1
|
Echeverría-Altamar K, Barreto-Gamarra C, Domenech-García M, Resto-Irizarry P. Prediction of cardiac differentiation in human induced pluripotent stem cell-derived cardiomyocyte supernatant using surface-enhanced Raman spectroscopy and machine learning. Biosens Bioelectron 2025; 283:117528. [PMID: 40339557 DOI: 10.1016/j.bios.2025.117528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
The efficient manufacturing of cardiomyocytes from human-induced pluripotent stem cells (hiPSCs) is essential for advancing regenerative therapies for myocardial injuries. However, ensuring cell quality during production is challenging since traditional methods are invasive, destructive, and time-consuming. In this study, we monitored cardiomyocyte differentiation of WTC11 hiPSCs by analyzing conditioned media collected at various stages using Raman spectroscopy, multivariate analysis, and machine learning. Differentiation efficiency was confirmed via flow cytometry and immunostaining. Raman spectra were processed using standard normal variate and second derivative transformations before performing a principal component analysis (PCA) and machine learning (Random Forest, K-Nearest Neighbors, and Deep Neural Networks [DNN]). Results show that PCA was unable to distinguish cells based on differentiation stages, while machine learning could reliably predict cell differentiation early in the cardiac cell manufacturing process. DNN models achieved accuracies exceeding 82 % in predicting differentiation, highlighting their potential as quality control tools. These findings underscore the potential of Raman spectroscopy coupled with machine learning as a tool for real-time monitoring of cardiomyocyte production.
Collapse
Affiliation(s)
- Karla Echeverría-Altamar
- Bioengineering Graduate Program, University of Puerto Rico at Mayagüez, Mayagüez, 00680, Puerto Rico
| | - Carlos Barreto-Gamarra
- Chemical Engineering Department, University of Puerto Rico at Mayagüez, Mayagüez, 00680, Puerto Rico
| | - Maribella Domenech-García
- Bioengineering Graduate Program, University of Puerto Rico at Mayagüez, Mayagüez, 00680, Puerto Rico; Chemical Engineering Department, University of Puerto Rico at Mayagüez, Mayagüez, 00680, Puerto Rico
| | - Pedro Resto-Irizarry
- Bioengineering Graduate Program, University of Puerto Rico at Mayagüez, Mayagüez, 00680, Puerto Rico; Mechanical Engineering Department, University of Puerto Rico at Mayagüez, Mayagüez, 00680, Puerto Rico.
| |
Collapse
|
2
|
Illobre PG, Lafiosca P, Bonatti L, Giovannini T, Cappelli C. Mixed atomistic-implicit quantum/classical approach to molecular nanoplasmonics. J Chem Phys 2025; 162:044103. [PMID: 39840679 DOI: 10.1063/5.0245629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
A multiscale quantum mechanical (QM)/classical approach is presented that is able to model the optical properties of complex nanostructures composed of a molecular system adsorbed on metal nanoparticles. The latter is described by a combined atomistic-continuum model, where the core is described using the implicit boundary element method (BEM) and the surface retains a fully atomistic picture and is treated employing the frequency-dependent fluctuating charge and fluctuating dipole (ωFQFμ) approach. The integrated QM/ωFQFμ-BEM model is numerically compared with state-of-the-art fully atomistic approaches, and the quality of the continuum/core partition is evaluated. The method is then extended to compute surface-enhanced Raman scattering within a time-dependent density functional theory framework.
Collapse
Affiliation(s)
| | - Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luca Bonatti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- IMT School for Advanced Studies Lucca, Piazza San Francesco 19, Lucca 55100, Italy
| |
Collapse
|
3
|
Lim TS, Rahman IA, Umar A, Hidzir NM, Arkill KP, Sharif R, Jonet MA, Mohd HMK, Mohamed F. An Analysis of the Radiosensitiser Applications in the Biomedical Field. Curr Radiopharm 2025; 18:81-99. [PMID: 39225213 DOI: 10.2174/0118744710269842240825160247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Various types of radiosensitisers have been introduced from the past until the present day for applications in the biomedical field. However, there is a lack of understanding and comparison between the various parameters introduced in addition to a lack of consensus among researchers on the optimal radiosensitiser for applications in the biomedical field. OBJECTIVE This review aimed to investigate the usage of radiosensitisers in the biomedical field, determine their important parameters, and suggest radiosensitisers with potential among the analysed radiosensitisers. RESULTS AND CONCLUSION This review has discussed several parameters for radiosensitisers, including median lethal dose, cell survival, tumour size, cell viability, Dose Enhancement Factor (DEF), Reactive Oxygen Species (ROS) concentration, radiosensitiser production complexity, radiosensitiser administration technique, and radiosensitiser toxicity. General trends regarding the development of radiosensitisers, including the types, effectiveness, and their production complexity, have also been discussed within this review article.
Collapse
Affiliation(s)
- Teng Sheng Lim
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Irman Abdul Rahman
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Aminah Umar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Norsyahidah Mohd Hidzir
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Kenton Paul Arkill
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Razinah Sharif
- Nutritional Science Program and Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome & Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Hur Munawar Kabir Mohd
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Faizal Mohamed
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
He W, Yang F, Chen K, Zeng Q. Targeted gold nanoparticles for ovarian cancer (Review). Oncol Lett 2024; 28:589. [PMID: 39417039 PMCID: PMC11481100 DOI: 10.3892/ol.2024.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Among all malignant gynecological tumors, ovarian cancer (OC) has the highest mortality rate. OC is often diagnosed at advanced and incurable stages; however, early diagnosis can enable the use of optimized and personalized treatments. Intensive research into the synthesis and characterization of gold nanoparticles (AuNPs) has been performed with the aim of developing innovative materials for use in biological and photothermal therapies for OC. AuNPs can be chemically modified and functionalized by binding to a variety of organic compounds and biomolecules, such as peptides, antibodies and therapeutic agents, via simple synthetic processes. They are particularly suitable for use as carriers for drug delivery. In the present review, the synthesis and characteristics of AuNPs are summarized, and their potential in OC therapy are discussed.
Collapse
Affiliation(s)
- Wenjuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei 434000, P.R. China
| | - Keming Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingsong Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
5
|
Lu X, Wang Y, Mei R, Chong X, Chen L, Ning B, Zhang R, Zhuang X. Surface enhanced Raman scattering microtips for microenvironment pH determination of semi-solid preparations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7468-7475. [PMID: 39373099 DOI: 10.1039/d4ay01523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Semi-solid preparations such as ointments, creams, gels, and pastes are common topical dosage forms with complex compositions and microstructures. pH is a critical quality attribute for semi-solid preparations, affecting properties such as particle size distribution, drug dissociation state, and rheological behavior. Currently, traditional pH electrode methods only provide an "average" pH for large-volume matrices, with low spatial resolution and accuracy. Microenvironment pH detection is crucial for accurately assessing semi-solid preparations. Herein, we developed pH-sensitive surface enhanced Raman scattering (SERS) microtips to achieve localized pH detection in semi-solid preparations. SERS microtips were prepared from glass needles with a tip size of around 1 μm and gold nanoparticles (Au NPs) grown in situ on glass surfaces for SERS enhancement. 4-Mercaptopyridine was selected as a pH sensitive Raman reporter and immobilized on the Au NPs, exhibiting characteristic Raman peak shifts within the pH range of 3-10. The SERS microtips were employed to conduct highly sensitive pH measurements in localized areas of 15 commercial ointments, 8 gels, and 1 laboratory-made ointment, providing higher spatial resolution and microenvironment differentiation compared to pH meters. The SERS microtips were used to monitor pH changes over time in ointment applied to localized wounds on live mice. This work introduces a new tool for pH detection in semi-solid preparations, offering a new method to enhance the prescription process and quality assessment of complex preparations like topical semi-solid preparations.
