1
|
Yang Y, Xin M, Huang L, Hao Y, Xu M. A novel coumarin-incorporated lanthanide coordination nanoprobe for ratiometric sensing of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126108. [PMID: 40147397 DOI: 10.1016/j.saa.2025.126108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Tetracycline (Tc), a broad-spectrum antibiotic for treating bacterial infections, poses significant risks to human health and the environment. This study presents a novel lanthanide coordination probe, AMP/Eu/CMP, for the ratiometric detection of Tc. The pyridine-appended coumarin derivative, CMP, acting as a stable internal reference, combines with AMP and Eu3+ to form the robust ratiometric probe AMP/Eu/CMP. Upon binding to Tc, Eu3+ fluorescence (emission at 616 nm) is sensitized while CMP fluorescence (emission at 505 nm) remains unchanged, resulting in a clear fluorescence shift from blue-green to red, enabling effective ratiometric detection of Tc. By integrating a smartphone color recognition app, rapid and visual detection of tetracycline concentrations is achieved. Additionally, paper-based test strips were developed for on-site Tc detection, exhibiting a linear response across a wide concentration range, making this method suitable for applications in food safety, pharmaceutical analysis, and environmental monitoring. The use of a fluorescent molecule with unique photophysical properties as an internal reference enables the construction of a high-performance, ratiometric lanthanide coordination polymer probe that is rapid, simple, and cost-effective, providing valuable insights for the development of future fluorescence sensors.
Collapse
Affiliation(s)
- Yufei Yang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Menglin Xin
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lijie Huang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Maotian Xu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| |
Collapse
|
2
|
Guo W, Guo Y, Xu H, Li C, Zhang X, Zou X, Sun Z. Ultrasensitive "On-Off" Ratiometric Fluorescence Biosensor Based on RPA-CRISPR/Cas12a for Detection of Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2167-2173. [PMID: 39791925 DOI: 10.1021/acs.jafc.4c12202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Staphylococcus aureus (S. aureus) is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of S. aureus, combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference. This ratiometric design enables accurate and quantitative detection over a wide range (7.9 × 100 to 7.9 × 108 CFU/mL) with a low detection limit of 3 CFU/mL. Overall, with these merits of simplicity, rapid response, high sensitivity, and specificity, this dual-signal biosensor offers a promising method for accurately evaluating S. aureus contamination in food under complex substrate conditions.
Collapse
Affiliation(s)
- Wang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiqing Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong Xu
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212013, China
| | - Chen Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zongbao Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai 200436, China
| |
Collapse
|
3
|
Song Z, Hao Y, Long Y, Zhang P, Zeng R, Chen S, Chen W. Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications. Molecules 2025; 30:396. [PMID: 39860266 PMCID: PMC11767601 DOI: 10.3390/molecules30020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu3+, Tb3+, Ce3+) with the structural flexibility and tunability of coordination polymers. These materials are widely used in biological and chemical sensing, environmental monitoring, and medical diagnostics due to their narrow-band emission, long fluorescence lifetimes, and excellent resistance to photobleaching. This review focuses on the composition, sensing mechanisms, and applications of ratiometric Ln-CPs. The ratiometric fluorescence mechanism relies on two distinct emission bands, which provides a self-calibrating, reliable, and precise method for detection. The relative intensity ratio between these bands varies with the concentration of the target analyte, enabling real-time monitoring and minimizing environmental interference. This ratiometric approach is particularly suitable for detecting trace analytes and for use in complex environments where factors like background noise, temperature fluctuations, and light intensity variations may affect the results. Finally, we outline future research directions for improving the design and synthesis of ratiometric Ln-CPs, such as incorporating long-lifetime reference luminescent molecules, exploring near-infrared emission systems, and developing up-conversion or two-photon luminescent materials. Progress in these areas could significantly broaden the scope of ratiometric Ln-CP applications, especially in biosensing, environmental monitoring, and other advanced fields.
