1
|
Zhang D, Zhang H, Yang Y, Jin Y, Chen Y, Wu C. Advancing tissue analysis: Integrating mass tags with mass spectrometry imaging and immunohistochemistry. J Proteomics 2025; 316:105436. [PMID: 40180154 DOI: 10.1016/j.jprot.2025.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
In biological and biomedical research, it's a crucial task to detect or quantify proteins or proteomes accurately across multiple samples. Immunohistochemistry (IHC) and spatial proteomics based on mass spectrometry imaging (MSI) are used to detect proteins in tissue samples. IHC can detect precisely but has a limited throughput, whereas MSI can simultaneously visualize thousands of specific chemical components but hindered by detailed protein annotation. Thereby, the introduction of mass tags may be adopted to expand the potential for integrating MSI and IHC. By enriching optical information for IHC and enhancing MS signals, mass tags can boost the accuracy of qualitative, localization, and quantitative detection of specific proteins in tissue sections, thereby widening the scope of protein detection and annotation results. Consequently, more comprehensive information regarding biological processes and disease states can be obtained, which aids in understanding complex biological processes and disease mechanisms and provides additional perspectives for clinical diagnosis and treatment. In the current review, we aim to discuss the role of different mass tags (e.g., mass tags based on inorganic molecules and organic molecules) in the combined application of MSI and IHC.
Collapse
Affiliation(s)
- Dandan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hairong Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yuexin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yingjie Chen
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen University, Xiamen 361102, China.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Wang M, Zhu C, Feng N, Li Y, Sun J, Ju H. MALDI-TOF mass spectrometric immunoassay of multiple tumor biomarkers for non-small cell lung cancer screening. Talanta 2025; 286:127550. [PMID: 39799886 DOI: 10.1016/j.talanta.2025.127550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Cancer biomarkers have been facing some issues such as poor accuracy and low sensitivity in the early diagnosis of tumors. Utilizing biotin-labelled peptide as a mass tag (MT), this work proposes a high-throughput biosensing strategy for matrix-assisted laser desorption/ionization-time of flight mass spectrometric (MALDI-TOF-MS) immunoassay of multiple lung cancer biomarkers. Due to little required dosage, satisfied stability, high sensitivity and accuracy, this method can achieve off-site centralized signal detection after on-site sample incubation. The proposed approach has been successfully applied for the detection of carcinoembryonic antigen (CEA), carbohydrate antigen199 (CA199), carbohydrate antigen 125 (CA125) and cytokeratin-19-fragment (CY211) in serum samples from various stages of non-small cell lung cancer. Based on the analysis of multiple parameters and pathological results, significant differences in biomarkers are found in serum samples of lung cancer patients at different stages. More importantly, the analysis of multiple tumor biomarkers can improve the accuracy and sensitivity of early diagnosis. Therefore, the multiple immunoassay based on MALDI-TOF MS exhibits exceptional performance in terms of high throughput, little sample dosage, stability and sensitivity.
Collapse
Affiliation(s)
- Mengchen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengxiang Zhu
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing, 210022, China
| | - Nan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
4
|
Du Q, Yu X, Jia K, Qu Y, Han J, Sun J, Shen D, Liu H, Nie Z. Chemoselective and laser cleavable probes for in situ protein lipoylation detection by laser desorption/ionization mass spectrometry. Chem Sci 2025; 16:4860-4865. [PMID: 39935505 PMCID: PMC11808561 DOI: 10.1039/d4sc05553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Protein lipoylation is a post-translational modification (PTM) of great significance as the lipoylation sites have essential effects on the enzymatic activities of several protein complexes, which affect the biological metabolic pathways and are further related to some diseases, such as cancer and Alzheimer's disease. While proteomic identification of lipoylated proteins has been studied, in situ profiling of protein lipoylation with high sensitivity remains challenging. Herein, we developed a strategy for in situ analysis of protein lipoylation by laser desorption/ionization-mass spectrometry (LDI-MS). In this study, a chemoselective butyraldehyde probe (BAP) was used to label the lipoylated proteins, and then linked with laser cleavable probe modified gold nanoparticles (AuNPs) through click chemistry. Triphenylmethyl mercaptan was used as mass tags (MTs) for the tertiary carbocations released under laser (355 nm) irradiation, which reflected the presence of protein lipoylation. Based on this strategy, a relative quantitative analysis of protein lipoylation on different cell lines was performed, and the distribution of lipoylated proteins in tissues was revealed by MS imaging (MSI). This novel approach used chemical modification to achieve signal amplification and overcome the low ionization efficiency and complicated mass spectra of standard protein analysis. This approach exhibits promise for uncovering biological processes and application in the diagnosis of related diseases.