Collapse
Affiliation(s)
- Xiangxin Lu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaomeng Chong
- National Institutes for Food and Drug Control, Key Laboratory of National Medical Products Administration, Key Laboratory of Research and Evaluation of Chemical Drug Quality, Beijing 102629, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Baoming Ning
- National Institutes for Food and Drug Control, Key Laboratory of National Medical Products Administration, Key Laboratory of Research and Evaluation of Chemical Drug Quality, Beijing 102629, China
| | - Rongqin Zhang
- SCMPA Key Laboratory for Quality Research and Control of Chemical Medicine, Chengdu 610000, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
6
|
Minamikawa T, Sakaguchi R, Harada Y, Tanioka H, Inoue S, Hase H, Mori Y, Takamatsu T, Yamasaki Y, Morimoto Y, Kawasaki M, Kawasaki M. Long-range enhancement for fluorescence and Raman spectroscopy using Ag nanoislands protected with column-structured silica overlayer. LIGHT, SCIENCE & APPLICATIONS 2024; 13:299. [PMID: 39465259 PMCID: PMC11514291 DOI: 10.1038/s41377-024-01655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/26/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024]
Abstract
We demonstrate long-range enhancement of fluorescence and Raman scattering using a dense random array of Ag nanoislands (AgNIs) coated with column-structured silica (CSS) overlayer of over 100 nm thickness, namely, remote plasmonic-like enhancement (RPE). The CSS layer provides physical and chemical protection, reducing the impact between analyte molecules and metal nanostructures. RPE plates are fabricated with high productivity using sputtering and chemical immersion in gold(I)/halide solution. The RPE plate significantly enhances Raman scattering and fluorescence, even without proximity between analyte molecules and metal nanostructures. The maximum enhancement factors are 107-fold for Raman scattering and 102-fold for fluorescence. RPE is successfully applied to enhance fluorescence biosensing of intracellular signalling dynamics in HeLa cells and Raman histological imaging of oesophagus tissues. Our findings present an interesting deviation from the conventional near-field enhancement theory, as they cannot be readily explained within its framework. However, based on the phenomenological aspects we have demonstrated, the observed enhancement is likely associated with the remote resonant coupling between the localised surface plasmon of AgNIs and the molecular transition dipole of the analyte, facilitated through the CSS structure. Although further investigation is warranted to fully understand the underlying mechanisms, the RPE plate offers practical advantages, such as high productivity and biocompatibility, making it a valuable tool for biosensing and biomolecular analysis in chemistry, biology, and medicine. We anticipate that RPE will advance as a versatile analytical tool for enhanced biosensing using Raman and fluorescence analysis in various biological contexts.
Collapse
Affiliation(s)
- Takeo Minamikawa
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan.
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, 770-8506, Japan.
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Tokushima, 770-8506, Japan.
| | - Reiko Sakaguchi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hiroki Tanioka
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, 770-8506, Japan
| | - Sota Inoue
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, 770-8506, Japan
| | - Hideharu Hase
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yasuo Mori
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Medical Photonics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yu Yamasaki
- Technology and Engineering Division, Ushio Inc., Hyogo, 671-0224, Japan
| | - Yukihiro Morimoto
- Technology and Engineering Division, Ushio Inc., Hyogo, 671-0224, Japan
- The Institute of Science and Industrial Research, Osaka University, Osaka, 567-0047, Japan
| | - Masahiro Kawasaki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Mitsuo Kawasaki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
7
|
Chisanga M, Masson JF. Machine Learning-Driven SERS Nanoendoscopy and Optophysiology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:313-338. [PMID: 38701442 DOI: 10.1146/annurev-anchem-061622-012448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A frontier of analytical sciences is centered on the continuous measurement of molecules in or near cells, tissues, or organs, within the biological context in situ, where the molecular-level information is indicative of health status, therapeutic efficacy, and fundamental biochemical function of the host. Following the completion of the Human Genome Project, current research aims to link genes to functions of an organism and investigate how the environment modulates functional properties of organisms. New analytical methods have been developed to detect chemical changes with high spatial and temporal resolution, including minimally invasive surface-enhanced Raman scattering (SERS) nanofibers using the principles of endoscopy (SERS nanoendoscopy) or optical physiology (SERS optophysiology). Given the large spectral data sets generated from these experiments, SERS nanoendoscopy and optophysiology benefit from advances in data science and machine learning to extract chemical information from complex vibrational spectra measured by SERS. This review highlights new opportunities for intracellular, extracellular, and in vivo chemical measurements arising from the combination of SERS nanosensing and machine learning.
Collapse
Affiliation(s)
- Malama Chisanga
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| | - Jean-Francois Masson
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| |
Collapse
|
8
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
9
|
Kromer C, Katz A, Feldmann I, Laux P, Luch A, Tschiche HR. A targeted fluorescent nanosensor for ratiometric pH sensing at the cell surface. Sci Rep 2024; 14:12302. [PMID: 38811698 PMCID: PMC11137054 DOI: 10.1038/s41598-024-62976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The correlation between altered extracellular pH and various pathological conditions, including cancer, inflammation and metabolic disorders, is well known. Bulk pH measurements cannot report the extracellular pH value at the cell surface. However, there is a limited number of suitable tools for measuring the extracellular pH of cells with high spatial resolution, and none of them are commonly used in laboratories around the world. In this study, a versatile ratiometric nanosensor for the measurement of extracellular pH was developed. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with the pH-inert reference dye Nile red and is surface functionalized with a pH-responsive fluorescein dye. Equipped with a targeting moiety, the nanosensor can adhere to cell membranes, allowing direct measurement of extracellular pH at the cell surface. The nanosensor exhibits a sensitive ratiometric pH response within the range of 5.5-9.0, with a calculated pKa of 7.47. This range optimally covers the extracellular pH (pHe) of most healthy cells and cells in which the pHe is abnormal, such as cancer cells. In combination with the nanosensors ability to target cell membranes, its high robustness, reversibility and its biocompatibility, the pHe nanosensor proves to be well suited for in-situ measurement of extracellular pH, even over extended time periods. This pH nanosensor has the potential to advance biomedical research by improving our understanding of cellular microenvironments, where extracellular pH plays an important role.
Collapse
Affiliation(s)
- Charlotte Kromer
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Aaron Katz
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ines Feldmann
- Material-Microbiome Interactions, Department Materials and the Environment, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Peter Laux
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Harald R Tschiche
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
10
|
Li Y, Wang Y, Mei R, Lv B, Zhao X, Bi L, Xu H, Chen L. Hydrogel-Coated SERS Microneedles for Drug Monitoring in Dermal Interstitial Fluid. ACS Sens 2024; 9:2567-2574. [PMID: 38696667 DOI: 10.1021/acssensors.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
In vivo drug monitoring is crucial for evaluating the effectiveness and safety of drug treatment. Blood sampling and analysis is the current gold standard but needs professional skills and cannot meet the requirements of point-of-care testing. Dermal interstitial fluid (ISF) showed great potential to replace blood for in vivo drug monitoring; however, the detection was challenging, and the drug distribution behavior in ISF was still unclear until now. In this study, we proposed surface-enhanced Raman spectroscopy (SERS) microneedles (MNs) for the painless and real-time analysis of drugs in ISF after intravenous injection. Using methylene blue (MB) and mitoxantrone (MTO) as model drugs, the innovative core-satellite structured Au@Ag SERS substrate, hydrogel coating over the MNs, rendered sensitive and quantitative drug detection in ISF of mice within 10 min. Based on this technique, the pharmacokinetics of the two drugs in ISF was investigated and compared with those in blood, where the drugs were analyzed via liquid chromatography-mass spectrometry. It was found that the MB concentration in ISF and blood was comparable, whereas the concentration of MTO in ISF was 2-3 orders of magnitude lower than in blood. This work proposed an efficient tool for ISF drug monitoring. More importantly, it experimentally proved that the penetration ratio of blood to ISF was drug-dependent, providing insightful information into the potential of ISF as a blood alternative for in vivo drug detection.
