enhance Wearable Electrochemical Sweat Sensor Sensitivity. NANO LETTERS 2022; 22:6647-6654. [PMID: 35943807 DOI: 10.1021/acs.nanolett.2c01969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable sweat monitoring represents an attractive opportunity for personalized healthcare and for evaluating sports performance. One of the limitations with such monitoring, however, is water layer formation upon cycling of ion-selective sensors, leading to degraded sensitivity and long-term instability. Our report is the first to use chemical vapor deposition-grown, three-dimensional, graphene-based, gradient porous electrodes to minimize such water layer formation. The proposed design reduces the ion diffusion path within the polymeric ion-selective membrane and enhances the electroactive surface for highly sensitive, real-time detection of Na+ ions in human sweat with high selectivity. We obtained a 7-fold enhancement in electroactive surface against 2D electrodes (e.g., carbon, gold), yielding a sensitivity of 65.1 ± 0.25 mV decade-1 (n = 3, RSD = 0.39%), the highest to date for wearable Na+ sweat sensors. The on-body sweat sensing performance is comparable to that of ICP-MS, suggesting its feasibility for health evaluation through sweat.
Collapse
Affiliation(s)
- Kan Kan Yeung
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Jingwei Li
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ting Huang
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Imman I Hosseini
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Rakib Al Mahdi
- Department of Biomedical Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Md Masruck Alam
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Honglin Sun
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Jian Yang
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Terry Tao Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaoli Gao
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
46
|
Chen Q, Liu Y, Gu K, Yao J, Shao Z, Chen X. Silk-Based Electrochemical Sensor for the Detection of Glucose in Sweat. Biomacromolecules 2022; 23:3928-3935. [PMID: 35973042 DOI: 10.1021/acs.biomac.2c00753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of reliable glucose sensors for noninvasive monitoring is highly desirable and essential for diabetes detection. As a testing sample, sweat is voluminous and is easy to collect compared to blood. However, the application of sweat glucose sensors is generally limited because of their low stability and sensitivity compared to commercial glucometers. In this manuscript, a silk nanofibril (SNF)/reduced graphene oxide (RGO)/glucose oxidase (GOx) composite was developed as the working electrode of the sweat glucose sensor. The SNF/RGO/GOx composite was prepared via a facile two-step process, which involved the self-assembly of SNF from silk fibroin while reducing graphene oxide to RGO and immobilizing GOx on SNF. The SNF/RGO/GOx glucose sensor exhibited a low limit of detection (300 nM) and high sensitivity (18.0 μA/mM) in the sweat glucose range, covering both healthy people and diabetic patients (0-100 μM). Moreover, the SNF/RGO/GOx glucose sensors showed a long stability for at least 4 weeks. Finally, the SNF/RGO/GOx glucose sensor was applied to test the actual sweat samples from two volunteers and two sweating methods (by dry sauna and exercise). The results indicate the glucose data tested by the SNF/RGO/GOx glucose sensor were reliable, which correlated well to the data obtained from the commercial glucometer. Therefore, the SNF/RGO/GOx glucose sensor developed in this study may have a great potential for glucose control in personalized healthcare monitoring and chronic disease management.
Collapse
Affiliation(s)
- Qianying Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Kai Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
47
|
Saha T, Songkakul T, Knisely CT, Yokus MA, Daniele MA, Dickey MD, Bozkurt A, Velev OD. Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring. ACS Sens 2022; 7:2037-2048. [PMID: 35820167 DOI: 10.1021/acssensors.2c00830] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wearable and wireless monitoring of biomarkers such as lactate in sweat can provide a deeper understanding of a subject's metabolic stressors, cardiovascular health, and physiological response to exercise. However, the state-of-the-art wearable and wireless electrochemical systems rely on active sweat released either via high-exertion exercise, electrical stimulation (such as iontophoresis requiring electrical power), or chemical stimulation (such as by delivering pilocarpine or carbachol inside skin), to extract sweat under low-perspiring conditions such as at rest. Here, we present a continuous sweat lactate monitoring platform combining a hydrogel for osmotic sweat extraction, with a paper microfluidic channel for facilitating sweat transport and management, a screen-printed electrochemical lactate sensor, and a custom-built wireless wearable potentiostat system. Osmosis enables zero-electrical power sweat extraction at rest, while continuous evaporation at the end of a paper channel allows long-term sensing from fresh sweat. The positioning of the lactate sensors provides near-instantaneous sensing at low sweat volume, and the custom-designed potentiostat supports continuous monitoring with ultra-low power consumption. For a proof of concept, the prototype system was evaluated for continuous measurement of sweat lactate across a range of physiological activities with changing lactate concentrations and sweat rates: for 2 h at the resting state, 1 h during medium-intensity exercise, and 30 min during high-intensity exercise. Overall, this wearable system holds the potential of providing comprehensive and long-term continuous analysis of sweat lactate trends in the human body during rest and under exercising conditions.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tanner Songkakul
