1
|
Zhu Y, Liang Y, You J, Wang D, Li J, Yang Y, Yang Y. Enhanced Gas Adsorption and Robust Multi-Interface Charge Transfer in Ternary Co 3O 4/ZnIn 2S 4/Pt Heterostructure Arrays for Efficient Triethylamine Detection. ACS Sens 2025. [PMID: 40384426 DOI: 10.1021/acssensors.5c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The resistive gas sensors based on semiconductor materials provide an effective strategy for the detection of harmful gases. However, the limitations of surface gas adsorption activity and interface charge transfer efficiency of semiconductor sensing materials, as well as the complex device fabrication process, pose significant challenges to the development of sensors. Here, a ternary Co3O4/ZnIn2S4/Pt heterostructure arrays gas sensor is designed, which consists of Co3O4 nanowire arrays grown in situ on an alumina flat substrate as backbones, ultrathin ZnIn2S4 nanosheets wrapped around the surface of Co3O4 nanowires, and highly dispersed Pt nanoparticles on the outermost layer. It enables superior sensing performance for the detection of the volatile organic compound triethylamine, which exhibits a significant response of ∼118.97 (Ra/Rg) toward 100 ppm of triethylamine at a relatively low working temperature of 200 °C, along with excellent response/recovery speed, selectivity, and enduring stability (over 3 months). Based on first-principles calculation and a series of spectroscopic characterization (including in situ spectroscopy), it is revealed that the heterostructure arrays exhibited enhanced adsorption activity for both oxygen and triethylamine molecules. Most importantly, the robust p-n heterointerface (Co3O4/ZnIn2S4) and semiconductor-metal heterointerface (Co3O4/Pt, ZnIn2S4/Pt) are formed in the ternary heterostructure, achieving efficient multi-interface charge transfer characteristics. In addition, thanks to the design of in situ 1D/2D/0D porous array structures, the ternary Co3O4/ZnIn2S4/Pt heterostructure arrays not only have large specific surface areas for gas reaction but also simplify device manufacturing. This research offers novel perspectives on boosting the gas sensing performance of semiconductor materials through the comprehensive design of ternary heterostructures with robust multi-interfaces.
Collapse
Affiliation(s)
- Yulin Zhu
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Yan Liang
- Department of Intelligent Engineering, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, P.R. China
| | - Jianxian You
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Dehua Wang
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Jiahao Li
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Yanxing Yang
- Department of Natural Science, Caldwell University, Caldwell, New Jersey 07006, United States
| | - Yong Yang
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| |
Collapse
|
2
|
Lustosa GMMM, Simões AN, Morita ES, de Souza AN, Neto FT, Bizzo WA, Mazon T. Nanoengineered PDMS/Pd/ZnO-Based Sensor to Improve Detection of H 2 Dissolved Gas in Oil at Room Temperature. ACS Sens 2025; 10:2554-2568. [PMID: 40183361 PMCID: PMC12038843 DOI: 10.1021/acssensors.4c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The current research aims to synthesize zinc oxide decorated with palladium nanoparticles and develop a stable sensor with high sensitivity to hydrogen gas dissolved in oil. ZnO nanorods (NR) were synthesized by a hydrothermal method directly onto a commercial sensor board with gold interdigital electrodes, followed by functionalization with Pd nanoparticles (NP) by drop casting. SEM images show ZnO NRs with an average diameter of ∼220 nm and Pd spherical NPs with diameters of 35-75 nm. Finally, the sensing properties were examined by immersing the sensor into insulating mineral oil in a closed system, where different H2 concentrations (from 0 up to 500 ppm) were injected into the headspace and then dissolved in the mineral oil, according to the Ostwald coefficient. All measurements were carried out at room temperature. The electrical characterization showed that our sensor had good repeatability, stability, and sensitivity to detect lower concentrations (less than 10 ppm). Additionally, a nanoengineered porous layer of PDMS was prepared over the sensor board through spin coating and heat treatment, and then the sensitivity of our sensor board reached ∼2.8 ppm of H2 gas. Our findings indicate that the methodology applied improves gas detection performance in industrial applications and its potential use for real-time monitoring.