Collapse
Affiliation(s)
- Yan Li
- School of pharmacy, Key Laboratory of Molecular pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Bingqian Lv
- School of pharmacy, Key Laboratory of Molecular pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xizhen Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Bi
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Hui Xu
- School of pharmacy, Key Laboratory of Molecular pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
11
|
Zhao X, Wang J, Jia Y. Block copolymer-templated surface-enhanced Raman scattering-active nanofibers for hydrogen sulfide detection. Talanta 2024; 270:125608. [PMID: 38160488 DOI: 10.1016/j.talanta.2023.125608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Metabolic disorders involving endogenous H2S have been linked to a variety of serious human diseases, particularly cancer. In this study, we employed nanofibers with surface-enhanced Raman scattering (SERS) activity for the detection of H2S within live cells. These nanofibers were chosen for their minimal invasiveness, high spatial resolution, and enhanced SERS sensitivity. To improve the performance of SERS, highly sensitive core-shell multibranched-Au NPs (MBAuNP)@Ag NPs were decorated on the nanofibers as SERS tags for H2S detection. A SERS probe named MBN, embedded between the Au core and Ag shell, was utilized for quantitative detection. These nanofibers exhibited excellent reproducibility (relative standard deviation (RSD) within 5.7 %) and demonstrated a strong linear relationship with sulfide concentrations ranging from 50 nM to 1 μM, with an estimated detection limit of 0.12 nM. As a proof of concept, the aforementioned nanofibers were successfully applied to detect endogenous H2S in living cells, offering a potential analytical method in the related research of detection.
Collapse
Affiliation(s)
- Xingjuan Zhao
- School of Science, Shandong Jianzhu University, Jinan, 250101, China.
| | - Jingsong Wang
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuechen Jia
- School of Physics, Shandong University, Jinan, 250100, China.
| |
Collapse
|
12
|
Yang Y, Wu S, Chen Y, Ju H. Surface-enhanced Raman scattering sensing for detection and mapping of key cellular biomarkers. Chem Sci 2023; 14:12869-12882. [PMID: 38023499 PMCID: PMC10664603 DOI: 10.1039/d3sc04650h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular biomarkers mainly contain proteins, nucleic acids, glycans and many small molecules including small biomolecule metabolites, reactive oxygen species and other cellular chemical entities. The detection and mapping of the key cellular biomarkers can effectively help us to understand important cellular mechanisms associated with physiological and pathological processes, which greatly promote the development of clinical diagnosis and disease treatment. Surface-enhanced Raman scattering (SERS) possesses high sensitivity and is free from the influence of strong self-fluorescence in living systems as well as the photobleaching of the dyes. It exhibits rich and narrow chemical fingerprint spectra for multiplexed detection, and has become a powerful tool to detect and map cellular biomarkers. In this review, we present an overview of recent advances in the detection and mapping of different classes of cellular biomarkers based on SERS sensing. These advances fully confirm that the SERS-based sensors and sensing methods have great potential for the exploration of biological mechanisms and clinical applications. Additionally, we also discuss the limitations of present research and the future developments of the SERS technology in this field.
Collapse
Affiliation(s)
- Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Ghosh S, Lai JY. Recent advances in the design of intracellular pH sensing nanoprobes based on organic and inorganic materials. ENVIRONMENTAL RESEARCH 2023; 237:117089. [PMID: 37683789 DOI: 10.1016/j.envres.2023.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In the biological system, the intracellular pH (pHi) plays an important role in regulating diverse physiological activities, including enzymatic action, ion transport, cell proliferation, metabolism, and programmed cell death. The monitoring of pH inside living cells is also crucial for studying cellular events such as phagocytosis, endocytosis, and receptor-ligand internalization. Furthermore, some organelles, viz., endosomes and lysosomes, have intracompartmental pH, which is critical for maintaining the stability of protein structure and function. The dysfunction and abnormal pH regulation can result in terminal diseases such as cancer, Alzheimer, and so forth. Therefore, the accuracy of intracellular pH measurement is always the top priority and demands cutting-edge research and analysis. Such techniques, such as Raman spectroscopy and fluorescence imaging, preferably use nanotechnology due to their remarkable advantages, such as a non-invasive approach and providing accuracy, repeatability, and reproducibility. In the past decades, there have been numerous attempts to design and construct non-invasive organic and inorganic materials-based nanoprobes for pHi sensing. For Raman-based techniques, metal nanostructures such as Au/Ag/Cu nanoparticles are utilized to enhance the signal intensity. As for the fluorescence-based studies, the organic-based small molecules, such as dyes, show higher sensitivity toward pH. However, they possess several drawbacks, including high photobleaching rate, and autofluorescence background signals. To this end, there are alternative nanomaterials proposed, including semiconductor quantum dots (QDs), carbon QDs, upconversion nanoparticles, and so forth. Moreover, the fluorescence technique allows for ratiometric measurement of pHi, which as a result, offers a reliable calibration curve. This timely review will critically examine the current progression in the existing nanoprobes. In addition, based on our knowledge and available research findings, we provide a brief future outlook that may advance the state-of-the-art methodologies for pHi sensing.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
14
|
Li J, Liu X, Xi J, Deng L, Yang Y, Li X, Sun H. Recent Development of Polymer Nanofibers in the Field of Optical Sensing. Polymers (Basel) 2023; 15:3616. [PMID: 37688242 PMCID: PMC10489887 DOI: 10.3390/polym15173616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, owing to the continuous development of polymer nanofiber manufacturing technology, various nanofibers with different structural characteristics have emerged, allowing their application in the field of sensing to continually expand. Integrating polymer nanofibers with optical sensors takes advantage of the high sensitivity, fast response, and strong immunity to electromagnetic interference of optical sensors, enabling widespread use in biomedical science, environmental monitoring, food safety, and other fields. This paper summarizes the research progress of polymer nanofibers in optical sensors, classifies and analyzes polymer nanofiber optical sensors according to different functions (fluorescence, Raman, polarization, surface plasmon resonance, and photoelectrochemistry), and introduces the principles, structures, and properties of each type of sensor and application examples in different fields. This paper also looks forward to the future development directions and challenges of polymer nanofiber optical sensors, and provides a reference for in-depth research of sensors and industrial applications of polymer nanofibers.
Collapse
Affiliation(s)
- Jinze Li
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Xin Liu
- School of Physics, Xidian University, Xi'an 710071, China
| | - Jiawei Xi
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Li Deng
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Yanxin Yang
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Xiang Li
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Hao Sun
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| |
Collapse
|
15
|
Wu L, Chen L, Qian Z, Wang T, Dong Q, Zhang Y, Zong S, Cui Y, Wang Z. A 3D-printed SERS bionic taster for dynamic tumor metabolites detection. Talanta 2023; 264:124766. [PMID: 37285698 DOI: 10.1016/j.talanta.2023.124766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The variation of tumor-associated metabolites in extracellular microenvironment timely reflects the development, the progression and the treatment of cancers. Conventional methods for metabolite detection lack the efficiency to grasp the dynamic metabolic alterations. Herein, we developed a SERS bionic taster which enabled real-time analysis of extracellular metabolites. The instant information of cell metabolism was provided by the responsive Raman reporters, which experienced SERS spectral changes upon metabolite activation. Such a SERS sensor was integrated into a 3D-printed fixture which fits the commercial-standard cell culture dishes, allowing in-situ acquisition of the vibrational spectrum. The SERS taster can not only accomplish simultaneous and quantitative analysis of multiple tumor-associated metabolites, but also fulfill the dynamic monitoring of cellular metabolic reprogramming, which is expected to become a promising tool for investigating cancer biology and therapeutics.