Collapse
Affiliation(s)
- Qiuyao Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xi Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yijiao Qu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiameng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Duo Shen
- Academician Workstation, Jiangxi University of Chinese Medicine Nanchang 330004 Jiangxi China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Hossain MK, Huang GG, Hossain MM. Novel methods for the detection of glutathione by surface-enhanced Raman scattering: A perspective review. Heliyon 2025; 11:e41588. [PMID: 39866398 PMCID: PMC11761339 DOI: 10.1016/j.heliyon.2024.e41588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Detection of biomolecules, Glutathione (GSH) in particular, is important because it helps assess antioxidant capacity, cellular protection, detoxification processes, and potential disease associations. Monitoring glutathione levels can provide valuable information about overall health and well-being. Many medical disorders have been connected to glutathione levels. Higher glutathione levels have been seen in several cancer cell types, which may increase their resistance to radiation and chemotherapy. Glutathione levels can be measured through various methods, such as colorimetric assays and fluorescent probes. However, surface-enhanced Raman scattering (SERS) has been known as an efficient and selective technique for biomolecule detection. Here in this perspective review, we have reported two distinctive methods based on SERS technique in detection of GSH; heat-induced method and reversed reporting agent method. Several variables that can impact the detection scheme were elaborated in the "heat-induced method," including pretreatment, nanoparticle reduction time, the process temperature, the pH of the colloidal solution, the concentration of citrate buffer, and the concentration of participating nanoparticles. To choose the best reporting agent for a reverse reporting scheme using SERS approaches, several reporting agents were examined in the second method. In order to grasp the situation at hand, biomolecule detection-specifically, GSH detection schemes-was briefly discussed. SERS spectroscopy and its associated terminology were then covered followed by the perspective and outlook of GSH detection at the end. To meet the demands of real-time applications in everyday life and to enhance SERS methods for biomolecule detection-in particular, GSH detection-such a thorough investigation is unavoidable.
Collapse
Affiliation(s)
- Mohammad Kamal Hossain
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia
- Department of Electrical Engineering (EE), Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining & Advanced Chemicals (IRC-RAC), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Takhar V, Singh S, Misra SK, Banerjee R. l-cysteine capped MoS 2 QDs for dual-channel imaging and superior Fe 3+ ion sensing in biological systems. NANOSCALE ADVANCES 2024; 6:d4na00505h. [PMID: 39309516 PMCID: PMC11414837 DOI: 10.1039/d4na00505h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
MoS2 quantum dots (MQDs) with an average size of 1.9 ± 0.7 nm were synthesized using a microwave-assisted method. Absorbance studies confirmed characteristic transitions of MoS2, with absorption humps at 260-280 nm and 300-330 nm, and a band gap of 3.6 ± 0.1 eV. Fluorescence emission studies showed dominant blue and some green emissions under 315 nm excitation, with an absolute quantum yield of ∼9%. The MQDs exhibited fluorescence stability over time after repeated quenching cycles across various pH and media systems. In vitro toxicity tests indicated cytocompatibility, with around 80% cell survival at 1000 mg L-1. Confocal imaging demonstrated significant uptake and vibrant fluorescence in cancerous and non-cancerous cell lines. The MQDs showed strong selectivity towards Fe3+ ions, with a detection limit of 27.61 ± 0.25 nM. Recovery rates for Fe3+ in phosphate buffer saline (PBS) and simulated body fluid (SBF) systems were >97% and >98%, respectively, with a relative standard deviation (RSD) within 3%, indicating precision. These findings suggest that MQDs have high potential for diagnostic applications involving Fe3+ detection due to their fluorescence stability, robustness, enhanced cell viability, and dual-channel imaging properties.