Collapse
Affiliation(s)
- Glauco Meireles Mascarenhas Morandi Lustosa
- Ministério
da Ciência, Tecnologia e Inovação (MCTI) −
Centro de Tecnologia da Informação Renato Archer, Campinas/SP 13069-901, Brazil
- Universidade
Estadual de Campinas (UNICAMP) − Faculdade de Engenharia Mecânica, Campinas/SP 13083-860, Brazil
| | - Agnes Nascimento Simões
- Universidade
Estadual de Campinas (UNICAMP) − Faculdade de Engenharia Mecânica, Campinas/SP 13083-860, Brazil
| | - Eugênio
de Souza Morita
- Ministério
da Ciência, Tecnologia e Inovação (MCTI) −
Centro de Tecnologia da Informação Renato Archer, Campinas/SP 13069-901, Brazil
- Universidade
Estadual de Campinas (UNICAMP) − Faculdade de Engenharia Mecânica, Campinas/SP 13083-860, Brazil
| | - André Nunes de Souza
- Universidade
Estadual Paulista (UNESP) − Departamento de Engenharia Elétrica, Bauru/SP 17033-360, Brazil
| | | | - Waldir Antonio Bizzo
- Universidade
Estadual de Campinas (UNICAMP) − Faculdade de Engenharia Mecânica, Campinas/SP 13083-860, Brazil
| | - Talita Mazon
- Ministério
da Ciência, Tecnologia e Inovação (MCTI) −
Centro de Tecnologia da Informação Renato Archer, Campinas/SP 13069-901, Brazil
| |
Collapse
|
3
|
Baek JW, Shin E, Lee J, Kim DH, Choi SJ, Kim ID. Present and Future of Emerging Catalysts in Gas Sensors for Breath Analysis. ACS Sens 2025; 10:33-53. [PMID: 39587394 DOI: 10.1021/acssensors.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
To rationalize the noninvasive disease diagnosis by breath analysis, developing a high-performance gas sensor with exceptional sensitivity and selectivity is important to detect trace biomarkers in complex exhaled breath under harsh conditions. Among the various technological innovations, catalyst design and synthesis techniques are the foremost challenges, because gas sensing properties are predominantly determined by surface chemical reactions governed by catalytic activities. Conventional nanoparticle-based catalysts, with their simple structural features, have technical limitations in achieving the requirement for accurate breath analysis. Innovative strategies have been pursued to synthesize unconventional catalyst types with enhanced catalytic capabilities. This Perspective provides a comprehensive overview of recent advancements in catalyst technology for chemiresistive-type gas sensors used in breath analysis. It discusses various emerging catalysts, such as doping catalysts, single-atom catalysts (SACs), bimetallic alloy catalysts, high-entropy alloy (HEA) catalysts, exsolution catalysts, and catalytic filter membranes, along with their unique chemical activation mechanisms that enhance gas sensing properties for detecting target biomarkers in exhaled breath. The review also explores novel strategies for catalyst design, including computational prediction, advanced synthesis techniques, and the integration of sensor arrays with artificial intelligence (AI) to improve diagnostic reliability. By highlighting the crucial role of these emerging catalysts, this review provides valuable insights into the catalytic, synthetic, and analytical aspects that are essential for advancing breath analysis technology.
Collapse
Affiliation(s)
- Jong Won Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinho Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science & Chemical Engineering, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Xiao X, Liu Y, Dong Z, Hu Q, Cao Y, Jia F, Gao T, Mao L, Zhang D, Xu J. Enhanced Regulation of Selectivity by the Coupling Effects of Surface Acidity and Strain Effects via Precisely Controlling the Location of Pt. ACS Sens 2024; 9:5333-5341. [PMID: 39388537 DOI: 10.1021/acssensors.4c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Loading a sensitizer and constructing a rational nanostructure have been reported to be effective approaches for enhancing the catalytic/sensing performance. However, the impact of the precise loading position on the catalytic/sensing performance is always overlooked. Here, we discovered that precisely changing the location of Pt clusters from the outside of Al2O3-ZnO nanocoils (O-PtAlZnNCs) to the inner side of the nanocoils (I-PtAlZnNCs) could change the sensing performance of the sensor from H2S to acetone. Furthermore, precisely loading Pt inside of the confined space led to a high sensing performance and reduced the limit of detection (LOD) of acetone by a factor of 50 times (from 100 to 2 ppb). Combining X-ray photoelectron spectroscopy (XPS), NH3-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), in situ X-ray absorption spectroscopy (XAS), and density functional theory (DFT) simulations, the enhancement of sensitivity and regulation of sensing selectivity are attributed to the coupling effects from enrichment of confined space and Al2O3 acid-base active sites as well as the regulation of electronic structure by location-dominated strain effects. This work not only provides a novel sight to precisely regulate the selectivity and obtain ultrasensitive materials but also serves as a useful instruction for further understanding and precisely designing specific sensors and catalysts with high performance.