Collapse
Affiliation(s)
- Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Lu Chen
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Ziting Qian
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Tingyu Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Qianqian Dong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Yizhi Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Nanjing 211106, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China.
| |
Collapse
|
16
|
Wu X, Yang K, He S, Zhu F, Kang S, Liu B, Sun C, Pang W, Wang Y. Dual-functional gold nanorods micro pattern guiding cell alignment and cellular microenvironment monitoring. J Colloid Interface Sci 2023; 647:429-437. [PMID: 37269739 DOI: 10.1016/j.jcis.2023.05.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Surface topography has become a powerful tool to control cell behaviors, however, it's still difficult to monitor cellular microenvironment changes during topography-induced cell responses. Here, a dual-functional platform integrating cell alignment with extracellular pH (pHe) measurement is proposed. The platform is fabricated by assembling gold nanorods (AuNRs) into micro pattern via wettability difference interface method, which provides topographical cues and surface-enhanced Raman scattering (SERS) effect for cell alignment and biochemical detection respectively. Results demonstrate that contact guidance and cell morphology changes are achieved by the AuNRs micro pattern, and pHe are also obtained by the changes of SERS spectra during cell alignment, where the pHe near cytoplasm is lower than nucleus, revealing the heterogeneity of extracellular microenvironment. Moreover, a correlation between lower extracellular pH and higher cell migration ability is revealed, and AuNRs micro pattern can differentiate cells with different migration ability, which may be an inheritable character during cell division. Furthermore, mesenchymal stem cells response dramatically to AuNRs micro pattern, showing different morphology and increased pHe level, offering the potential of impacting stem cell differentiation. This approach provides a new idea for the research of cell regulation and response mechanism.
Collapse
Affiliation(s)
- Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Kai Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shenghui Kang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bohua Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Fang L, Pan XT, Liu K, Jiang D, Ye D, Ji LN, Wang K, Xia XH. Surface-Roughened SERS-Active Single Silver Nanowire for Simultaneous Detection of Intracellular and Extracellular pHs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20677-20685. [PMID: 37071781 DOI: 10.1021/acsami.3c00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The simultaneous and accurate detection of intracellular pH (pHi) and extracellular pH (pHe) is essential for studying the complex physiological activities of cancer cells and exploring pH-related therapeutic mechanisms. Here, we developed a super-long silver nanowire-based surface-enhanced Raman scattering (SERS) detection strategy for simultaneous sensing of pHi and pHe. A surface-roughened silver nanowire (AgNW) with a high aspect ratio is prepared at a nanoelectrode tip using a Cu-mediated oxidation process, which is then modified by pH-sensitive 4-mercaptobenzoic acid (4-MBA) to form 4-MBA@AgNW as a pH sensing probe. With the assistance of a 4D microcontroller, 4-MBA@AgNW is efficient in simultaneously detecting pHi and pHe in both 2D and 3D culture cancer cells by SERS, with minimal invasiveness, high sensitivity, and spatial resolution. Further investigation proves that the surface-roughened single AgNW can also be used in monitoring the dynamic variation of pHi and pHe of cancer cells upon stimulation with anticancer drugs or under a hypoxic environment.
Collapse
Affiliation(s)
- Leyi Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
18
|
Yu Z, Qiu C, Huang L, Gao Y, Tang D. Microelectromechanical Microsystems-Supported Photothermal Immunoassay for Point-of-Care Testing of Aflatoxin B1 in Foodstuff. Anal Chem 2023; 95:4212-4219. [PMID: 36780374 DOI: 10.1021/acs.analchem.2c05617] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Accurate identification of acutely toxic and low-fatality mycotoxins on a large scale in a quick and cheap manner is critical for reducing population mortality. Herein, a portable photothermal immunosensing platform supported by a microelectromechanical microsystem (MEMS) without enzyme involvement was reported for point-of-care testing of mycotoxins (in the case of aflatoxin B1, AFB1) in food based on the precise satellite structure of Au nanoparticles. The synthesized Au nanoparticles with a well-defined, graded satellite structure exhibited a significantly enhanced photothermal response and were coupled by AFB1 antibodies to form signal conversion probes by physisorption for further target-promoted competitive responses in microplates. In addition, a coin-sized miniature NIR camera device was constructed for temperature acquisition during target testing based on advanced MEMS fabrication technology to address the limitation of expensive signal acquisition components of current photothermal sensors. The proposed MEMS readout-based microphotothermal test method provides excellent AFB1 response in the range of 0.5-500 ng g-1 with detection limits as low as 0.27 ng g-1. In addition, the main reasons for the efficient photothermal transduction efficiency of Au with different graded structures were analyzed by finite element simulations, providing theoretical guidance for the development of new Au-based photothermal agents. In conclusion, the proposed portable micro-photothermal test system offers great potential for point-of-care diagnostics for residents, which will continue to facilitate immediate food safety identification in resource-limited regions.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chicheng Qiu
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lingting Huang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
19
|
Mei R, Wang Y, Zhao X, Shi S, Wang X, Zhou N, Shen D, Kang Q, Chen L. Skin Interstitial Fluid-Based SERS Tags Labeled Microneedles for Tracking of Peritonitis Progression and Treatment Effect. ACS Sens 2023; 8:372-380. [PMID: 36638363 DOI: 10.1021/acssensors.2c02409] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Skin interstitial fluid (ISF)-based microneedle (MN) sensing has recently exhibited wide promise for the minimally invasive and painless diagnosis of diseases. However, it is still a great challenge to diagnose more disease types due to the limited in situ sensing techniques and insufficient ISF biomarker sources. Herein, ISF is employed to pioneer the tracking of acute peritonitis progression via surface-enhanced Raman scattering (SERS) tags labeled MNs patch technique. Densely deposited core-satellite gold nanoparticles and 3-mercaptophenylboronic acid as a Raman reporter enable the developed MNs patch with high sensitivity and selectivity in the determination of H2O2, an indicator of peritonitis development. Importantly, the MNs patch not only reliably tracks the different states of peritonitis but also evaluates the efficacy of drugs in the treatment of peritonitis, as evidenced by the altered SERS signal consistent with plasma pro-inflammatory factor (TNF-α) and peritoneum pathological manifestations. Interestingly, the major source of H2O2 in ISF of acute peritonitis investigated may not be through conventional blood capillary filtration pathway. This work provides a new route and technique for the early diagnosis of acute peritonitis and the evaluation of drug therapy effects. The developed MNs patch is promising to serve as a universal sensing tool to greatly enrich the variety and prospect of ISF-based disease diagnosis.
Collapse
Affiliation(s)
- Rongchao Mei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shang Shi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Na Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
20
|
Ultrasensitive Acetylcholinesterase detection based on a surface-enhanced Raman scattering lever strategy for identifying nerve fibers. Talanta 2023; 252:123867. [DOI: 10.1016/j.talanta.2022.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
|
21
|
Mei R, Wang Y, Shi S, Zhao X, Zhang Z, Wang X, Shen D, Kang Q, Chen L. Highly Sensitive and Reliable Internal-Standard Surface-Enhanced Raman Scattering Microneedles for Determination of Bacterial Metabolites as Infection Biomarkers in Skin Interstitial Fluid. Anal Chem 2022; 94:16069-16078. [DOI: 10.1021/acs.analchem.2c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rongchao Mei
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shang Shi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Dazhong Shen
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qi Kang
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
22
|
Zhao X, Niu R, Fan S, Jing X, Gao R, Yang H, Wang H, Wang D, Yang Z, Xie Y, She J, Chen P, Meng L. A Dual-Mode NADH Biosensor Based on Gold Nanostars Decorated CoFe 2 Metal-Organic Frameworks to Reveal Dynamics of Cell Metabolism. ACS Sens 2022; 7:2671-2679. [PMID: 36001454 DOI: 10.1021/acssensors.2c01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) is central to metabolism and implicated in various diseases. Herein, nanohybrids of gold nanostars and metal-organic frameworks are devised and demonstrated as a dual-mode NADH sensor, for which colorimetric detection is enabled by its peroxidase-like nanozyme property and Raman detection is realized by its surface-enhanced Raman scattering property with the detection limit as low as 28 pM. More importantly, this probe enables real-time SERS monitoring in living cells, providing a unique tool to investigate dynamic cellular processes involving NADH. Our experiments reveal that metabolism dynamics is accelerated by glucose and is much higher in cancerous cells. The SERS results can also be verified by the colorimetric detection. This sensor provides a new potential to detect biomarkers and their dynamics in situ.