Collapse
Affiliation(s)
- Ziqin Song
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Yunfei Long
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Rongjin Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
4
|
Zhang Y, Han L, Li B, Xu Y. High-performance ratiometric fluorescence detection and removal of tetracycline in milk based on CDs@ZSM-5:Eu 3. Food Chem 2025; 463:141441. [PMID: 39340904 DOI: 10.1016/j.foodchem.2024.141441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Exploring materials with the dual functionality of detecting and removing tetracycline (TC) residues is crucial because of the environmental and health risks posed by antibiotic overuse. This study introduces a dual-emissive luminescent probe, CDs@ZSM-5:Eu3+, created through a solvent-free method combined with subsequent Eu3+ion exchange. The nanocomposite's blue emission, originating from carbon dots (CDs), is quenched by TC via an internal filtering effect, while an antenna effect triggers a strong red fluorescence of a TC-Eu3+chelate. The ratiometric fluorescence changes in CDs@ZSM-5:Eu3+ endow a self-calibrated sensing mechanism for TC, offering a low detection limit of 5.04 nM and a broad detection range of 0.01-50 μM. Demonstrated in real milk samples, the probe exhibits high selectivity and accuracy in detecting TC. The nanocomposite also displayed an impressive TC removal capacity of 238.1 mg g-1 in water, ascribing to the enrichment and electrostatic attraction effects of ZSM-5 toward TC molecules. This research offers a facile strategy for constructing multifunctional zeolite-based hybrids for simultaneous TC detection and removal from aqueous solutions.
Collapse
Affiliation(s)
- Yuchi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Le Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Bohan Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China; Foshan Graduate School of Innovation, Northeastern University, Foshan, Guangdong 528311, China.
| |
Collapse
|
5
|
Ji P, Liu Y, Li W, Guo R, Xiong L, Song Z, Wang B, Feng G. A new FRET-based fluorescent probe: Colorimetric and ratiometric detection of hypochlorite and anti-counterfeiting applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124477. [PMID: 38810433 DOI: 10.1016/j.saa.2024.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Hypochlorite (ClO-), as the main component of widely used disinfectants in daily life, comes into closer contact with the human body, which can lead to a number of diseases. The high-performance method is increasingly needed to detect ClO- in our daily life. In this report, we successfully synthesized a FRET ratiometric fluorescent probe (NDAC) containing benzoxadiazole moieties and coumarin moieties bound via ethylenediamine. As expected, NDAC has excellent selectivity and anti-interference ability toward ClO-, and the ratio of fluorescence intensity (I471 nm/I533 nm) has a very good linear relationship with the concentration of ClO-, with a wide linear range (2.5-1750 μM) and low detection limit (0.887 μM). Furthermore, we have successfully applied it for the quantitative detection of ClO- in water samples in daily life. At the same time, there is a very clear change in the fluorescence color after the reaction of the NDAC with ClO-. The blue/green value (B/G) of this color change also shows a very good linear relationship to ClO- (5.0-1000 μM). Therefore, the NDAC has also been successfully used for test strip detection and quantitative detection of ClO- in actual samples through smartphone-based fluorescence image analysis, and this method can provide faster, more convenient and more accessible detection. In addition, NDAC sensors also have potential applications in the field of information anti-counterfeiting.
Collapse
Affiliation(s)
- Peng Ji
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Yuntong Liu
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Wanmeng Li
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Ruixue Guo
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Lingxiao Xiong
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Bo Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China.
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Hu Y, Chen X, Wang K, Jiang C, Liu W, Zhang S, Zheng M, Zhou Y, Xiao Y, Liu Y. Fluorescent responsive membrane based on terbium coordination polymer and carbon dots with AIE effect for rapid and visual detection of fluoroquinolone. Biosens Bioelectron 2024; 254:116205. [PMID: 38484411 DOI: 10.1016/j.bios.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the β-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 μM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.
Collapse
Affiliation(s)
- Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chuang Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Liu C, Geng Q, Geng Z. Strategies to improve performances of fluorescent biosensors based on smartphones: Sensitivity, high throughput, and smart detection. SENSORS AND ACTUATORS A: PHYSICAL 2024; 368:115120. [DOI: 10.1016/j.sna.2024.115120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Weng P, Li C, Liu Q, Tang Z, Zhou Z, Chen S, Hao Y, Xu M. A ternary nucleotide-lanthanide coordination nanoprobe for ratiometric fluorescence detection of ciprofloxacin. LUMINESCENCE 2024; 39:e4667. [PMID: 38178733 DOI: 10.1002/bio.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ciprofloxacin (CIP) is a widely used broad-spectrum antibiotic and has been associated with various side effects, making its accurate detection crucial for patient safety, drug quality compliance, and environmental and food safety. This study presents the development of a ternary nucleotide-lanthanide coordination nanoprobe, GMP-Tb-BDC (GMP: guanosine 5'-monophosphate, BDC: 2-amino-1,4-benzenedicarboxylic acid), for the sensitive and ratiometric detection of CIP. The GMP-Tb-BDC nanoprobe was constructed by incorporating the blue-emissive ligand BDC into the Tb/GMP coordination polymers. Upon the addition of CIP, the fluorescence of terbium ion (Tb3+ ) was significantly enhanced due to the coordination and fluorescence sensitization properties of CIP, while the emission of the BDC ligand remained unchanged. The nanoprobe demonstrated good linearity in the concentration range of 0-10 μM CIP. By leveraging mobile phone software to analyze the color signals, rapid on-site analysis of CIP was achieved. Furthermore, the nanoprobe exhibited accurate analysis of CIP in actual drug and milk samples. This study showcases the potential of the GMP-Tb-BDC nanoprobe for practical applications in CIP detection.
