1
|
Hao J, Li X, Shi S, Zhang H, Zhu H, Wu J, Gao M, Zhang B. Application of a near-infrared viscosity-responsive fluorescent probe for lysosomal targeting in fatty liver mice. Bioorg Chem 2025; 155:108162. [PMID: 39823757 DOI: 10.1016/j.bioorg.2025.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/01/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Viscosity is a fundamental property in biological systems, influencing organelle function and molecular diffusion. Abnormal viscosity is associated with diseases such as metabolic disorders, neurodegeneration, and cancer. Lysosomes, central to cellular degradation and recycling, are sensitive to viscosity changes, which can disrupt enzymatic activity and cellular homeostasis. Monitoring lysosomal viscosity provides essential information on lysosomal health, helping to uncover underlying mechanisms in various diseases. Recognizing the need for effective monitoring of lysosomal viscosity changes in living cells, we have developed a near-infrared (NIR) viscosity-responsive fluorescent probe, VFLyso, specifically designed for lysosomal targeting. Based on the twisted intramolecular charge transfer (TICT) mechanism, VFLyso exhibits strong NIR fluorescence, a fast response, and a notable fluorescence response to viscosity variations (F/F0 = 65.5-fold), along with excellent selectivity and stability under physiological conditions. Our studies demonstrated that VFLyso could accurately monitor lysosomal viscosity changes in both cell cultures and animal models, including zebrafish and mouse models of fatty liver. This work not only provides a powerful tool for real-time monitoring of lysosomal viscosity but also offers valuable insights into the role of viscosity in disease progression, paving the way for potential diagnostic applications in related disorders.
Collapse
Affiliation(s)
- Junlei Hao
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007 Qinghai, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao Li
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007 Qinghai, China
| | - Suntao Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haijuan Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007 Qinghai, China.
| | - Mingyong Gao
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, China.
| | - Baoxin Zhang
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007 Qinghai, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Jin X, Wang Q, Xie T, Xu ST, Chen DA, Cao GY, Wang G, Wang J, Zhen L. Dual-Locked Chemiluminescent Probe Enables Precise Imaging and Timely Diagnosis of Colitis via Chymotrypsin/Vanin-1 Cascade Activation. Anal Chem 2024; 96:18635-18644. [PMID: 39533874 DOI: 10.1021/acs.analchem.4c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of precise diagnosis and the discovery of individualized drugs go together to provide effective therapy against inflammatory bowel disease (IBD). The exploitation of the unique imaging advantages of chemiluminescent probes represents a pivotal strategy for achieving this goal. Nevertheless, the dual-locked strategy, which is believed to enhance precision, is rarely employed in the design of chemiluminescent probes. A novel dual-locked chemiluminescent probe, BPan-CL, was designed based on IBD candidate biomarkers chymotrypsin (CHT) and vanin-1. BPan-CL exhibited specific reactivity and chemiluminescence response when subjected to simultaneous stimulation of CHT and vanin-1, with a signal-to-noise ratio superior to that of the fluorescent probe with the same dual-locked mode. In both live cell and IBD mice imaging, BPan-CL demonstrated superior sensitivity compared to its single-locked counterpart, Pan-CL. In contrast to Pan-CL, BPan-CL was able to more accurately identify IBD and healthy mice by in vivo imaging and allowed for early prediction of IBD using a noninvasive fecal test. BPan-CL has identified CHT and vanin-1 as valuable combinatorial biomarkers for accurate and early IBD diagnosis. This strategy has significant potential for use in biomedical imaging and future individualized therapies.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Qi Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Tao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Si-Tao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - De-Ao Chen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Gao-Yao Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
3
|
Kumaragurubaran N, Huang YZ, Mockaitis T, Arul P, Huang ST, Lin HY, Wei YC, Morkvenaite-Vilkonciene I. Development of an Activity-Based Ratiometric Electrochemical Switch for Direct, Real-Time Sensing of Pantetheinase in Live Cells, Blood, and Urine Samples. ACS Sens 2024; 9:5436-5444. [PMID: 39331818 PMCID: PMC11519916 DOI: 10.1021/acssensors.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Pantetheinase is a key biomarker for the diagnosis of acute kidney injury and the monitoring of malaria progression. Currently, existing methods for sensing pantetheinase, also known as Vanin-1, show considerable potential but come with certain limitations, including their inability to directly sense analytes in turbid biofluid samples without tedious sample pretreatment. Here, we describe the first activity-based electrochemical probe, termed VaninLP, for convenient and specific direct targeting of pantetheinase activity in turbid liquid biopsy samples. The probe was designed such that cleavage of the pantetheinase amide linkage, triggered by a self-immolative reaction, simultaneously ejects an amino ferrocene reporter. Among the distinctive properties of the VaninLP probe for sensing pantetheinase are its high selectivity, sensitivity, and enzyme affinity, a wide linear concentration range (8-300 ng/mL), and low limit of detection (2.47 ng/mL). The designed probe precisely targeted pantetheinase and was free of interference by other electroactive biological species. We further successfully applied the VaninLP probe to monitor and quantify the activity of pantetheinase on the surfaces of HepG2 tumor cells, blood, and urine samples. Collectively, our findings indicate that VaninLP holds significant promise as a point-of-care tool for diagnosing early-stage kidney injury, as well as monitoring the progression of malaria.