Collapse
Affiliation(s)
- Xiaoping Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruoxin Niu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shu Fan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Rui Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongbo Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heng Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunchuan Xie
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junjun She
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637457, Singapore
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.,Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.,Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
23
|
A Facile, Label-free and Versatile Fluorescence Sensing Nanoplatform Based on Titanium Carbide Nanosheets for the Detection of Various Targets. J Fluoresc 2022; 32:2189-2198. [DOI: 10.1007/s10895-022-03012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
|
24
|
Hou J, Zhao Y, Sun L, Zou X. Fabrication of mesoporous silica-covered gold nanostars for chemophototherapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Zhong Q, Huang X, Zhang R, Zhang K, Liu B. Optical Sensing Strategies for Probing Single-Cell Secretion. ACS Sens 2022; 7:1779-1790. [PMID: 35709496 DOI: 10.1021/acssensors.2c00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measuring cell secretion events is crucial to understand the fundamental cell biology that underlies cell-cell communication, migration, proliferation, and differentiation. Although strategies targeting cell populations have provided significant information about live cell secretion, they yield ensemble profiles that obscure intrinsic cell-to-cell variations. Innovation in single-cell analysis has made breakthroughs allowing accurate sensing of a wide variety of secretions and their release dynamics with high spatiotemporal resolution. This perspective focuses on the power of single-cell protocols to revolutionize cell-secretion analysis by allowing real-time and real-space measurements on single live cell resolution. We begin by discussing recent progress on single-cell bioanalytical techniques, specifically optical sensing strategies such as fluorescence-, surface plasmon resonance-, and surface-enhanced Raman scattering-based strategies, capable of in situ real-time monitoring of single-cell released ions, metabolites, proteins, and vesicles. Single-cell sensing platforms which allow for high-throughput high-resolution analysis with enough accuracy are highlighted. Furthermore, we discuss remaining challenges that should be addressed to get a more comprehensive understanding of secretion biology. Finally, future opportunities and potential breakthroughs in secretome analysis that will arise as a result of further development of single-cell sensing approaches are discussed.
Collapse
Affiliation(s)
- Qingmei Zhong
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Rongrong Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Wen C, Wang L, Liu L, Shen XC, Chen H. Surface-enhanced Raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J 2022; 17:e202200014. [PMID: 35178878 DOI: 10.1002/asia.202200014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has received considerable attention from researchers due to its high molecular specificity, high sensitivity, non-invasive and multiplexing. Recently, various metal substrates have been exploited for SERS analysis and imaging. Among them, gold nanomaterials are important SERS substrates with outstanding surface plasmon resonance effects, structural adjustability and good biocompatibility, making them widely used in biomedical diagnosis and clinical fields. In this minireview, we discuss the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging. This review mainly includes the basic shapes and morphologies of gold based SERS probes, such as gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanostars (AuNSs), as well as other gold nanostructures. Finally, a brief outlook for the future development of SERS technique in the context of efficient diagnostics and therapy guidance is provided. We hope that this minireview will facilitate the design and future development of Surface-enhanced Raman probes based on gold nanomaterials.
Collapse
Affiliation(s)
| | | | - Li Liu
- Guangxi Normal University, chemistry, CHINA
| | | | - Hua Chen
- Guangxi Normal University, school of chemistry, 15 Yucai Road, 541004, Guilin, CHINA
| |
Collapse
|
27
|
Cascade i-motifs-dependent reversible electrochemical impedance strategy-oriented pH and terminal deoxynucleotidyl transferase biosensing. Bioelectrochemistry 2022; 145:108085. [DOI: 10.1016/j.bioelechem.2022.108085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 01/21/2023]
|
28
|
Shell thickness-dependent Au@Ag nanorods aggregates for rapid detection of thiram. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Lu Y, Lin L, Ye J. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater Today Bio 2022; 13:100205. [PMID: 35118368 PMCID: PMC8792281 DOI: 10.1016/j.mtbio.2022.100205] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Metabolites are important biomarkers in human body fluids, conveying direct information of cellular activities and physical conditions. Metabolite detection has long been a research hotspot in the field of biology and medicine. Surface-enhanced Raman spectroscopy (SERS), based on the molecular “fingerprint” of Raman spectrum and the enormous signal enhancement (down to a single-molecule level) by plasmonic nanomaterials, has proven to be a novel and powerful tool for metabolite detection. SERS provides favorable properties such as ultra-sensitive, label-free, rapid, specific, and non-destructive detection processes. In this review, we summarized the progress in recent 10 years on SERS-based sensing of endogenous metabolites at the cellular level, in tissues, and in biofluids, as well as drug metabolites in biofluids. We made detailed discussions on the challenges and optimization methods of SERS technique in metabolite detection. The combination of SERS with modern biomedical technology were also anticipated.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Lin
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Corresponding author.
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Corresponding author. State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
30
|
Li X, Zhang T, Chen Z, Yu J, Cao A, Liu D, Cai W, Li Y. Au Polyhedron Array with Tunable Crystal Facets by PVP-Assisted Thermodynamic Control and Its Sharp Shape As Well As High-Energy Exposed Planes Co-Boosted SERS Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105045. [PMID: 34841652 DOI: 10.1002/smll.202105045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
A route is developed for directly growing 2D Au polyhedron arrays with controllable exposed facets of polyhedron by utilizing the substrate-supported 2D Au quasi-spherical nanoparticle arrays as the Au seed arrays, which cannot be realized by traditional lithography. In the reaction system, polyvinyl pyrrolidone (PVP) plays a vital role in guiding the reduced Au atoms and stabilizing the substrate-supported Au seeds. More importantly, by thermodynamic control, PVP as a capping agent can further direct the formation of {111} facets. The key to guarantee the integrity and periodicity of array is a proper reduction of Au ions and low growth rate of crystal. Benefiting from the higher electric field intensity near the sharp vertexes and edges of Au polyhedra and the exposed {110} facets with high energy, the Au polyhedron array with {110} facets encasing polyhedron exhibits good, stable surface enhanced Raman scattering activity toward 4-aminothiophenol among the involved arrays. The proposed fabrication approach tremendously enriches the structural diversity of Au nanoarrays on substrates and greatly overcomes the shortcoming of traditional lithography.