Collapse
Affiliation(s)
- Pei Weng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
9
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
10
|
Cui ML, Lin ZX, Xie QF, Zhang XY, Wang BQ, Huang ML, Yang DP. Recent advances in luminescence and aptamer sensors based analytical determination, adsorptive removal, degradation of the tetracycline antibiotics, an overview and outlook. Food Chem 2023; 412:135554. [PMID: 36708671 DOI: 10.1016/j.foodchem.2023.135554] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Tetracycline antibiotics (TCs), one of the important antibiotic groups, have been widely used in human and veterinary medicines. Their residues in foodstuff, soil and sewage have caused serious threats to food safety, ecological environment and human health. Here, we reviewed the potential harms of TCs residues to foodstuff, environment and human beings, discussed the luminescence and aptamer sensors based analytical determination, adsorptive removal, and degradation strategies of TCs residues from a recent 5-year period. The advantages and intrinsic limitations of these strategies have been compared and discussed, the potential challenges and opportunities in TCs residues degradation have also been deliberated and explored.
Collapse
Affiliation(s)
- Ma-Lin Cui
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Zi-Xuan Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Qing-Fan Xie
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiao-Yan Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Bing-Qing Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Miao-Ling Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
11
|
Xu J, Wang J, Li Y, Zhang L, Bi N, Gou J, Zhao T, Jia L. A wearable gloved sensor based on fluorescent Ag nanoparticles and europium complexes for visualized assessment of tetracycline in food samples. Food Chem 2023; 424:136376. [PMID: 37244186 DOI: 10.1016/j.foodchem.2023.136376] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
The abuse of tetracycline antibiotics leads to accumulating residues in the human body, seriously affecting human health. Establishing a sensitive, efficient, and reliable method for qualitative and quantitative detection of tetracycline (TC) is necessary. This study integrated silver nanoclusters and europium-based materials into the same nano-detection system to construct a visual and rapid TC sensor with rich fluorescence color changes. The nanosensor has the advantages of a low detection limit (10.5 nM), high detection sensitivity, fast response, and wide linear range (0-30 μM), which can meet the analysis requirements of different types of food samples. In addition, portable devices based on paper and gloves were designed. Through the smartphone's chromaticity acquisition and calculation analysis application (APP), the real-time rapid visual intelligent analysis of TC in the sample can be realized, which guides the intelligent application of multicolor fluorescent nanosensors.
Collapse
Affiliation(s)
- Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Junxi Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Yongxin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| |
Collapse
|
12
|
Li D, Wang J. Semiconductor/Carbon Quantum Dot-based Hue Recognition Strategy for Point of Need Testing: A Review. ChemistryOpen 2023; 12:e202200165. [PMID: 36891621 PMCID: PMC10068770 DOI: 10.1002/open.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
The requirement to establish novel methods for visual detection is attracting attention in many application fields of analytical chemistry, such as, healthcare, environment, agriculture, and food. The research around subjects like "point-of-need", "hue recognition", "paper-based sensor", "fluorescent sensor", etc. has been always aimed at the opportunity to manufacture convenient and fast-response devices to be used by non-specialists. It is possible to achieve economic rationality and technical simplicity for optical sensing toward target analytes through introduction of fluorescent semiconductor/carbon quantum dot (QD) and paper-based substrates. In this Review, the mechanisms of anthropic visual recognition and fluorescent visual assays, characteristics of semiconductor/carbon QDs and ratiometric fluorescence test paper, and strategies of semiconductor/carbon QD-based hue recognition are described. We cover latest progress in the development and application of point-of-need sensors for visual detection, which is based on a semiconductor/carbon quantum dot-based hue recognition strategy generated by ratiometric fluorescence technology.
