1
|
Hülagü D, Tobias C, Dao R, Komarov P, Rurack K, Hodoroaba VD. Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy. Sci Rep 2024; 14:17936. [PMID: 39095507 PMCID: PMC11297195 DOI: 10.1038/s41598-024-68797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Recently, we have developed an algorithm to quantitatively evaluate the roughness of spherical microparticles using scanning electron microscopy (SEM) images. The algorithm calculates the root-mean-squared profile roughness (RMS-RQ) of a single particle by analyzing the particle's boundary. The information extracted from a single SEM image yields however only two-dimensional (2D) profile roughness data from the horizontal plane of a particle. The present study offers a practical procedure and the necessary software tools to gain quasi three-dimensional (3D) information from 2D particle contours recorded at different particle inclinations by tilting the sample (stage). This new approach was tested on a set of polystyrene core-iron oxide shell-silica shell particles as few micrometer-sized beads with different (tailored) surface roughness, providing the proof of principle that validates the applicability of the proposed method. SEM images of these particles were analyzed by the latest version of the developed algorithm, which allows to determine the analysis of particles in terms of roughness both within a batch and across the batches as a routine quality control procedure. A separate set of particles has been analyzed by atomic force microscopy (AFM) as a powerful complementary surface analysis technique integrated into SEM, and the roughness results have been compared.
Collapse
Affiliation(s)
- Deniz Hülagü
- Division 6.1 Surface and Thin Film Analysis, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203, Berlin, Germany.
| | - Charlie Tobias
- Division 1.9 Chemical and Optical Sensing, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Radek Dao
- NenoVision S.R.O., Purkyňova 649/127, 612 00, Brno, Czech Republic
| | - Pavel Komarov
- NenoVision S.R.O., Purkyňova 649/127, 612 00, Brno, Czech Republic
| | - Knut Rurack
- Division 1.9 Chemical and Optical Sensing, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Vasile-Dan Hodoroaba
- Division 6.1 Surface and Thin Film Analysis, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203, Berlin, Germany.
| |
Collapse
|
2
|
Lobato MR, Cazarolli JC, Rios RDF, D' Alessandro EB, Lutterbach MTS, Filho NRA, Pasa VMD, Aranda D, Scorza PR, Bento FM. Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage. Braz J Microbiol 2023; 54:1603-1621. [PMID: 37584891 PMCID: PMC10484884 DOI: 10.1007/s42770-023-01055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
Biofuels are expected to play a major role in reducing carbon emissions in the aviation sector globally. Farnesane ("2,6,10-trimethyldodecane") is a biofuel derived from the synthesized iso-paraffin route wich can be blended with jet fuel; however, the microbial behavior in farnesane/jet fuel blends remains unknown. The chemical and biological stability of blends should be investigated to ensure they meet the quality requirements for aviation fuels. This work aimed at evaluating the behavior of two fungi Hormoconis resinae (F089) and Exophiala phaeomuriformis (UFRGS Q4.2) in jet fuel, farnesane, and in 10% farnesane blend during simulated storage. Microcosms (150-mL flasks) were assembled with and without fungi containing Bushnell & Haas mineral medium for 28 days at a temperature of 20±2°C. The fungal growth (biomass), pH, surface tension, and changes in the fuel's hydrocarbon chains were evaluated. This study revealed thatthe treatment containing H. resinae showed a biomass of 19 mg, 12 mg, and 2 mg for jet fuel, blend, and farnesane respectively. The pH was reduced from 7.2 to 4.3 observed in jet fuel treatment The degradation results showed that compounds with carbon chains between C9 and C11, in jet fuel, and blend treatments were preferably degraded. The highest biomass (70.9 mg) produced by E. phaeomuriformis was in 10% farnesane blend, after 21 days. However, no significant decrease was observed on pH and surface tension measurements across the treatments as well as on the hydrocarbons when compared to the controls. This study revealed that farnesane neither inhibited nor promoted greater growth on both microorganisms.