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Charles T Knisely
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Murat A Yokus
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Michael A Daniele
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina 27695, United States.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alper Bozkurt
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
48
|
Wang X, Liu Y, Cheng H, Ouyang X. Surface Wettability for Skin-Interfaced Sensors and Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2200260. [PMID: 36176721 PMCID: PMC9514151 DOI: 10.1002/adfm.202200260] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 05/05/2023]
Abstract
The practical applications of skin-interfaced sensors and devices in daily life hinge on the rational design of surface wettability to maintain device integrity and achieve improved sensing performance under complex hydrated conditions. Various bio-inspired strategies have been implemented to engineer desired surface wettability for varying hydrated conditions. Although the bodily fluids can negatively affect the device performance, they also provide a rich reservoir of health-relevant information and sustained energy for next-generation stretchable self-powered devices. As a result, the design and manipulation of the surface wettability are critical to effectively control the liquid behavior on the device surface for enhanced performance. The sensors and devices with engineered surface wettability can collect and analyze health biomarkers while being minimally affected by bodily fluids or ambient humid environments. The energy harvesters also benefit from surface wettability design to achieve enhanced performance for powering on-body electronics. In this review, we first summarize the commonly used approaches to tune the surface wettability for target applications toward stretchable self-powered devices. By considering the existing challenges, we also discuss the opportunities as a small fraction of potential future developments, which can lead to a new class of skin-interfaced devices for use in digital health and personalized medicine.
Collapse
Affiliation(s)
- Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
49
|
Development of a textile based protein sensor for monitoring the healing progress of a wound. Sci Rep 2022; 12:7972. [PMID: 35562402 PMCID: PMC9106706 DOI: 10.1038/s41598-022-11982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
This article focuses on the design and fabrication of flexible textile-based protein sensors to be embedded in wound dressings. Chronic wounds require continuous monitoring to prevent further complications and to determine the best course of treatment in the case of infection. As proteins are essential for the progression of wound healing, they can be used as an indicator of wound status. Through measuring protein concentrations, the sensor can assess and monitor the wound condition continuously as a function of time. The protein sensor consists of electrodes that are directly screen printed using both silver and carbon composite inks on polyester nonwoven fabric which was deliberately selected as this is one of the common backing fabric types currently used in wound dressings. These sensors were experimentally evaluated and compared to each other by using albumin protein solution of pH 7. A comprehensive set of cyclic voltammetry measurements was used to determine the optimal sensor design the measurement of protein in solution. As a result, the best sensor design is comprised of silver conductive tracks but a carbon layer as the working and counter electrodes at the interface zone. This design prevents the formation of silver dioxide and protects the sensor from rapid decay, which allows for the recording of consecutive measurements using the same sensor. The chosen printed protein sensor was able to detect bovine serum albumin at concentrations ranging from 30 to 0.3 mg/mL with a sensitivity of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.0026 \mu $$\end{document}0.0026μA/M. Further testing was performed to assess the sensor’s ability to identify BSA from other interferential substances usually present in wound fluids and the results show that it can be distinguishable.
Collapse
|
50
|
Zhu Q, Yang Y, Gao H, Xu LP, Wang S. Bioinspired superwettable electrodes towards electrochemical biosensing. Chem Sci 2022; 13:5069-5084. [PMID: 35655548 PMCID: PMC9093108 DOI: 10.1039/d2sc00614f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Superwettable materials have attracted much attention due to their fascinating properties and great promise in several fields. Recently, superwettable materials have injected new vitality into electrochemical biosensors. Superwettable electrodes exhibit unique advantages, including large electrochemical active areas, electrochemical dynamics acceleration, and optimized management of mass transfer. In this review, the electrochemical reaction process at electrode/electrolyte interfaces and some fundamental understanding of superwettable materials are discussed. Then progress in different electrodes has been summarized, including superhydrophilic, superhydrophobic, superaerophilic, superaerophobic, and superwettable micropatterned electrodes, electrodes with switchable wettabilities, and electrodes with Janus wettabilities. Moreover, we also discussed the development of superwettable materials for wearable electrochemical sensors. Finally, our perspective for future research is presented.
Collapse
Affiliation(s)
- Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|