1
|
Michielsen CS, Lin YT, Yan J, de Jong AM, Prins MWJ. Continuous Protein Sensing Using Fast-Dissociating Antibody Fragments in Competition-Based Biosensing by Particle Motion. ACS Sens 2025; 10:2895-2905. [PMID: 40126441 PMCID: PMC12038830 DOI: 10.1021/acssensors.4c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Sensing technologies for the continuous monitoring of protein concentrations are important for understanding time-dependent behaviors of biological systems and for controlling bioprocesses. We present a continuous sensing methodology based on tethered particle motion (t-BPM) that utilizes fast-dissociating antibody fragments (Fabs) for continuous protein monitoring. A competition-based t-BPM sensor was developed and characterized utilizing custom-made Fabs. The sensing concept was demonstrated for lactoferrin, an 80 kDa iron-binding glycoprotein that is part of the innate immune response. Thirteen Fabs were compared using free particle motion sensing as well as surface plasmon resonance, of which six Fabs showed rapid association and dissociation. The integration of the Fabs into the t-BPM sensor enabled nanomolar lactoferrin detection in both buffer solutions and milk matrices over tens of hours. This work demonstrates how continuous protein sensing can be realized using fast-dissociating antibodies in a competitive sensor format.
Collapse
Affiliation(s)
- Claire
M. S. Michielsen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, the Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, the Netherlands
| | - Yu-Ting Lin
- Helia
Biomonitoring, Eindhoven 5612 AE, the Netherlands
| | - Junhong Yan
- Helia
Biomonitoring, Eindhoven 5612 AE, the Netherlands
| | - Arthur M. de Jong
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AE, the Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, the Netherlands
| | - Menno W. J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, the Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AE, the Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, the Netherlands
- Helia
Biomonitoring, Eindhoven 5612 AE, the Netherlands
| |
Collapse
|
2
|
Gouveia G, Saateh A, Swietlikowska A, Scarpellini C, Tsang E, Altug H, Merkx M, Dillen A, Leirs K, Spasic D, Lammertyn J, Gothelf KV, Bonedeau E, Porzberg N, Smeets RL, Koenen HJPM, Prins MWJ, de Jonge MI. Continuous Biosensing to Monitor Acute Systemic Inflammation, a Diagnostic Need for Therapeutic Guidance. ACS Sens 2025; 10:4-14. [PMID: 39692622 PMCID: PMC11773571 DOI: 10.1021/acssensors.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Continuous monitoring of acute inflammation can become a very important next step for guiding therapeutic interventions in severely ill patients. This Perspective discusses the current medical need for patients with acute inflammatory diseases and the potential of continuous biosensing technologies. First, we discuss biomarkers that could help to monitor the state of a patient with acute systemic inflammation based on theoretical studies and empirical data. Then, based on the state of the art, we describe sensing strategies that could be applied for the continuous monitoring of acute inflammatory biomarkers, followed by challenges that must be overcome. Nanoswitch-based continuous biosensors enable suitable measurement frequencies but still lack sensitivity, while regeneration risks lower sensor reliability. Developments are still needed in bioreceptors and molecular architectures, regeneration techniques, combined with suitable sampling and sample pretreatment methods, for bringing continuous biosensing of inflammation closer to reality. Furthermore, collaborations between healthcare professionals and scientists, regulatory bodies, and biosensor engineers are needed for a successful translation of sensing technologies from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Guilherme Gouveia
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Abtin Saateh
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Anna Swietlikowska
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
| | - Claudia Scarpellini
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Emily Tsang
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Hatice Altug
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
| | - Annelies Dillen
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Karen Leirs
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kurt V. Gothelf
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Estelle Bonedeau
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicola Porzberg
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ruben L. Smeets
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
- Department
of Laboratory Medicine, Radboudumc Laboratory for Diagnostics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Hans J. P. M. Koenen
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Menno W. J. Prins
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5600MB, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5600MB, The Netherlands
- Helia Biomonitoring, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | - Marien I. de Jonge
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
3
|
Wang S. Continuous monitoring with a shake. Science 2024; 386:1093-1094. [PMID: 39637003 DOI: 10.1126/science.adt8928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Oscillating signals rapidly reset a sensor for real-time protein detection in the body.