Collapse
Affiliation(s)
- Xiaoyang Xiao
- NEST Lab, Department of Chemistry, Collage of Sciences, Shanghai University, Shanghai 200444, China
| | - Yiming Liu
- Institute for Sustainable Energy & Department of Physics, College of Science, Shanghai University, Shanghai 200444, China
| | - Zhenliang Dong
- NEST Lab, Department of Chemistry, Collage of Sciences, Shanghai University, Shanghai 200444, China
| | - Qingmin Hu
- NEST Lab, Department of Chemistry, Collage of Sciences, Shanghai University, Shanghai 200444, China
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yanfen Cao
- Jining Institute of Quality & Metrology Inspection, Jining 272000, China
| | - Fanhao Jia
- Department of Physics, School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Tiange Gao
- NEST Lab, Department of Chemistry, Collage of Sciences, Shanghai University, Shanghai 200444, China
| | - Liwen Mao
- NEST Lab, Department of Chemistry, Collage of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- NEST Lab, Department of Chemistry, Collage of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, Collage of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
6
|
Feng B, Wang Z, Feng Y, Li P, Zhu Y, Deng Y, Wu L, Yue Q, Wei J. Single-Atom Au-Functionalized Mesoporous SnO 2 Nanospheres for Ultrasensitive Detection of Listeria monocytogenes Biomarker at Low Temperatures. ACS NANO 2024; 18:22888-22900. [PMID: 39149962 DOI: 10.1021/acsnano.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Semiconductor metal oxide gas sensors have been proven to be capable of detecting Listeria monocytogenes, one kind of foodborne bacteria, through monitoring the characteristic gaseous metabolic product 3-hydroxy-2-butanone. However, the detection still faces challenges because the sensors need to work at high temperatures and output limited gas sensing performance. The present study focuses on the design of single-atom Au-functionalized mesoporous SnO2 nanospheres for the sensitive detection of ppb-level 3-hydroxy-2-butanone at low temperatures (50 °C). The fabricated sensors exhibit high sensitivity (291.5 ppm-1), excellent selectivity, short response time (10 s), and ultralow detection limit (10 ppb). The gas sensors exhibit exceptional efficacy in distinguishing L. monocytogenes from other bacterial strains (e.g., Escherichia coli). Additionally, wireless detection of 3-hydroxy-2-butanone vapor is successfully achieved through microelectromechanical systems sensors, enabling real-time monitoring of the biomarker 3-hydroxy-2-butanone. The superior sensing performance is ascribed to the mesoporous framework with accessible active Au-O-Sn sites in the uniform sensing layer consisting of single-atom Au-modified mesoporous SnO2 nanospheres, and such a feature facilitates the gas diffusion, adsorption, and catalytic conversion of 3-hydroxy-2-butanone molecules in the sensing layer, resulting in excellent sensing signal output at relatively low temperature that is favorable for developing low-energy-consumption gas sensors.
Collapse
Affiliation(s)
- Bingxi Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zizheng Wang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongheng Zhu
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
7
|
Chen L, Sun XQ, Song ZY, Gao RH, Guo Z, Huang XJ. Theoretical Validation of Non-Noble Cu Sites Integrated on SnO 2 Nanoflowers for Enhanced Gas Sensing of Ethanethiol at Room Temperature. Inorg Chem 2024; 63:11438-11449. [PMID: 38833708 DOI: 10.1021/acs.inorgchem.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Ethanethiol (EtSH), being highly toxic, flammable, and explosive, poses significant risks to human health and safety and is capable of causing fires and explosions. Room-temperature detection using chemiresistive gas sensors is essential for managing these risks. However, the gas-sensing performance of conventional metal-oxide sensing materials may be limited by their weak interaction with EtSH at room temperature. Herein, SnO2 nanoflowers assembled with non-noble Cu-site-enriched porous nanosheets were designed and prepared by an in situ self-template pyrolysis synthesis strategy to enable highly sensitive and selective room-temperature detection of EtSH. By regulating the number of non-noble Cu sites, these nanoflowers achieved efficient EtSH sensing with a Ra/Rg value of 11.0 at 50 ppb, ensuring high selectivity, reproducibility, and stability at room temperature. Moreover, a comparative analysis of the room-temperature gas-sensing performance of SnO2 nanoflowers with non-noble Fe- or Ni-site-enriched nanosheets highlights the benefits of non-noble Cu sites for EtSH detection. Density functional theory (DFT) analysis reveals that non-noble Cu sites have a unique affinity for EtSH, offering preferential binding over other gases and explaining the outstanding sensing performance of non-noble Cu-site-enriched nanosheet-assembled SnO2 nanoflowers. The structural and interface engineering of the sensing materials presented in this work provides a promising approach for offering efficient and durable gas sensors operable at room temperature.