Collapse
Affiliation(s)
- Xuejiao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tao Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zhiming Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - An Cao
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dilong Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Weiping Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
31
|
A photochemical approach to anchor Au NPs on MXene as a prominent SERS substrate for ultrasensitive detection of chlorpromazine. Mikrochim Acta 2021; 189:16. [PMID: 34873648 DOI: 10.1007/s00604-021-05118-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
As a novel two-dimensional (2D) material, metal carbide (MXene) has been identified as a hotspot research topic in the field of surface-enhanced Raman spectroscopy (SERS). Herein, we report the increment of SERS activity of titanium carbide (TiC) by incorporation of gold nanoparticles (Au NPs) by a facile photoreduction process for the detection of antipsychotic drug. TiC anchored with Au NPs produce a remarkable SERS enhancement by the synergistic action of chemical and electromagnetic mechanisms. The hotspots are formed in the nanometer-scale gaps between Au NPs on the TiC surface for the effective interaction with probe molecules. The proposed TiC/Au-NPs SERS substrate was employed for the detection of chlorpromazine (CPZ) with the wide linear range of 10-1-10-10 M and the ultra-low limit of detection of 3.92 × 10-11 M. Besides, the SERS effect of the optimized TiC/Au-NPs for the 532 nm excitation exhibits the enhancement factor in the order of 109 with the relative standard deviation of < 13% for the uniformity and < 8.80% for the reproducibility. To ensure the practical feasibility of the proposed TiC/Au-NPs SERS substrate, the spike and recovery method was used for the detection of CPZ in human biological fluids like urine and saliva. This work can open up a new approach to improve the SERS activity of MXene-based SERS substrate for practical applications, especially the determination of antipsychotic drugs in environmental pollution management.
Collapse
|
32
|
Aref M, Ranjbari E, García-Guzmán JJ, Hu K, Lork A, Crespo GA, Ewing AG, Cuartero M. Potentiometric pH Nanosensor for Intracellular Measurements: Real-Time and Continuous Assessment of Local Gradients. Anal Chem 2021; 93:15744-15751. [PMID: 34783529 PMCID: PMC8637545 DOI: 10.1021/acs.analchem.1c03874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
We present a pH nanosensor
conceived for single intracellular measurements.
The sensing architecture consisted of a two-electrode system evaluated
in the potentiometric mode. We used solid-contact carbon nanopipette
electrodes tailored to produce both the indicator (pH nanosensor)
and reference electrodes. The indicator electrode was a membrane-based
ion-selective electrode containing a receptor for hydrogen ions that
provided a favorable selectivity for intracellular measurements. The
analytical features of the pH nanosensor revealed a Nernstian response
(slope of −59.5 mV/pH unit) with appropriate repeatability
and reproducibility (variation coefficients of <2% for the calibration
parameters), a fast response time (<5 s), adequate medium-term
drift (0.7 mV h–1), and a linear range of response
including physiological and abnormal cell pH levels (6.0–8.5).
In addition, the position and configuration of the reference electrode
were investigated in cell-based experiments to provide unbiased pH
measurements, in which both the indicator and reference electrodes
were located inside the same cell, each of them inside two neighboring
cells, or the indicator electrode inside the cell and the reference
electrode outside of (but nearby) the studied cell. Finally, the pH
nanosensor was applied to two cases: (i) the tracing of the pH gradient
from extra-to intracellular media over insertion into a single PC12
cell and (ii) the monitoring of variations in intracellular pH in
response to exogenous administration of pharmaceuticals. It is anticipated
that the developed pH nanosensor, which is a label-free analytical
tool, has high potential to aid in the investigation of pathological
states that manifest in cell pH misregulation, with no restriction
in the type of targeted cells.
Collapse
Affiliation(s)
- Mohaddeseh Aref
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Juan José García-Guzmán
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Alicia Lork
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| |
Collapse
|
33
|
Zhang L, Zhao Q, Jiang Z, Shen J, Wu W, Liu X, Fan Q, Huang W. Recent Progress of SERS Nanoprobe for pH Detecting and Its Application in Biological Imaging. BIOSENSORS 2021; 11:282. [PMID: 34436084 PMCID: PMC8392648 DOI: 10.3390/bios11080282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023]
Abstract
As pH value almost affects the function of cells and organisms in all aspects, in biology, biochemical and many other research fields, it is necessary to apply simple, intuitive, sensitive, stable detection of pH and base characteristics inside and outside the cell. Therefore, many research groups have explored the design and application of pH probes based on surface enhanced Raman scattering (SERS). In this review article, we discussed the basic theoretical background of explaining the working mechanism of pH SERS sensors, and also briefly described the significance of cell pH measurement, and simply classified and summarized the factors that affected the performance of pH SERS probes. Some applications of pH probes based on surface enhanced Raman scattering in intracellular and extracellular pH imaging and the combination of other analytical detection techniques are described. Finally, the development prospect of this field is presented.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Qianqian Zhao
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Zhitao Jiang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Jingjing Shen
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Weibing Wu
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210023, China;
| | - Xingfen Liu
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Quli Fan
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
34
|
Wang Q, Hu R, Chen M, Zhang J, Chen L, Lin Z, Dong Y, Fu F. Hybridizing Carbon-Based Dot-Capped Manganese Dioxide Nanosheets and Gold Nanoparticles as a Highly Sensitive Surface-Enhanced Raman Scattering Substrate. Anal Chem 2021; 93:9744-9751. [PMID: 34241995 DOI: 10.1021/acs.analchem.1c01181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-enhanced Raman Scattering (SERS) is a sensitive and nondestructive technique that provides fingerprint structural information of molecules. Designing and constructing sensitive and stable SERS substrates is of great significance for the application of the technique. In this study, single-layer carbon-based dots (CDs) are used as capping agents to synthesize gold nanoparticles (AuNPs/CDs) and manganese dioxide nanosheets (MnO2/CDs), which are then hybridized through a simple cocentrifugation method. After the hybridization, the monodispersive AuNPs/CDs aggregate obviously into some clusters exhibiting strong SERS activity due to the electromagnetic "hot spots" effect, and the MnO2/CDs also show outstanding SERS activity due to the charge-transfer resonance effect. The obtained nanohybrids (MnO2/CDs/AuNPs) with robust chemical stability combine well with the electromagnetic enhancement of AuNPs/CDs and chemical enhancement of MnO2/CDs, leading to an ultrahigh enhancement factor of 3.9 × 108. Based on the novel SERS substrate, a sensitive and rapid sensing system for the detection of malachite green is developed, with a low detection limit of 1 × 10-9 M. This work provides a valuable model for designing and fabricating high-performance SERS substrates.
Collapse
Affiliation(s)
- Qian Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Rongjing Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Jiaxin Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian 350108, China
| | - FengFu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian 350108, China
| |
Collapse
|
35
|
Sun J, Ma Q, Xue D, Shan W, Liu R, Dong B, Zhang J, Wang Z, Shao B. Polymer/inorganic nanohybrids: An attractive materials for analysis and sensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Sang Y, Chen X, Zhang L, Li D, Xu H. Electrospun polymeric nanofiber decorated with sea urchin-like gold nanoparticles as an efficient and stable SERS platform. J Colloid Interface Sci 2021; 590:125-133. [PMID: 33524713 DOI: 10.1016/j.jcis.2021.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
Surface enhanced Raman scattering (SERS)-based nanoprobes have been used as well-established analytical tools enabling single-molecule detection. In this work, we report a facile method to decorate sea urchin-like gold nanoparticles (SUGNPs) on the surface of PMMA/P4VP nanofibers. Firstly, PMMA/P4VP nanofibers within the submicrometer size range were prepared by applying the electrospinning technique. Then, the incorporation of SUGNPs on the surface of PMMA/P4VP nanofiber was achieved by immersing PMMA/P4VP nanofiber into freshly prepared SUGNP aqueous solution through the specific Au-N interactions. The as-fabricated SUGNP-coated PMMA/P4VP nanofibers exhibited good sensitivity and reproducibility in SERS measurements with the relative standard deviation down to 6.6%, by employing 4-mercaptobenzoic acid as a probe molecule with 30 min of soaking time. Hence, we envisage that the SUGNP-coated PMMA/P4VP nanofibers can act as efficient and stable SERS substrates for potential applications in molecular detection as well as chemical and biological analysis.