Collapse
Affiliation(s)
- Namasivayam Kumaragurubaran
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
- Institute
of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Yan-Zhi Huang
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
- Institute
of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Tomas Mockaitis
- Department
of Nanotechnology, State Research Institute
Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius 10257, Lithuania
| | - Ponnusamy Arul
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
- Institute
of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Sheng-Tung Huang
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
- Institute
of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, ROC
| | - Hsin-Yi Lin
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Yi-Cheng Wei
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Inga Morkvenaite-Vilkonciene
- Department
of Nanotechnology, State Research Institute
Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius 10257, Lithuania
| |
Collapse
|
4
|
Zhang S, Ma M, Zhao C, Li J, Xu L, Zhang Z, Diao Q, Ma P, Song D. A novel low-background nitroreductase fluorescent probe for real-time fluorescence imaging and surgical guidance of thyroid cancer resection. Biosens Bioelectron 2024; 261:116514. [PMID: 38908291 DOI: 10.1016/j.bios.2024.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Thyroid cancer always appears insidiously with few noticeable clinical symptoms. Due to its limitations, conventional ultrasound imaging can lead to missed or misdiagnosed cases. Surgery is still the primary treatment method of thyroid cancer, but removal of surrounding healthy tissues to minimize recurrence leads to overtreatment and added patient suffering. To address this challenge, herein, a nitroreductase (NTR) fluorescent probe, Ox-NTR, has been developed for detecting thyroid cancer and tracking the surgical removal of thyroid tumors by fluorescence imaging. The conjugated structure of oxazine 1 was disrupted, significantly reducing the issue of high background signals, thus effectively achieving low background fluorescence. Under hypoxic conditions, the nitro group of Ox-NTR can be reduced to an amine and subsequently decomposed into oxazine 1, emitting intense red fluorescence. Ox-NTR has a low detection limit of 0.09 μg/mL for NTR with excellent photostability and selectivity. Cellular studies show that Ox-NTR can effectively detect NTR levels in hypoxic thyroid cancer cells. Moreover, the ability of Ox-NTR of rapid response to thyroid cancer in vivo is confirmed by fluorescence imaging in mice, distinguishing tumors from normal tissues due to its superior low background fluorescence. Utilizing this fluorescence imaging method during surgical resection can guide the removal of tumors, preventing both missed tumor tissues and accidental removal of healthy tissue. In summary, the novel Ox-NTR offers precise detection capabilities that provide significant advantages over traditional imaging methods for thyroid cancer diagnosis and treatment, making it a valuable tool to guide tumor removal in surgical procedures.
Collapse
Affiliation(s)
- Siqi Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Zihe Zhang
- The First Hospital of China Medical University, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China.
| |
Collapse
|
5
|
Zhang S, Ma M, Li J, Li J, Xu L, Gao D, Ma P, Han H, Song D. A Pyroglutamate Aminopeptidase 1 Responsive Fluorescence Imaging Probe for Real-Time Rapid Differentiation between Thyroiditis and Thyroid Cancer. Anal Chem 2024; 96:5897-5905. [PMID: 38557023 DOI: 10.1021/acs.analchem.3c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Current diagnostic methods for thyroid diseases, including blood tests, ultrasound, and biopsy, always have difficulty diagnosing thyroiditis accurately, occasionally mistaking it for thyroid cancer. To address this clinical challenge, we developed Ox-PGP1, a novel fluorescent probe realizing rapid, noninvasive, and real-time diagnostic techniques. This is the first imaging tool capable of noninvasively distinguishing between thyroiditis and thyroid cancer. Ox-PGP1 was introduced as a fluorescent probe custom-built for the specific detection and quantification of pyroglutamate aminopeptidase 1 (PGP-1), a known pivotal biomarker of inflammation. Ox-PGP1 overcame the disadvantages of traditional enzyme-responsive fluorescent probes that relied on the intramolecular charge transfer (ICT) mechanism, including the issue of high background fluorescence, while offering exceptional photostability under laser irradiation. The spectral properties of Ox-PGP1 were meticulously optimized to enhance its biocompatibility. Furthermore, the low limit of detection (LOD) of Ox-PGP1 was determined to be 0.09 μg/mL, which demonstrated its remarkable sensitivity and precision. Both cellular and in vivo experiments validated the capacity of Ox-PGP1 for accurate differentiation between normal, inflammatory, and cancerous thyroid cells. Furthermore, Ox-PGP1 showed the potential to rapidly and sensitively differentiate between autoimmune thyroiditis and anaplastic thyroid carcinoma in a mouse model, achieving results in just 5 min. The successful design and application of Ox-PGP1 represent a substantial advancement in technology over traditional diagnostic approaches, potentially enabling earlier interventions for thyroid diseases.