Collapse
Affiliation(s)
- Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
13
|
Yuan L, Tian X, Fan Y, Sun Z, Zheng K, Zou X, Zhang W. TPB-DMTP@S-CDs/MnO 2 Fluorescence Composite on a Dual-Emission-Capture Sensor Module for Fingerprint Recognition of Organophosphorus Pesticides. Anal Chem 2023; 95:2741-2749. [PMID: 36689633 DOI: 10.1021/acs.analchem.2c03738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Residues of organophosphorus pesticides (OPs) raise considerable concern, while identifying OPs from unknown sources is still a challenge to onsite fluorescence techniques. Herein, a dual-emission-capture sensor module, based on a TPB-DMTP@S-CDs/MnO2 fluorescence composite, is developed for OP fingerprint recognition. TPB-DMTP@S-CDs/MnO2, synthesized by a hydrothermal method and self-assembly, is spectrographically validated as a dual-wavelength fluorescence source. OP-sensitive catalysis (acetylcholinesterase on acetylthiocholine chloride) is designed to regulate fluorescence by decomposing quenchable MnO2. A flexibly fabricated sensor module supports the optimal dual-wavelength fluorescence excitations and captures and converts fluorescence emissions into equivalent photocurrents for feasible access. The most prominent finding is that dual-fluorescence emissions alternatively respond to levels, species, and multi-pH pretreatments of OPs due to varied MnO2 sizes and distributions. Therefore, OP fingerprint recognition is conducted by refining the multidimensional information from fluorescence-triggered photocurrents and preset hydrolyzation using principal component analysis and the rule of maximum covariance. The recommended method provides a wide dynamic range (1 × 10-6 ∼ 12 μg mL-1), a good limit of detection (7.9 × 10-7 μg mL-1), 15-day stability, and good selectivity to guarantee fingerprint recognition. For laboratory and natural samples, this method credibly identifies a single kind of OPs from multiple species at trace levels (10-5 μg mL-1) and performs well in two-component and multicomponent analyses.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.,College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaoyu Tian
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yushan Fan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Chen Y, Xia Y, Liu Y, Tang Y, Zhao F, Zeng B. Colorimetric and electrochemical detection platforms for tetracycline based on surface molecularly imprinted polyionic liquid on Mn3O4 nanozyme. Biosens Bioelectron 2022; 216:114650. [DOI: 10.1016/j.bios.2022.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
|
15
|
Yuan L, Gan Z, Fan Y, Ding F, Xu X, Chen X, Zou X, Zhang W. Thermal-controlled active sensor module using enzyme-regulated UiO-66-NH 2/MnO 2 fluorescence probe for total organophosphorus pesticide determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129111. [PMID: 35643005 DOI: 10.1016/j.jhazmat.2022.129111] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
An enzyme-regulated UiO-66-NH2/MnO2 fluorescence sensor, fully functionalized with spectrometric capacities, is developed for budget-friendly total organophosphorus pesticides (OPs) determination. The fluorescence probe, UiO-66-NH2/MnO2, is hydrothermally synthesized and morphologically examined. A specialized enzyme-catalyzed reaction, which can be gradually inhibited by OPs, is designed with participations of alkaline phosphatase (ALP) and sodium L-ascorbyl-2-phosphate (AAP). The reaction product of ascorbic acid (AA) decomposes MnO2 and restores UiO-66-NH2 fluorescence, establishing a relationship between OPs level and fluorescence intensity. Interactions among UiO-66-NH2, MnO2, OPs, and AA are clarified. Stepwise optimizations are performed to the UiO-66-NH2/MnO2 probe, ensuring considerable advantages as OPs affinity and fluorescence quenching behavior over rival nanomaterials. Analytical advances are magnified by fabricating an active sensor module, with self-acting thermal regulation for optimal enzyme activity. Under 4 and 20 °C environment, regulation period is less than 40 and 100 s. In total OPs determination for laboratorial and real-vegetable samples, this method exhibits uniform and log-linear responses to common species of OPs in a range as 1.0 × 10-7~10 mg L-1, and limit of detection is established as 8.9 × 10-8 mg L-1. Proposed readouts are validated with certified HPLC and recovery test. Relative errors and recovery rates are found as 2.7-6.4% and 95.8-102.6%, respectively.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziyu Gan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yushan Fan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fuyuan Ding
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Li J, Zuo M, Zhang W, Zou X, Sun Z. Diazo Coupling-Based Ultrasensitive SERS Detection of Capsaicin and Its Application in Identifying Gutter Oil. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Lanthanide coordination polymer nanoparticles as a ratiometric fluorescence sensor for real-time and visual detection of tetracycline by a smartphone and test paper based on the analyte-triggered antenna effect and inner filter effect. Anal Chim Acta 2022; 1206:339809. [DOI: 10.1016/j.aca.2022.339809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
|