Collapse
Affiliation(s)
- Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
| |
Collapse
|
4
|
Saateh A, Ansaryan S, Gao J, de Miranda LO, Zijlstra P, Altug H. Long-Term and Continuous Plasmonic Oligonucleotide Monitoring Enabled by Regeneration Approach. Angew Chem Int Ed Engl 2024; 63:e202410076. [PMID: 39146470 DOI: 10.1002/anie.202410076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
The demand for continuous monitoring of biochemical markers for diagnostic purposes is increasing as it overcomes the limitations of traditional intermittent measurements. This study introduces a method for long-term, continuous plasmonic biosensing of oligonucleotides with high temporal resolution. Our method is based on a regeneration-based reversibility approach that ensures rapid reversibility in less than 1 minute, allowing the sensor to fully reset after each measurement. We investigated label-free and AuNP enhancements for different dynamic ranges and sensitivities, achieving a limit of detection down to pM levels. We developed a regeneration-based reversibility approach for continuous biosensing, optimizing buffer conditions using the Taguchi method to achieve rapid, consistent reversibility, ensuring reliable performance for long-term monitoring. We detected oligonucleotides in buffered and complex solutions, including undiluted and unfiltered human serum, for up to 100 sampling cycles in a day. Moreover, we showed the long-term stability of the sensor for monitoring capabilities in buffered solutions and human serum, with minimal signal value drift and excellent sensor reversibility for up to 9 days. Our method opens the door to new prospects in continuous biosensing by providing insights beyond intermittent measurements for numerous analytical and diagnostic applications.
Collapse
Affiliation(s)
- Abtin Saateh
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Saeid Ansaryan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jiarui Gao
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Livio Oliveira de Miranda
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
6
|
Xue R, Deng F, Guo T, Epps A, Lovell NH, Shivdasani MN. Needle-Shaped Biosensors for Precision Diagnoses: From Benchtop Development to In Vitro and In Vivo Applications. BIOSENSORS 2024; 14:391. [PMID: 39194620 DOI: 10.3390/bios14080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
To achieve the accurate recognition of biomarkers or pathological characteristics within tissues or cells, in situ detection using biosensor technology offers crucial insights into the nature, stage, and progression of diseases, paving the way for enhanced precision in diagnostic approaches and treatment strategies. The implementation of needle-shaped biosensors (N-biosensors) presents a highly promising method for conducting in situ measurements of clinical biomarkers in various organs, such as in the brain or spinal cord. Previous studies have highlighted the excellent performance of different N-biosensor designs in detecting biomarkers from clinical samples in vitro. Recent preclinical in vivo studies have also shown significant progress in the clinical translation of N-biosensor technology for in situ biomarker detection, enabling highly accurate diagnoses for cancer, diabetes, and infectious diseases. This article begins with an overview of current state-of-the-art benchtop N-biosensor designs, discusses their preclinical applications for sensitive diagnoses, and concludes by exploring the challenges and potential avenues for next-generation N-biosensor technology.
Collapse
Affiliation(s)
- Ruier Xue
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fei Deng
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Epps
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Arroyo-Currás N. Beyond the Gold-Thiol Paradigm: Exploring Alternative Interfaces for Electrochemical Nucleic Acid-Based Sensing. ACS Sens 2024; 9:2228-2236. [PMID: 38661283 PMCID: PMC11129698 DOI: 10.1021/acssensors.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs.
Collapse
Affiliation(s)
- Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology
and Molecular
Sciences, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Kim M, McCann JJ, Fortner J, Randall E, Chen C, Chen Y, Yaari Z, Wang Y, Koder RL, Heller DA. Quantum Defect Sensitization via Phase-Changing Supercharged Antibody Fragments. J Am Chem Soc 2024; 146:12454-12462. [PMID: 38687180 PMCID: PMC11498269 DOI: 10.1021/jacs.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. McCann
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ewelina Randall
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yu Chen
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Zvi Yaari
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ronald L. Koder
- Department of Physics, City College of New York, New York, NY 10031, USA
- Graduate Programs of Physics, Biology, Chemistry, and Biochemistry, The Graduate Center of City College of New York, New York, NY 10016, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
9
|
Thota SS, Allen GL, Grahn AK, Kay BK. Engineered FHA domains can bind to a variety of Phosphothreonine-containing peptides. Protein Eng Des Sel 2024; 37:gzae014. [PMID: 39276365 PMCID: PMC11436287 DOI: 10.1093/protein/gzae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024] Open
Abstract
Antibodies play a crucial role in monitoring post-translational modifications, like phosphorylation, which regulates protein activity and location; however, commercial polyclonal and monoclonal antibodies have limitations in renewability and engineering compared to recombinant affinity reagents. A scaffold based on the Forkhead-associated domain (FHA) has potential as a selective affinity reagent for this post-translational modification. Engineered FHA domains, termed phosphothreonine-binding domains (pTBDs), with limited cross-reactivity were isolated from an M13 bacteriophage display library by affinity selection with phosphopeptides corresponding to human mTOR, Chk2, 53BP1, and Akt1 proteins. To determine the specificity of the representative pTBDs, we focused on binders to the pT543 phosphopeptide (536-IDEDGENpTQIEDTEP-551) of the DNA repair protein 53BP1. ELISA and western blot experiments have demonstrated the pTBDs are specific to phosphothreonine, demonstrating the potential utility of pTBDs for monitoring the phosphorylation of specific threonine residues in clinically relevant human proteins.