Collapse
Affiliation(s)
- Vishakha Takhar
- Department of Physics, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Simranjit Singh
- Materials Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Superb K Misra
- Materials Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Rupak Banerjee
- Department of Physics, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
- K C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| |
Collapse
|
7
|
Petřík I, Hladík P, Zhang C, Pěnčík A, Novák O. Spatio-temporal plant hormonomics: from tissue to subcellular resolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5295-5311. [PMID: 38938164 DOI: 10.1093/jxb/erae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.
Collapse
Affiliation(s)
- Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Hladík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
8
|
Chen S, Pu K, Wang Y, Su Y, Qiu J, Wang X, Guo K, Hu J, Wei H, Wang H, Wei X, Chen Y, Lin W, Ni W, Lin Y, Chen J, Lai SKM, Ng KM. Hierarchical superstructure aerogels for in situ biofluid metabolomics. NANOSCALE 2024; 16:8607-8617. [PMID: 38602354 DOI: 10.1039/d3nr05895f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
High-throughput biofluid metabolomics analysis for screening life-threatening diseases is urgently needed. However, the high salt content of biofluid samples, which introduces severe interference, can greatly limit the analysis throughput. Here, a new 3-D interconnected hierarchical superstructure, namely a "plasmonic gold-on-silica (Au/SiO2) double-layered aerogel", integrating distinctive features of an upper plasmonic gold aerogel with a lower inert silica aerogel was successfully developed to achieve in situ separation and storage of inorganic salts in the silica aerogel, parallel enrichment of metabolites on the surface of the functionalized gold aerogel, and direct desorption/ionization of enriched metabolites by the photo-excited gold aerogel for rapid, sensitive, and comprehensive metabolomics analysis of human serum/urine samples. By integrating all these unique advantages into the hierarchical aerogel, multifunctional properties were introduced in the SALDI substrate to enable its effective utilization in clinical metabolomics for the discovery of reliable metabolic biomarkers to achieve unambiguous differentiation of early and advanced-stage lung cancer patients from healthy individuals. This study provides insight into the design and application of superstructured nanomaterials for in situ separation, storage, and photoexcitation of multi-components in complex biofluid samples for sensitive analysis.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Keyuan Pu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Yue Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Yang Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Jiamin Qiu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Xin Wang
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Kunbin Guo
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Jun Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Huiwen Wei
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Hongbiao Wang
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Xiaolong Wei
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Yuping Chen
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Wen Lin
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Wenxiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Guangdong, 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Yan Lin
- The Second Affiliated Hospital of Shantou University Medical College, Guangdong, 515041, China
| | - Jiayang Chen
- Instrumental Analysis & Testing Centre, Shantou University, Guangdong, 515063, China
| | - Samuel Kin-Man Lai
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, China
| | - Kwan-Ming Ng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Liang W, Yan W, Wang X, Yan X, Hu Q, Zhang W, Meng H, Yin L, He Q, Ma C. A single atom cobalt anchored MXene bifunctional platform for rapid, label-free and high-throughput biomarker analysis and tissue imaging. Biosens Bioelectron 2024; 246:115903. [PMID: 38048718 DOI: 10.1016/j.bios.2023.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Few of single-atom materials have been served as platform to analyze small molecules for surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). Herein, a novel single Co atom-anchored MXene (Co-N-Ti3C2) is prepared to achieve enhanced SALDI-MS and mass spectrometry imaging (MSI) performance for the first time. The Co-N-Ti3C2 films were prepared by a simple in situ self-assembly strategy to generate an efficient SALDI-MS platform. Compared to typical inorganic/organic matrices, Co-N-Ti3C2 films exhibit superior performance in small molecules detection with ultra-high sensitivity (LOD at amol level), excellent repeatability (CV <4%), clean background and wide analyte coverage, enabling accurate quantitative analysis of various low-concentration metabolites from 1 μL biofluid in seconds. Its usage efficiently enhanced SALDI-MS detection of various small-molecule biomarkers such as amino acids, succinic acid, itaconic acid, arachidonic acid, citrulline, prostaglandin E2, creatinine, uric acid, glutamine, D-mannose, cholesterol and inositol in positive ion mode. The blood glucose level in humans was successfully determined from a linearity concentration range (0.25-10 mM). Notably, the Co-N-Ti3C2 assisted SALDI-MSI enables study the spatial distribution of small molecules covering the range central to metabolomics at a high resolution on a tissue section. Furthermore, Co-N-Ti3C2 platform revealed a specific peak profile that distinguishes osteoarthritis (OA) from rheumatoid arthritis (RA) tissue. Density functional theory theoretical investigation revealed that single Co atoms anchored on Ti3C2 could highly enhanced the ionization ability of metabolites, resulting in high-sensitivity and heterogeneous metabolome coverage.