Collapse
Affiliation(s)
- Li Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Xi-Qian Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Ren-Hui Gao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Xing-Jiu Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
8
|
Chen H, Chen H, Chen J, Song M. Gas Sensors Based on Semiconductor Metal Oxides Fabricated by Electrospinning: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2962. [PMID: 38793817 PMCID: PMC11125222 DOI: 10.3390/s24102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Electrospinning has revolutionized the field of semiconductor metal oxide (SMO) gas sensors, which are pivotal for gas detection. SMOs are known for their high sensitivity, rapid responsiveness, and exceptional selectivity towards various types of gases. When synthesized via electrospinning, they gain unmatched advantages. These include high porosity, large specific surface areas, adjustable morphologies and compositions, and diverse structural designs, improving gas-sensing performance. This review explores the application of variously structured and composed SMOs prepared by electrospinning in gas sensors. It highlights strategies to augment gas-sensing performance, such as noble metal modification and doping with transition metals, rare earth elements, and metal cations, all contributing to heightened sensitivity and selectivity. We also look at the fabrication of composite SMOs with polymers or carbon nanofibers, which addresses the challenge of high operating temperatures. Furthermore, this review discusses the advantages of hierarchical and core-shell structures. The use of spinel and perovskite structures is also explored for their unique chemical compositions and crystal structure. These structures are useful for high sensitivity and selectivity towards specific gases. These methodologies emphasize the critical role of innovative material integration and structural design in achieving high-performance gas sensors, pointing toward future research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Hao Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Huayang Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Jiabao Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Liu L, Yung KF, Yang H, Liu B. Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem Sci 2024; 15:6285-6313. [PMID: 38699256 PMCID: PMC11062113 DOI: 10.1039/d4sc01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Ka-Fu Yung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR 999007 China
- Department of Chemistry, Hong Kong Institute of Clean Energy & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
10
|
Yu Y, Tan Y, Niu W, Zhao S, Hao J, Shi Y, Dong Y, Liu H, Huang C, Gao C, Zhang P, Wu Y, Zeng L, Du B, He Y. Advances in Synthesis and Applications of Single-Atom Catalysts for Metal Oxide-Based Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1970. [PMID: 38730776 PMCID: PMC11084526 DOI: 10.3390/ma17091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
As a stable, low-cost, environment-friendly, and gas-sensitive material, semiconductor metal oxides have been widely used for gas sensing. In the past few years, single-atom catalysts (SACs) have gained increasing attention in the field of gas sensing with the advantages of maximized atomic utilization and unique electronic and chemical properties and have successfully been applied to enhance the detection sensitivity and selectivity of metal oxide gas sensors. However, the application of SACs in gas sensors is still in its infancy. Herein, we critically review the recent advances and current status of single-atom catalysts in metal oxide gas sensors, providing some suggestions for the development of this field. The synthesis methods and characterization techniques of SAC-modified metal oxides are summarized. The interactions between SACs and metal oxides are crucial for the stable loading of single-atom catalysts and for improving gas-sensitive performance. Then, the current application progress of various SACs (Au, Pt, Cu, Ni, etc.) in metal oxide gas sensors is introduced. Finally, the challenges and perspectives of SACs in metal oxide gas sensors are presented.