Collapse
Affiliation(s)
- Srinivas S Thota
- Tango Biosciences, 2201 W. Campbell Park Drive, Chicago, IL 60612-4092 USA
| | - Grace L Allen
- Tango Biosciences, 2201 W. Campbell Park Drive, Chicago, IL 60612-4092 USA
| | - Ashley K Grahn
- Tango Biosciences, 2201 W. Campbell Park Drive, Chicago, IL 60612-4092 USA
| | - Brian K Kay
- Tango Biosciences, 2201 W. Campbell Park Drive, Chicago, IL 60612-4092 USA
| |
Collapse
|
10
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. NANOTECHNOLOGY 2023; 34:492002. [PMID: 37625391 PMCID: PMC10523595 DOI: 10.1088/1361-6528/acf3f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
The future of medical diagnostics calls for portable biosensors at the point of care, aiming to improve healthcare by reducing costs, improving access, and increasing quality-what is called the 'triple aim'. Developing point-of-care sensors that provide high sensitivity, detect multiple analytes, and provide real time measurements can expand access to medical diagnostics for all. Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability, and large-scale multiplexing. They can also be integrated into wearable or implantable devices and provide continuous, real-time monitoring of analytesin vivo, enabling early detection of biomarkers for disease diagnosis and management. This review analyzes advances in the sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection of the state of the art, and discusses the challenges and opportunities of FET biosensors for future healthcare applications.
Collapse
Affiliation(s)
- Sihan Chen
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Rashid Bashir
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
12
|
Chen C, Ding S, Wang J. Digital health for aging populations. Nat Med 2023; 29:1623-1630. [PMID: 37464029 DOI: 10.1038/s41591-023-02391-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/09/2023] [Indexed: 07/20/2023]
Abstract
Growing life expectancy poses important societal challenges, placing an increasing burden on ever more strained health systems. Digital technologies offer tremendous potential for shifting from traditional medical routines to remote medicine and transforming our ability to manage health and independence in aging populations. In this Perspective, we summarize the current progress toward, and challenges and future opportunities of, harnessing digital technologies for effective geriatric care. Special attention is given to the role of wearables in assisting older adults to monitor their health and maintain independence at home. Challenges to the widespread future use of digital technologies in this population will be discussed, along with a vision for how such technologies will shape the future of healthy aging.
Collapse
Affiliation(s)
- Chuanrui Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Shichao Ding
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Chang D, Wang Z, Flynn CD, Mahmud A, Labib M, Wang H, Geraili A, Li X, Zhang J, Sargent EH, Kelley SO. A high-dimensional microfluidic approach for selection of aptamers with programmable binding affinities. Nat Chem 2023; 15:773-780. [PMID: 37277648 DOI: 10.1038/s41557-023-01207-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Aptamers are being applied as affinity reagents in analytical applications owing to their high stability, compact size and amenability to chemical modification. Generating aptamers with different binding affinities is desirable, but systematic evolution of ligands by exponential enrichment (SELEX), the standard for aptamer generation, is unable to quantitatively produce aptamers with desired binding affinities and requires multiple rounds of selection to eliminate false-positive hits. Here we introduce Pro-SELEX, an approach for the rapid discovery of aptamers with precisely defined binding affinities that combines efficient particle display, high-performance microfluidic sorting and high-content bioinformatics. Using the Pro-SELEX workflow, we were able to investigate the binding performance of individual aptamer candidates under different selective pressures in a single round of selection. Using human myeloperoxidase as a target, we demonstrate that aptamers with dissociation constants spanning a 20-fold range of affinities can be identified within one round of Pro-SELEX.