Collapse
Affiliation(s)
- Siqi Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jiaxin Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Hui Han
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Xinmin Street 1, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
6
|
Feng Y, Xu S, Guo H, Ren TB, Huan SY, Yuan L, Zhang XB. Vanin-1-Activated Chemiluminescent Probe: Help to Early Diagnosis of Acute Kidney Injury with High Signal-to-Noise Ratio through Urinalysis. Anal Chem 2023; 95:14754-14761. [PMID: 37734030 DOI: 10.1021/acs.analchem.3c02875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Acute kidney injury (AKI) is a common medical condition with high morbidity and mortality. Although urinalysis provides a noninvasive and convenient diagnostic method for AKI at the molecular level, the low sensitivity of current chemical probes used in urinalysis hinders the time diagnosis of AKI. Herein, we achieved the sensitive and early diagnosis of AKI by the development of a chemiluminescent probe CL-Pa suitable for detection of urinary Vanin-1. Vanin-1 is considered as an early and sensitive biomarker for AKI, while few chemical probes have been applied to for its efficient detection. By virtue of the low autofluorescence interference during urine imaging in the chemiluminescence model, CL-Pa could realize the monitoring of the up-regulated urinary Vanin-1 with a high signal-to-noise ratio (∼588). Importantly, under the help of CL-Pa, the up-regulation of urinary Vanin-1 of cisplatin-induced AKI mice at 12 h post cisplatin injection was detected, which was much earlier than clinical biomarkers (sCr and BUN) and change of kidney histology (48 h post cisplatin injection). Furthermore, using this probe, the fluctuation of urinary Vanin-1 of mice with different degrees of AKI was monitored. This study demonstrated the ability of CL-Pa in sensitively detecting drug-induced AKI through urinalysis and suggested the great potential of CL-Pa for early diagnosis of AKI and evaluate the efficiency of anti-AKI drugs clinically.
Collapse
Affiliation(s)
- Yurong Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Haowei Guo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Tian-Bing Ren
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
7
|
Hu P, Huang R, Xu Y, Li T, Yin J, Yang Y, Liang Y, Mao X, Ding L, Shu C. A novel and sensitive ratiometric fluorescent quantum dot-based biosensor for alkaline phosphatase detection in biological samples via the inner-filter effect. RSC Adv 2023; 13:2311-2317. [PMID: 36741147 PMCID: PMC9841509 DOI: 10.1039/d2ra06956c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Alkaline phosphatase (ALP) is an important biomarker whose abnormal level in activity is associated with hepatobiliary, skeletal, and renal diseases as well as cancer. Herein, we synthesized ZnSe@ZnS quantum dots (ZnSe@ZnS QDs) and Mn-doped ZnS quantum dots (Mn:ZnS QDs) as fluorophores to establish the ratiometric fluorescent assay for ALP activity detection in biological samples. p-Nitrophenyl phosphate (PNPP) was used as a substrate for ALP, and the overlaps between absorption spectra of PNPP and excitation spectra of QDs resulted in sharp fluorescence quenching. Under the catalysis of ALP, PNPP was hydrolyzed into p-nitrophenol (PNP), which caused a red shift of absorption band of PNPP and fluorescence recovery of Mn:ZnS QDs (585 nm). However, the overlaps between absorption spectra of PNP and emission spectra of ZnSe@ZnS QDs led a further quenching of ZnSe@ZnS QDs (405 nm). Therefore, the ratiometric fluorescent signals (F 585/F 405) were associated with activity of ALP based on bidirectional responses of QDs to the concentration of PNPP. Under the optimum conditions, the method exhibited a good linear relationship from 4 to 96 U per L (R 2 = 0.9969) with the detection limit of 0.57 U per L. Moreover, the method was successfully applied for detecting the ALP activity in a complex biological matrix (human serum and HepG2 cells) with impressive specificity. In particular, the complicated chemical modifications of QDs and pretreatments of biological samples were not required in the whole detection procedures. Therefore, it not only provided a sensitive, specific and simple approach to clinical ALP activity detection, but it also provided support for early diagnosis of diseases.