Collapse
Affiliation(s)
- Weiqiang Liang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China; Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Weining Yan
- Department of Orthopedics, Trauma, and Reconstructive Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
| | - Xinfeng Yan
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
| | - Wenqiang Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Hongzheng Meng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Luxu Yin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Qing He
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China.
| |
Collapse
|
10
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
11
|
Yang M, Jiang J, Hua L, Jiang D, Wang Y, Li D, Wang R, Zhang X, Li H. Rapid Detection of Volatile Organic Metabolites in Urine by High-Pressure Photoionization Mass Spectrometry for Breast Cancer Screening: A Pilot Study. Metabolites 2023; 13:870. [PMID: 37512577 PMCID: PMC10385751 DOI: 10.3390/metabo13070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Despite surpassing lung cancer as the most frequently diagnosed cancer, female breast cancer (BC) still lacks rapid detection methods for screening that can be implemented on a large scale in practical clinical settings. However, urine is a readily available biofluid obtained non-invasively and contains numerous volatile organic metabolites (VOMs) that offer valuable metabolic information concerning the onset and progression of diseases. In this work, a rapid method for analysis of VOMs in urine by using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) coupled with dynamic purge injection. A simple pretreatment process of urine samples by adding acid and salt was employed for efficient VOM sampling, and the numbers of metabolites increased and the detection sensitivity was improved after the acid (HCl) and salt (NaCl) addition. The established mass spectrometry detection method was applied to analyze a set of training samples collected from a local hospital, including 24 breast cancer patients and 27 healthy controls. Statistical analysis techniques such as principal component analysis, partial least squares discriminant analysis, and the Mann-Whitney U test were used, and nine VOMs were identified as differential metabolites. Finally, acrolein, 2-pentanone, and methyl allyl sulfide were selected to build a metabolite combination model for distinguishing breast cancer patients from the healthy group, and the achieved sensitivity and specificity were 92.6% and 91.7%, respectively, according to the receiver operating characteristic curve analysis. The results demonstrate that this technology has potential to become a rapid screening tool for breast cancer, with significant room for further development.