Collapse
Affiliation(s)
- Yuanting Yu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yiling Tan
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Wen Niu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Shili Zhao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Jiongyue Hao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yijie Shi
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yingchun Dong
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Hangyu Liu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Chun Huang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Chao Gao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Peng Zhang
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China; (P.Z.); (Y.W.)
| | - Yuhong Wu
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China; (P.Z.); (Y.W.)
| | - Linggao Zeng
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China;
| | - Bingsheng Du
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| |
Collapse
|
11
|
Phung VBT, Pham BL, Duy NVA, Dang MT, Tran TN, Tran QH, Luong TT, Dinh VA. First-principles study of highly sensitive graphene/hexagonal boron nitride heterostructures for application in toxic gas-sensing devices. RSC Adv 2024; 14:4904-4916. [PMID: 38323020 PMCID: PMC10846490 DOI: 10.1039/d3ra08017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Graphene-based sensors exhibit high sensitivity, fast response, and good selectivity towards toxic gases but have low mechanical stability. The combination of graphene and two-dimensional hexagonal boron nitride (h-BN) is expected to increase the mechanical stability and enhance the adsorption performance of these gas sensors. Using first-principles calculations, we demonstrate that two-dimensional graphene/h-BN double layers can be used as good substrates for gas sensors with a small lattice mismatch of only 1.78%. Moreover, the presence of a h-BN layer widens the band gap by about 38 meV and considerably increases the work function, thus positively affecting the gas adsorption performance. Although these graphene/h-BN heterostructures do not change the physical adsorption mechanism of these sensors concerning the graphene-based materials, these bilayers significantly enhance the sensitivity of these sensors for detecting CO2, CO, NO, and NO2 toxic gases. Particularly, compared to the pristine graphene-based materials, the gas adsorption energies of graphene/h-BN increased by up to 13.78% for the adsorption of NO, and the shortest distances between the graphene/h-BN substrates and adsorbed gas molecules decreased. We also show that the graphene/h-BN heterostructure is more selective towards NOx gases while more inert towards COx gases, based on the different amounts of charge transferred from the substrate to the adsorbed gas molecules. Using the non-equilibrium Green functions in the context of density functional theory, we quantitatively associated these charge transfers with the reduction of the current passing through these scattering regions. These results demonstrate that graphene/h-BN heterostructures can be exploited as highly sensitive and selective room-temperature gas sensors for detecting toxic gases.
Collapse
Affiliation(s)
- Viet Bac T Phung
- Center for Environmental Intelligence and College of Engineering & Computer Science, Vin University Hanoi 100000 Vietnam
| | - Ba Lich Pham
- Institut de Chimie Physique, Faculté des Sciences d'Orsay, Université Paris-Saclay Orsay 91405 France
| | - Nguyen Vo Anh Duy
- FPT University Can Tho Campus, 600 Nguyen Van Cu Street, Ninh Kieu Can Tho Vietnam
| | - Minh Triet Dang
- School of Education, Can Tho University 3-2 Road Can Tho Vietnam
| | - Thi Nhan Tran
- Faculty of Fundamental Sciences, Hanoi University of Industry 298 Cau Dien Street, Bac Tu Liem District Hanoi 100000 Vietnam
| | - Quang-Huy Tran
- Faculty of Physics, Hanoi Pedagogical University 2 Phuc Yen Vinh Phuc Vietnam
| | - Thi Theu Luong
- Hoa Binh University Bui Xuan Phai Str., My Dinh II, Nam Tu Liem Hanoi 100000 Vietnam
| | - Van An Dinh
- Department of Precision Engineering, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
12
|
Wang Y, Ouyang T, Meng L, Wu L, Bai W, Zhang S, Zeng X. Studies on the Platinum Thick Film Sensor Conformally Written by Laser Micro-Cladding: Formability, Microstructure, and Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19209-19219. [PMID: 37039286 DOI: 10.1021/acsami.3c01974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this paper, laser micro-cladding technology (LMC) was conducted to prepare high-temperature Pt thick film sensors in situ. The formability, microstructure, sintering mechanism, and electrical properties of the LMCed Pt thick films were first studied systematically. Results indicated that with the increase of laser power density, the sintering degree of the Pt thick film increased obviously, improving its adhesion strength and reducing its resistivity. However, when the laser power density exceeded the threshold, holes or grooves were formed in the Pt film, leading to the degeneration of its properties. A Pt thick film with good adhesion strength, excellent conductive networks, and the minimum resistivity (46 ± 2 μΩ·cm) was obtained at a laser power density of 1.37 × 106 W·cm-2. Then, Pt thick film temperature sensors (including Pt thermal resistance temperature (RTD) and Pt-Pt10%Rh thermocouple sensors) were conformally prepared by LMC. Their temperature-sensing performance became stable after the initial high-temperature calibration, with a linearity of 0.9985 for the RTD with a TCR of 2.46 × 10-3/°C (at 920 °C) and a linearity of 0.9905 for the thermocouple with a Seebeck coefficient of 9.7 μV/°C, both of which are better than that made by direct DC magnetron sputtering deposition. Therefore, this work provides a novel feasible way to conformally integrate high-performance Pt film sensors in situ.