Collapse
Affiliation(s)
- Penghui Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Ruiyan Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Ye Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Tengfei Li
- Department of Clinical Pharmacology, School of Pharmacy, Sir Run Run Hospital, Nanjing Medical UniversityNanjing 211166China
| | - Jun Yin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Yu Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Yuan Liang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Xiaohan Mao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical UniversityNanjing 211198China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| |
Collapse
|
8
|
Wang G, Wang J, Du L, Li M. Visualization-Based Discovery of Vanin-1 Inhibitors for Colitis. Front Chem 2022; 9:809495. [PMID: 35155380 PMCID: PMC8831383 DOI: 10.3389/fchem.2021.809495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The main effect of Vanin-1/VNN1 is related to its pantetheinase sulfhydrylase activity, which can hydrolyze pantetheine into pantothenic acid and cysteamine. In recent studies, the enzymatic activity of vanin-1/VNN1 has been found to be essential in the development of many diseases. The study of specific vanin-1/VNN1 inhibitors can give us a deeper understanding of its role in the disease process. In this study, different skeletal inhibitors were designed and synthesized using pyrimidine amide compounds as lead compounds. In order to screen inhibitors intuitively, a fluorescent probe PA-AFC for in vitro evaluation of inhibitors was designed and synthesized in this study, which has good sensitivity and specificity. The bioluminescent probe PA-AL was then used for cellular level and in vivo inhibitor evaluation. This screening method was convenient, economical and highly accurate. Finally, these inhibitors were applied to a mouse colitis model, confirming that vanin-1 is useful in IBD and providing a new therapeutic direction.
Collapse
|
9
|
Tian Z, Yan F, Tian X, Feng L, Cui J, Deng S, Zhang B, Xie T, Huang S, Ma X. A NIR fluorescent probe for Vanin-1 and its applications in imaging, kidney injury diagnosis, and the development of inhibitor. Acta Pharm Sin B 2022; 12:316-325. [PMID: 35127388 PMCID: PMC8799884 DOI: 10.1016/j.apsb.2021.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Vanin-1 is an amidohydrolase that catalyses the conversion of pantetheine into the amino-thiol cysteamine and pantothenic acid (coenzyme A precursor), which plays a vital role in multiple physiological and pathological processes. In this study, an enzyme-activated near-infrared (NIR) fluorescent probe (DDAV) has been constructed for sensitively detecting Vanin-1 activity in complicated biosamples on the basis of its catalytic characteristics. DDAV exhibited a high selectivity and sensitivity toward Vanin-1 and was successfully applied to the early diagnosis of kidney injury in cisplatin-induced kidney injury model. In addition, DDAV could serve as a visual tool for in situ imaging endogenous Vanin-1 in vivo. More importantly, Enterococcus faecalis 20247 which possessed high expression of Vanin-1 was screened out from intestinal bacteria using DDAV, provided useful guidance for the rational use of NSAIDs in clinic. Finally, oleuropein as a potent natural inhibitor for Vanin-1 was discovered from herbal medicines library using a high-throughput screening method using DDAV, which held great promise for clinical therapy of inflammatory bowel disease.
Collapse
|
10
|
Zhang M, Tian Z, Wang J, Tian X, Wang C, Cui J, Huo X, Feng L, Yu Z, Ma X. Visual Analysis and Inhibitor Screening of Leucine Aminopeptidase, a Key Virulence Factor for Pathogenic Bacteria-Associated Infection. ACS Sens 2021; 6:3604-3610. [PMID: 34420297 DOI: 10.1021/acssensors.1c01161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Leucine aminopeptidase (LAP) is a hydrolase for the hydrolysis of peptides or proteins containing a leucine residue at the N-terminal. It is also known to be a key virulence factor for the pathogenic abilities of various pathogens causing infectious diseases, which indicated a new insight into the diagnosis and therapy of pathogenic infections. A new fluorescent probe (S)-2-amino-N-(4-(((6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl)oxy)methyl)phenyl)-4-methylpentanamide (DDBL) containing DDAO as the fluorophore and leucine as the recognition group was developed for LAP. By real-time visual sensing of LAP, six bacteria with LAP expression were identified efficiently from human feces, as well as by sensitive visual analysis using native-PAGE specially stained with DDBL. Furthermore, a high throughput screening system established with DDBL was applied to identify a natural inhibitor (3-acetyl-11-keto-β-boswellic acid, AKBA), which could attenuate mouse sepsis induced by Staphylococcus aureus. Therefore, the visual sensing of LAP by DDBL suggested the application for target bacteria identification and LAP homolog analysis as well as potential inhibitor expounding for treatment of bacterial infections.