Collapse
Affiliation(s)
- Mariane Rodrigues Lobato
- Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Ramiro Barcelos Street # 2600, Building, Porto Alegre, Rio Grande do Sul, 21116, Brazil
| | - Juciana Clarice Cazarolli
- Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Ramiro Barcelos Street # 2600, Building, Porto Alegre, Rio Grande do Sul, 21116, Brazil
| | - Regiane Débora Fernandes Rios
- Fuel Testing Laboratory (LEC), Department of Chemistry, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue #6627, Belo Horizonte, Minas Gerais, Brazil
| | - Emmanuel Bezerra D' Alessandro
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goias, Esperança Avenue, IQ-1 Block, Goiânia, Goiás, Goiânia, Brasil
| | - Marcia T S Lutterbach
- Laboratory of Biocorrosion and Biodegradation (LABIO), National Institute of Technology (INT), Venezuela Avenue # 82, Rio de Janeiro, Brazil
| | - Nelson Roberto Antoniosi Filho
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goias, Esperança Avenue, IQ-1 Block, Goiânia, Goiás, Goiânia, Brasil
| | - Vânya Márcia Duarte Pasa
- Fuel Testing Laboratory (LEC), Department of Chemistry, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue #6627, Belo Horizonte, Minas Gerais, Brazil
| | - Donato Aranda
- GREENTEC- School of Chemistry, Department of Chemical Engineering, Horácio Macedo, Federal University of Rio de Janeiro, Avenue # 2030. Block E, office 211, Rio de Janeiro, Brazil
| | - Pedro Rodrigo Scorza
- Brazilian Union of Biodiesel and Biojetfuel UBRABIO-SHIS QL12, Conjunto 07, Casa 05, Brasilia, Brasilia, Brazil
| | - Fátima Menezes Bento
- Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Ramiro Barcelos Street # 2600, Building, Porto Alegre, Rio Grande do Sul, 21116, Brazil.
| |
Collapse
|
3
|
Climent E, Rurack K. Streifenschnelltest mit ppt‐Empfindlichkeit durch Kombination von Elektrochemilumineszenz‐Detektion mit Aptamer‐gesteuerter Indikatorfreisetzung aus mesoporösen Nanopartikeln. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Estela Climent
- Fachbereich Chemische und Optische Sensorik Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str. 11 12489 Berlin Deutschland
| | - Knut Rurack
- Fachbereich Chemische und Optische Sensorik Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str. 11 12489 Berlin Deutschland
| |
Collapse
|
4
|
Climent E, Rurack K. Combining Electrochemiluminescence Detection with Aptamer-Gated Indicator Releasing Mesoporous Nanoparticles Enables ppt Sensitivity for Strip-Based Rapid Tests. Angew Chem Int Ed Engl 2021; 60:26287-26297. [PMID: 34595818 PMCID: PMC9298832 DOI: 10.1002/anie.202110744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Indexed: 12/11/2022]
Abstract
The combination of electrogenerated chemiluminescence (ECL) and aptamer-gated indicator delivering (gAID) magnetic mesoporous silica nanoparticles embedded into glass fibre paper functionalised with poly(ethyleneglycol) and N-(3-triethoxysilylpropyl)diethanolamine allowed the development of a rapid test that detects penicillin directly in diluted milk down to 50±9 ppt in <5 min. Covalent attachment of the aptamer "cap" to the silica scaffold enabled pore closure through non-covalent electrostatic interactions with surface amino groups, while binding of penicillin led to a folding-up of the aptamer thus releasing the ECL reporter Ru(bpy)32+ previously loaded into the material and letting it be detected after lateral flow by a smartphone camera upon electrochemical excitation with a screen printed electrode inserted into a 3D-printed holder. The approach is simple, generic and presents advantages with respect to sensitivity, measurement uncertainty and robustness compared with conventional fluorescence or electrochemical detection, especially for point-of-need analyses of challenging matrices and analytes at ultra-trace levels.
Collapse
Affiliation(s)
- Estela Climent
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
| | - Knut Rurack
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
| |
Collapse
|