Collapse
Affiliation(s)
- Yaqin Sang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xin Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Li Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Dongyan Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
37
|
Zhao X, Campbell S, El-Khoury PZ, Jia Y, Wallace GQ, Claing A, Bazuin CG, Masson JF. Surface-Enhanced Raman Scattering Optophysiology Nanofibers for the Detection of Heavy Metals in Single Breast Cancer Cells. ACS Sens 2021; 6:1649-1662. [PMID: 33847111 DOI: 10.1021/acssensors.1c00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mercury(II) ions (Hg2+) and silver ions (Ag+) are two of the most hazardous pollutants causing serious damage to human health. Here, we constructed surface-enhanced Raman scattering (SERS)-active nanofibers covered with 4-mercaptopyridine (4-Mpy)-modified gold nanoparticles to detect Hg2+ and Ag+. Experimental evidence suggests that the observed spectral changes originate from the combined effect of (i) the coordination between the nitrogen on 4-Mpy and the metal ions and (ii) the 4-Mpy molecular orientation (from flatter to more perpendicular with respect to the metal surface). The relative intensity of a pair of characteristic Raman peaks (at ∼428 and ∼708 cm-1) was used to quantify the metal ion concentration, greatly increasing the reproducibility of the measurement compared to signal-on or signal-off detection based on a single SERS peak. The detection limit of this method for Hg2+ is lower than that for the Ag+ (5 vs 100 nM), which can be explained by the stronger interaction energy between Hg2+ and N compared to Ag+ and N, as demonstrated by density functional theory calculations. The Hg2+ and Ag+ ions can be masked by adding ethylenediaminetetraacetate and Cl-, respectively, to the Hg2+ and Ag+ samples. The good sensitivity, high reproducibility, and excellent selectivity of these nanosensors were also demonstrated. Furthermore, detection of Hg2+ in living breast cancer cells at the subcellular level is possible, thanks to the nanometric size of the herein described SERS nanosensors, allowing high spatial resolution and minimal cell damage.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Shirley Campbell
- Département de pharmacologie et physiologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Patrick Z. El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Yuechen Jia
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Gregory Q. Wallace
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Audrey Claing
- Département de pharmacologie et physiologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - C. Geraldine Bazuin
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
38
|
Miranda B, Rea I, Dardano P, De Stefano L, Forestiere C. Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications. BIOSENSORS-BASEL 2021; 11:bios11040107. [PMID: 33916580 PMCID: PMC8066870 DOI: 10.3390/bios11040107] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, optical biosensors based on nanostructured materials have obtained increasing interest since they allow the screening of a wide variety of biomolecules with high specificity, low limits of detection, and great sensitivity. Among them, flexible optical platforms have the advantage of adapting to non-planar surfaces, suitable for in vivo and real-time monitoring of diseases and assessment of food safety. In this review, we summarize the newest and most advanced platforms coupling optically active materials (noble metal nanoparticles) and flexible substrates giving rise to hybrid nanomaterials and/or nanocomposites, whose performances are comparable to the ones obtained with hard substrates (e.g., glass and semiconductors). We focus on localized surface plasmon resonance (LSPR)-based and surface-enhanced Raman spectroscopy (SERS)-based biosensors. We show that large-scale, cost-effective plasmonic platforms can be realized with the currently available techniques and we emphasize the open issues associated with this topic.
Collapse
Affiliation(s)
- Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy;
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
- Correspondence:
| | - Carlo Forestiere
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy;
| |
Collapse
|
39
|
Luo X, Zhao X, Wallace GQ, Brunet MH, Wilkinson KJ, Wu P, Cai C, Bazuin CG, Masson JF. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6545-6556. [PMID: 33522805 DOI: 10.1021/acsami.0c21493] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe surface-enhanced Raman spectroscopy (SERS) aptasensors that can indirectly detect MC-LR and MC-RR, individually or simultaneously, in natural water and in algal culture. The sensor is constructed from nanoparticles composed of successive layers of Au core-SERS label-silver shell-gold shell (Au@label@Ag@Au NPs), functionalized on the outer Au surface by MC-LR and/or MC-RR aptamers. These NPs are immobilized on asymmetric Au nanoflowers (AuNFs) dispersed on planar silicon substrates through DNA hybridization of the aptamers and capture DNA sequences with which the AuNFs are functionalized, thereby forming core-satellite nanostructures on the substrates. This construction led to greater electromagnetic (EM) field enhancement of the Raman label-modified region, as supported by finite-difference time-domain (FDTD) simulations of the core-satellite assembly. In the presence of MC-LR and/or MC-RR, the aptamer-functionalized NPs dissociate from the AuNFs because of the stronger affinity of the aptamers with the MCs, which decreases the SERS signal, thus allowing indirect detection of the MCs. The improved SERS sensitivity significantly decreased the limit of detection (LOD) for separate MC-LR detection (0.8 pM) and for multiplex detection (1.5 pM for MC-LR and 1.3 pM for MC-RR), compared with other recently reported SERS-based methods for MC-LR detection. The aptasensors show excellent selectivity to MC-LR/MC-RR and excellent recoveries (96-105%). The use of these SERS aptasensors to monitor MC-LR production over 1 week in a culture medium of M. aeruginosa cells demonstrates the applicability of the sensors in a realistic environment.
Collapse
Affiliation(s)
- Xiaojun Luo
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Xingjuan Zhao
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Gregory Q Wallace
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Marie-Hélène Brunet
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Kevin J Wilkinson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - C Geraldine Bazuin
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Jean-Francois Masson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| |
Collapse
|
40
|
Spedalieri C, Szekeres GP, Werner S, Guttmann P, Kneipp J. Intracellular optical probing with gold nanostars. NANOSCALE 2021; 13:968-979. [PMID: 33367430 DOI: 10.1039/d0nr07031a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanostars are important nanoscopic tools in biophotonics and theranostics. To understand the fate of such nanostructures in the endolysosomal system of living cells as an important processing route in biotechnological approaches, un-labelled, non-targeted gold nanostars synthesized using HEPES buffer were studied in two cell lines. The uptake of the gold nanostructures leads to cell line-dependent intra-endolysosomal agglomeration, which results in a greater enhancement of the local optical fields than those around individual nanostars and near aggregates of spherical gold nanoparticles of the same size. As demonstrated by non-resonant surface-enhanced Raman scattering (SERS) spectra in the presence and absence of aggregation, the spectroscopic signals of molecules are of very similar strength over a wide range of concentrations, which is ideal for label-free vibrational characterization of cells and other complex environments. In 3T3 and HCT-116 cells, SERS data were analyzed together with the properties of the intracellular nanostar agglomerates. Vibrational spectra indicate that the processing of nanostars by cells and their interaction with the surrounding endolysosomal compartment is connected to their morphological properties through differences in the structure and interactions in their intracellular protein corona. Specifically, different intracellular processing was found to result from a different extent of hydrophobic interactions at the pristine gold surface, which varies for nanostars of different spike lengths. The sensitive optical monitoring of surroundings of nanostars and their intracellular processing makes them a very useful tool for optical bionanosensing and therapy.
