1
|
Karan S, Cho MY, Lee H, Kim HM, Park HS, Han EH, Sessler JL, Hong KS. Hypoxia-Directed and Self-Immolative Theranostic Agent: Imaging and Treatment of Cancer and Bacterial Infections. J Med Chem 2023; 66:14175-14187. [PMID: 37823731 PMCID: PMC10614179 DOI: 10.1021/acs.jmedchem.3c01274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 10/13/2023]
Abstract
The impact of bacteria on cancer progression and treatment is becoming increasingly recognized. Cancer-associated bacteria are linked to metastases, reduced efficacy, and survival challenges. In this study, we present a sensitive hypoxia-activated prodrug, NR-NO2, which comprises an antibiotic combined with a chemotherapeutic. This prodrug demonstrates rapid and robust fluorescence enhancement and exhibits potent antibacterial activity against both Gram-positive and Gram-negative bacteria as well as tumor cells. Upon activation, NR-NO2 produces a distinct "fluorescence-on" signal, enabling real-time drug release monitoring. By leveraging elevated nitroreductase in cancer cells, NR-NO2 gives rise to heightened bacterial cytotoxicity while sparing normal cells. In A549 solid tumor-bearing mice, NR-NO2 selectively accumulated at tumor sites, displaying fluorescence signals under hypoxia superior to those of a corresponding prodrug-like control. These findings highlight the potential of NR-NO2 as a promising cancer therapy prodrug that benefits from targeted release, antibacterial impact, and imaging-based guidance.
Collapse
Affiliation(s)
- Sanu Karan
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Mi Young Cho
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Hyunseung Lee
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Hyun Min Kim
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Hye Sun Park
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Eun Hee Han
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712-1224, United States
| | - Kwan Soo Hong
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
- Department
of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Tang Z, Yan Z, Gong L, Zhang L, Yin X, Sun J, Wu K, Yang W, Fan G, Li Y, Jiang H. Precise Monitoring and Assessing Treatment Response of Sepsis-Induced Acute Lung Hypoxia with a Nitroreductase-Activated Golgi-Targetable Fluorescent Probe. Anal Chem 2022; 94:14778-14784. [PMID: 36223488 DOI: 10.1021/acs.analchem.2c03722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sepsis-induced acute lung injury (ALI) is mostly attributed to an outbreak of reactive oxygen species (ROS), which makes leukocytes infiltrate into the lung and results in lung hypoxia. Nitroreductase (NTR) is significantly upregulated under hypoxia, which is commonly regarded as a potential biomarker for assessing sepsis-induced acute lung hypoxia. Increasing evidence shows that NTR in the Golgi apparatus could be induced in sepsis-induced ALI. Meanwhile, the prolyl hydroxylase (PHD) inhibitor (dimethyloxalylglycine, DMOG) attenuated sepsis-induced ALI through further increasing the level of Golgi NTR by improving hypoxia inducible factor-1α (HIF-1α) activity, but as yet, no Golgi-targetable probe has been developed for monitoring and assessing treatment response of sepsis-induced ALI. Herein, we report a Golgi-targetable probe, Gol-NTR, for monitoring and assessing treatment response of sepsis-induced ALI through mapping the generation of NTR. The probe displayed high sensitivity with a low detection limit of 54.8 ng/mL and good selectivity to NTR. In addition, due to the excellent characteristics of Golgi-targetable, Gol-NTR was successfully applied in mapping the change of Golgi NTR in cells and zebrafish caused by various stimuli. Most importantly, the production of Golgi NTR in the sepsis-induced ALI and the PHD inhibitor (DMOG) against sepsis-induced ALI were visualized and precisely assessed for the first time with the assistance of Gol-NTR. The results demonstrated the practicability of Gol-NTR for the precise monitoring and assessing of the personalized treatment response of sepsis-induced ALI.
Collapse
Affiliation(s)
- Zhixin Tang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhi Yan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lili Gong
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling Zhang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuemiao Yin
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Sun
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ke Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenjie Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guanwei Fan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Wang G, Yan F, Wang Y, Liu Y, Cui J, Yu Z, Feng L, James TD, Wang C, Kong Y. Visual Sensing of β-Glucosidase From Intestinal Fungus in the Generation of Cytotoxic Icarisid II. Front Chem 2022; 10:919624. [PMID: 35692694 PMCID: PMC9184716 DOI: 10.3389/fchem.2022.919624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
β-Glucosidase (β-Glc) is an enzyme capable of the selective hydrolysis of the β-glycosidic bond of glycosides and glycans containing glucose. β-Glc expressed by intestinal microbiota has attracted increasing levels of interest, due to their important roles for the metabolism of exogenous substances in the gut. Using the 2-((6-hydroxy-2,3-dihydro-1H-xanthen-4-yl)methylene)malononitrile fluorophore (DXM-OH, λem 636 nm) and the recognition group β-Glucose, an enzymatic activatable turn-on fluorescent probe (DXM-Glc) was developed for the selective and sensitive sensing of β-Glc. In addition, DXM-Glc could be used to sense endogenous β-Glc in living fungal cells. Using DXM-Glc, Pichia terricola M2 was identified as a functional intestinal fungus with β-Glc expression. P. terricola M2 could transform the flavone glycoside Icariin to Icariside Ⅱ efficiently, which confirmed the metabolism of glycosides in the gut mediated by fungi. Furthermore, Icariside Ⅱ could inhibit the proliferation of human endometrial cancer cells (RL 95-2 and ishikawa) significantly, suggesting the metabolic activation of Icariin by intestinal fungi in vivo. Therefore, DXM-Glc as a probe for β-Glc provided a novel technique for the investigation of the metabolism of bioactive substances by intestinal microbiota.
Collapse
Affiliation(s)
- Gang Wang
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fei Yan
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
- Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yufei Wang
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yingping Liu
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Zhenlong Yu
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lei Feng
- Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Tony D. James, ; Chao Wang, ; Ying Kong,
| | - Chao Wang
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Tony D. James, ; Chao Wang, ; Ying Kong,
| | - Ying Kong
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Tony D. James, ; Chao Wang, ; Ying Kong,
| |
Collapse
|