Collapse
Affiliation(s)
- Ming Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiayue Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiangge Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaokui Huo
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
| | - Lei Feng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhenlong Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
| | - Xiaochi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
11
|
Lu P, Zhang C, Fu L, Wei Y, Huang Y, Wang X, Lv C, Chen L. Near-Infrared Fluorescent Probe for Imaging and Evaluating the Role of Vanin-1 in Chemotherapy. Anal Chem 2021; 93:10378-10387. [PMID: 34275284 DOI: 10.1021/acs.analchem.1c02386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pantetheinase (also known as Vanin-1) is highly expressed in the liver, kidneys, and intestine and is closely associated with a number of diseases. Vanin-1 can hydrolyze pantetheine to pantothenic acid (vitamin B5) and cysteamine and participate in the synthesis of glutathione (GSH). GSH is highly expressed in tumor cells and plays a major role in the resistance of tumor cells to cisplatin. Therefore, we urgently need a method to monitor the activity level of Vanin-1 in tumor cells and tissues and elucidate the relationship between the role of Vanin-1 in GSH synthesis and tumor resistance. Herein, we report a Cy-Pa fluorescent probe for imaging Vanin-1 in cells and in vivo that can qualitatively and quantitatively detect the fluctuation of Vanin-1 concentrations in HepG2 and HepG2/DDP cells or tumor tissues of tumor-bearing mice. This probe shows excellent potential in in situ real-time monitoring of endogenous Vanin-1. Moreover, we proved that Vanin-1 can inhibit GSH synthesis using the probe. When the Vanin-1 inhibitor RR6 was used in combination with cisplatin, HepG2 and HepG2/DDP cells showed increased resistance to cisplatin, while the therapeutic efficiency of cisplatin was reduced in HepG2 and HepG2/DDP xenografts. In this study, Vanin-1 was shown to play an important role in the treatment of cancer, and the study of Vanin-1 may provide an idea for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Pengpeng Lu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Caiyun Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yinghui Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,College of Chemistry and Chemical Engineering, Qufu Normal University, University, Qufu 273165, China
| |
Collapse
|
12
|
Gurung AB, Bhutia JT, Bhattacharjee A. High-throughput virtual screening of novel potent inhibitor(s) for Human Vanin-1 enzyme. J Biomol Struct Dyn 2020; 40:4208-4223. [PMID: 33289461 DOI: 10.1080/07391102.2020.1854857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vanin-1 (VNN1) is a glycosylphosphatidylinositol (GPI)-anchored ectoenzyme which hydrolyzes pantetheine to pantothenic acid and cysteamine. It has emerged as a promising drug target for many human diseases associated with oxidative stress and inflammatory pathways. In the present study we used structure-based virtual screening approach for the identification of small molecule inhibitors of vanin-1. A chemical library consisting of natural compounds, synthetic compounds and RRV analogs were screened for drug-like molecules. The filtered molecules were subjected to molecular docking studies. Three potential hits-ZINC04073864 (Natural compound), CID227017 (synthetic compound) and CID129558381 (RRV analog)-were identified for the target enzyme. The molecules form good number of hydrogen bonds with the catalytic residues such as Glu79, Lys178 and Cys211. The apo-VNN1 and VNN1-ligand complexes were subjected to molecular dynamics (MD) simulation for 30 ns. The geometric properties such as root mean square deviation, radius of gyration, solvent accessible surface area, number of hydrogen bonds and the distance between the catalytic triad residues-Glu79, Lys178 and Cys211 were altered upon binding of the compounds. Essential dynamics and entropic studies further confirmed that the fluctuations in VNN1 decrease upon binding of the compounds. The lead molecules were stable throughout the simulation time period. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) studies showed that Van der Waals interaction energy contributes significantly to the total binding free energy. Thus, our study reveals three lead molecules-ZINC04073864, CID227017 and CID129558381 as potential inhibitors of Vanin-1 which can be validated through further studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India.,Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Jigmi Tshering Bhutia
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Atanu Bhattacharjee
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|