Collapse
Affiliation(s)
- Cecilia Spedalieri
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | | | | | | | | |
Collapse
|
41
|
Ruan YF, Wang HY, Shi XM, Xu YT, Yu XD, Zhao WW, Chen HY, Xu JJ. Target-Triggered Assembly in a Nanopipette for Electrochemical Single-Cell Analysis. Anal Chem 2020; 93:1200-1208. [PMID: 33301293 DOI: 10.1021/acs.analchem.0c04628] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered nanopipette tools have recently emerged as a powerful approach for electrochemical nanosensing, which has major implications in both fundamental biological research and biomedical applications. Herein, we describe a generic method of target-triggered assembly of aptamers in a nanopipette for nanosensing, which is exemplified by sensitive and rapid electrochemical single-cell analysis of adenosine triphosphate (ATP), a ubiquitous energy source in life and important signaling molecules in many physiological processes. Specifically, a layer of thiolated aptamers is immobilized onto a Au-coated interior wall of a nanopipette tip. With backfilled pairing aptamers, the engineered nanopipette is then used for probing intracellular ATP via the ATP-dependent linkage of the split aptamers. Due to the higher surface charge density from the aptamer assembly, the nanosensor would exhibit an enhanced rectification signal. Besides, this ATP-responsive nanopipette tool possesses excellent selectivity and stability as well as high recyclability. This work provides a practical single-cell nanosensor capable of intracellular ATP analysis. More generally, integrated with other split recognition elements, the proposed mechanism could serve as a viable basis for addressing many other important biological species.
Collapse
Affiliation(s)
- Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
42
|
Zhao X, Luo X, Bazuin CG, Masson JF. In Situ Growth of AuNPs on Glass Nanofibers for SERS Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55349-55361. [PMID: 33237739 DOI: 10.1021/acsami.0c15311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is challenging to fabricate plasmonic nanosensors on high-curvature surfaces with high sensitivity and reproducibility at low cost. Here, we report a facile and straightforward strategy, based on an in situ growth technique, for fabricating glass nanofibers covered by asymmetric gold nanoparticles (AuNPs) with tunable morphologies and adjustable spacings, leading to much improved surface-enhanced Raman scattering (SERS) sensitivity because of hotspots generated by the AuNP surface irregularities and adjacent AuNP coupling. First, nanosensors covered with uniform and well-dispersed citrate-capped spherical AuNPs were constructed using a polystyrene-b-poly(4-vinylpyridine) (PS-P4VP, with 33 mol % P4VP content and 61 kg/mol total molecular weight) block copolymer brush-layer templating method, and then, the deposited AuNPs were grown to asymmetric AuNPs. AuNP morphologies and hence the optical characteristics of AuNP-covered glass nanofibers were easily controlled by the choice of experimental parameters, such as the growth time and growth solution composition. In particular, tunable AuNP average diameters between about 40 and 80 nm with AuNP spacings between about 50 and 1 nm were achieved within 15 min of growth. The SERS sensitivity of branched AuNP-covered nanofibers (3 min growth time) was demonstrated to be more than threefold more intense than that of the original spherical AuNP-covered nanofibers using a 633 nm laser. Finite-difference time-domain simulations were performed, showing that the electric field enhancement is highest for intermediate AuNP diameters. Furthermore, SERS applications of these nanosensors for H2O2 detection and pH sensing were demonstrated, offering appealing and promising candidates for real-time monitoring of extra/intracellular species in vitro and in vivo.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Xiaojun Luo
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - C Geraldine Bazuin
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
43
|
Wallace GQ, Delignat-Lavaud B, Zhao X, Trudeau LÉ, Masson JF. A blueprint for performing SERS measurements in tissue with plasmonic nanofibers. J Chem Phys 2020; 153:124702. [PMID: 33003723 DOI: 10.1063/5.0024467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plasmonic nanostructures have found increasing utility due to the increased popularity that surface-enhanced Raman scattering (SERS) has achieved in recent years. SERS has been incorporated into an ever-growing list of applications, with bioanalytical and physiological analyses having emerged as two of the most popular. Thus far, the transition from SERS studies of cultured cells to SERS studies involving tissue has been gradual and limited. In most cases, SERS measurements in more intact tissue have involved nanoparticles distributed throughout the tissue or localized to specific regions via external functionalization. Performing highly localized measurements without the need for global nanoparticle uptake or specialized surface modifications would be advantageous to the expansion of SERS measurements in tissue. To this end, this work provides critical insight with supporting experimental evidence into performing SERS measurements with nanosensors inserted in tissues. We address two critical steps that are otherwise underappreciated when other approaches to performing SERS measurements in tissue are used. Specifically, we demonstrate two mechanical routes for controlled positioning and inserting the nanosensors into the tissue, and we discuss two means of focusing on the nanosensors both before and after they are inserted into the tissue. By examining the various combinations of these steps, we provide a blueprint for performing SERS measurements with nanosensors inserted in tissue. This blueprint could prove useful for the general development of SERS as a tool for bioanalytical and physiological studies and for more specialized techniques such as SERS-optophysiology.
Collapse
Affiliation(s)
- Gregory Q Wallace
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît Delignat-Lavaud
- Neuroscience Research Group (GRSNC), Département de Pharmacologie et Physiologie, Département de Neurosciences, Faculté de Médecine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Xingjuan Zhao
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Neuroscience Research Group (GRSNC), Département de Pharmacologie et Physiologie, Département de Neurosciences, Faculté de Médecine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-François Masson
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
44
|
Mandelbaum Y, Mottes R, Zalevsky Z, Zitoun D, Karsenty A. Design of Surface Enhanced Raman Scattering (SERS) Nanosensor Array. SENSORS 2020; 20:s20185123. [PMID: 32911825 PMCID: PMC7570595 DOI: 10.3390/s20185123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/18/2023]
Abstract
An advanced Surface-Enhanced Raman Scattering (SERS) Nanosensor Array, dedicated to serve in the future as a pH imager for the real-time detection of chemical reaction, is presented. The full flow of elementary steps—architecture, design, simulations, fabrication, and preliminary experimental results of structural characterization (Focused Ion Beam (FIB), TEM and SEM)—show an advanced SERS pixel array that is capable of providing spatially resolved measurements of chemical pH in a fluid target that became more than desirable in this period. Ultimately, the goal will be to provide real-time monitoring of a chemical reaction. The pixels consist of a nanostructured substrate composed of an array of projections or cavities. The shape of the nanostructures and the thickness of the metallic (Ag or Au) layer can be tuned to give maximal enhancement at the desired wavelength. The number and arrangement of nanostructures is optimized to obtain maximal responsivity.
Collapse
Affiliation(s)
- Yaakov Mandelbaum
- Advanced Laboratory of Electro-Optics (ALEO), Department of Applied Physics/Electro-Optics Engineering, Lev Academic Center, 9116001 Jerusalem, Israel; (Y.M.); (R.M.)
| | - Raz Mottes
- Advanced Laboratory of Electro-Optics (ALEO), Department of Applied Physics/Electro-Optics Engineering, Lev Academic Center, 9116001 Jerusalem, Israel; (Y.M.); (R.M.)
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-Ilan University, 5290002 Ramat Gan, Israel;
- The Nanotechnology Center, Bar-Ilan University, 5290002 Ramat Gan, Israel;
| | - David Zitoun
- The Nanotechnology Center, Bar-Ilan University, 5290002 Ramat Gan, Israel;
- Faculty of Exact Sciences, Department of Chemistry, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Avi Karsenty
- Advanced Laboratory of Electro-Optics (ALEO), Department of Applied Physics/Electro-Optics Engineering, Lev Academic Center, 9116001 Jerusalem, Israel; (Y.M.); (R.M.)
- Nanotechnology Center for Education and Research, Lev Academic Center, 9116001 Jerusalem, Israel
- Correspondence: ; Tel.: +972-2-675-1140
| |
Collapse
|
45
|
Wallace GQ, Masson JF. From single cells to complex tissues in applications of surface-enhanced Raman scattering. Analyst 2020; 145:7162-7185. [DOI: 10.1039/d0an01274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This tutorial review explores how three of the most common methods for introducing nanoparticles to single cells for surface-enhanced Raman scattering measurements can be adapted for experiments with complex tissues.
Collapse
Affiliation(s)
- Gregory Q. Wallace
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| | - Jean-François Masson
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| |
Collapse
|