Collapse
Affiliation(s)
- Dingran Chang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Connor D Flynn
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA
| | - Alam Mahmud
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Hansen Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Armin Geraili
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiangling Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jiaqi Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
15
|
Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2023; 9:2020-2047. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sweat is an increasingly popular biological medium for fitness monitoring and clinical diagnostics. It contains an abundance of biological information and is available continuously and noninvasively. Sweat-sensing devices often employ proteins in various capacities to create skin-friendly matrices that accurately extract valuable and time-sensitive information from sweat. Proteins were first used in sensors as biorecognition elements in the form of enzymes and antibodies, which are now being tuned to operate at ranges relevant for sweat. In addition, a range of structural proteins, sometimes assembled in conjunction with polymers, can provide flexible and compatible matrices for skin sensors. Other proteins also naturally possess a range of functionalities─as adhesives, charge conductors, fluorescence emitters, and power generators─that can make them useful components in wearable devices. Here, we examine the four main components of wearable sweat sensors─the biorecognition element, the transducer, the scaffold, and the adhesive─and the roles that proteins have played so far, or promise to play in the future, in each component. On a case-by-case basis, we analyze the performance characteristics of existing protein-based devices, their applicable ranges of detection, their transduction mechanism and their mechanical properties. Thereby, we review and compare proteins that can readily be used in sweat sensors and others that will require further efforts to overcome design, stability or scalability challenges. Incorporating proteins in one or multiple components of sweat sensors could lead to the development and deployment of tunable, greener, and safer biosourced devices.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | | |
Collapse
|
16
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Evaluation of Phage Display Biopanning Strategies for the Selection of Anti-Cell Surface Receptor Antibodies. Int J Mol Sci 2022; 23:ijms23158470. [PMID: 35955604 PMCID: PMC9369378 DOI: 10.3390/ijms23158470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges. In vitro, antigen-driven affinity selection employing phage display biopanning is a commonly used technique to isolate mAbs. The success of biopanning is dependent on the quality and the presentation format of the antigen, which is critical when isolating mAbs against membrane protein targets. Here, we provide a comprehensive investigation of two established panning strategies, surface-tethering of a recombinant extracellular domain and cell-based biopanning, to examine the impact of antigen presentation on selection outcomes with regards to the isolation of positive mAbs with functional potential against a proof-of-concept type I cell surface receptor. Based on the higher sequence diversity of the resulting antibody repertoire, presentation of a type I membrane protein in soluble form was more advantageous over presentation in cell-based format. Our results will contribute to inform and guide future antibody discovery campaigns against cell surface proteins.
Collapse
|
18
|
Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. NATURE REVIEWS. MATERIALS 2022; 7:887-907. [PMID: 35910814 PMCID: PMC9306444 DOI: 10.1038/s41578-022-00460-x] [Citation(s) in RCA: 317] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.
Collapse
Affiliation(s)
- H. Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Peter Q. Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | | | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, León, Mexico
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, UK
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
- Institute of Medical Engineering & Science, Department of Biological Engineering, MIT, Cambridge, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
20
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
21
|
Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:3781. [PMID: 34072572 PMCID: PMC8198293 DOI: 10.3390/s21113781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
The rapid progress in the development of surface plasmon resonance-based immunosensing platforms offers wide application possibilities in medical diagnostics as a label-free alternative to enzyme immunoassays. The early diagnosis of diseases or metabolic changes through the detection of biomarkers in body fluids requires methods characterized by a very good sensitivity and selectivity. In the case of the SPR technique, as well as other surface-sensitive detection strategies, the quality of the transducer-immunoreceptor interphase is crucial for maintaining the analytical reliability of an assay. In this work, an overview of general approaches to the design of functional SPR-immunoassays is presented. It covers both immunosensors, the design of which utilizes well-known and often commercially available substrates, as well as the latest solutions developed in-house. Various approaches employing chemical and passive binding, affinity-based antibody immobilization, and the introduction of nanomaterial-based surfaces are discussed. The essence of their influence on the improvement of the main analytical parameters of a given immunosensor is explained. Particular attention is paid to solutions compatible with the latest trends in the development of label-free immunosensors, such as platforms dedicated to real-time monitoring in a quasi-continuous mode, the use of in situ-generated receptor layers (elimination of the regeneration step), and biosensors using recombinant and labelled protein receptors.
Collapse
Affiliation(s)
- Marcin Drozd
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Sylwia Karoń
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Elżbieta Malinowska
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|