Collapse
Affiliation(s)
- Ming Yang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Environment and Chemical Engineering, Dalian University, Dalian 116000, China
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jichun Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dandan Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yadong Wang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 116023, China
| | - Depeng Li
- College of Environment and Chemical Engineering, Dalian University, Dalian 116000, China
| | - Ruoyu Wang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 116023, China
| | - Xiaohui Zhang
- College of Environment and Chemical Engineering, Dalian University, Dalian 116000, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Hu J, Liu F, Chen Y, Fu J, Ju H. Signal-On Mass Spectrometric Biosensing of Multiplex Matrix Metalloproteinases with a Phospholipid-Structured Mass-Encoded Microplate. Anal Chem 2023. [PMID: 37235973 DOI: 10.1021/acs.analchem.3c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The detection of matrix metalloproteinases (MMPs) is of great importance for diagnosis and staging of cancer. This work proposed a signal-on mass spectrometric biosensing strategy with a phospholipid-structured mass-encoded microplate for assessment of multiplex MMP activities. The designed substrate and internal standard peptides were subsequently labeled with the reagents of isobaric tags for relative and absolute quantification (iTRAQ), and DSPE-PEG(2000)maleimide was embedded on the surface of a 96-well glass bottom plate to fabricate the phospholipid-structured mass-encoded microplate, which offered a simulated environment of the extracellular space for enzyme reactions between MMPs and the substrates. The strategy achieved multiplex MMP activity assays by dropping the sample in the well for enzyme cleavages, followed by adding trypsin to release the coding regions for ultrahigh performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) analysis. The peak area ratios of released coding regions and their respective internal standard (IS) peptides exhibited satisfied linear ranges of 0.05-50, 0.1-250, and 0.1-100 ng mL-1 with the detection limits of 0.017, 0.046, and 0.032 ng mL-1 for MMP-2, MMP-7, and MMP-3, respectively. The proposed strategy demonstrated good practicability in inhibition analysis and detections of multiplex MMP activities in serum samples. It is of great potential for clinical applications and can be expanded for multiplex enzyme assays.
Collapse
Affiliation(s)
- Junjie Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Fu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Chen X, Zhu J, Sun B, Zhang X, Hu Y, Chen Y. A mass-tagged MOF nanoprobe approach for ultra-sensitive protein quantification in tumor-educated platelets. Chem Commun (Camb) 2022; 58:7160-7163. [PMID: 35667628 DOI: 10.1039/d2cc01815b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mass-tagged metal-organic framework (MOF) nanoprobe approach was developed for ultra-sensitive quantification of platelet protein CD44 by integrating activable aptamer recognition and MOF nanoprobe signal amplification with mass spectrometric detection. This approach offered high sensitivity and quantitative capability for low abundant protein analysis in tumor-educated platelets (TEPs), exhibiting great potential in cancer diagnosis and management.
Collapse
Affiliation(s)
- Xiuyu Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Bo Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Xian Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yechen Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China. .,State Key Laboratory of Reproductive Medicine, 210029, China.,Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing, 211166, China
| |
Collapse
|
14
|
Hu J, Liu F, Chen Y, Fu J, Shangguan G, Ju H. Mass-Encoded Suspension Array for Multiplex Detection of Matrix Metalloproteinase Activities. Anal Chem 2022; 94:6380-6386. [PMID: 35412800 DOI: 10.1021/acs.analchem.2c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work designed a mass spectrometric biosensing strategy for the multiplex detection of matrix metalloproteinases (MMPs) with a mass-encoded suspension array. This array was fabricated as multiplex sensing probes by functionalizing magnetic beads with MMP-specific peptide-isobaric tags for relative and absolute quantification (iTRAQ) conjugates, which contained a hexahistidine tag for surface binding, a substrate region for MMP cleavage, and a coding region for the specific MMP. The integration of the multiplex coding ability of iTRAQ with ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and the proteolysis method for peptide digestion endowed the biosensing method with high throughput and ultrahigh sensitivity. This strategy could be conveniently performed by mixing the sample and the suspension array for enzymatic reactions and then digesting the uncleaved peptides with trypsin to release the coding regions for UPLC-MS/MS analysis. With MMP-2 and MMP-7 as analytes, the relative changes of peak area ratios of coding regions showed good linear responses in the ranges of 0.2-100 and 0.5-400 ng mL-1, with detection limits of 0.064 and 0.17 ng mL-1, respectively. The analysis of MMP activity in serum samples and its change responding to inhibitors demonstrated the specificity, practicability, and expansibility of the proposed strategy. This work paves a new avenue for the activity assays of multiplex enzymes and promotes the development of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Fu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Wang Y, Li B, Tian T, Liu Y, Zhang J, Qian K. Advanced on-site and in vitro signal amplification biosensors for biomolecule analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|