Collapse
Affiliation(s)
- Yueyue Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Taoyuan Ouyang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Meng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liexin Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wuxia Bai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuhuan Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyan Zeng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Qu B, Li P, Bai L, Qu Y, Li Z, Zhang Z, Zheng B, Sun J, Jing L. Atomically Dispersed ZnN 5 Sites Immobilized on g-C 3 N 4 Nanosheets for Ultrasensitive Selective Detection of Phenanthrene by Dual Ratiometric Fluorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211575. [PMID: 36680460 DOI: 10.1002/adma.202211575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Ultrasensitively selective detection of trace polycyclic aromatic hydrocarbons (PAHs) like phenanthrene (PHE) is critical but remains challenging. Herein, atomically dispersed Zn sites on g-C3 N4 nanosheets (sZn-CN) are constructed by thermal polymerization of a Zn-cyanuric acid-melamine supramolecular precursor for the fluorescence detection of PHE. A high amount (1.6 wt%) of sZn is grafted in the cave of CN with one N vacancy in the form of unique Zn(II)N5 coordination. The optimized sZn-CN achieves a wide detection range (1 ng L-1 to 5 mg L-1 ), ultralow detection limit (0.35 ng L-1 , with 5-order magnitude improvement over CN), and ultrahigh selectivity toward PHE even among typical PAHs based on the built PHE-CN dual ratiometric fluorescence method. By means of in situ Fourier transform infrared spectroscopy, time-resolved absorption and fluorescence spectroscopy, and theoretical calculations, the resulting superior detection performance is attributed to the favorable selective adsorption of PHE on as-constructed atomic Zn(II)N5 sites via the ionic cation-π interactions (Znδ+ C2 δ- type), and the fluorescence quenching is dominated by the inner filter effect (IFE) from the multilayer adsorption of PHE at low concentrations, while it is done by the protruded photogenerated electron-transfer process, as well as IFE from the monolayer adsorption of PHE at ultralow concentration.
Collapse
Affiliation(s)
- Binhong Qu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Peng Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Linlu Bai
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ziqing Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jianhui Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
14
|
Wang Y, Pan Y, Jiang Y, Xu M, Jiang J. Wearable electrochemical gas sensor for methanol leakage detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
15
|
Sun Y, Wang B, Wang B, Zhao Z, Zhang W, Zhang W, Suematsu K, Hu J. Construction of Flower-like PtO x@ZnO/In 2O 3 Hollow Microspheres for Ultrasensitive and Rapid Trace Detection of Isopropanol. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12041-12051. [PMID: 36811457 DOI: 10.1021/acsami.2c20746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of a highly effective isopropanol gas sensor with high response and trace detection capability is extremely important for environmental surveillance and human health. Here, novel flower-like PtOx@ZnO/In2O3 hollow microspheres were prepared by a three-step approach. The hollow structure was composed of an In2O3 shell inside and layered ZnO/In2O3 nanosheets outside with PtOx nanoparticles (NPs) on the surface. Meanwhile, the gas sensing performances of the ZnO/In2O3 composite with different Zn/In ratios and PtOx@ZnO/In2O3 composites were evaluated and compared systematically. The measurement results indicated that the ratio of Zn/In affected the sensing performance and the ZnIn2 sensor presented a higher response, which was then modified with PtOx NPs to further enhance its sensing property. The Pt@ZnIn2 sensor exhibited outstanding isopropanol detection performance with ultrahigh response values under 22 and 95% relative humidity (RH). In addition, it also showed a rapid response/recovery speed, good linearity, and low theoretical limit of detection (LOD) regardless of being under a relatively dry or ultrahumid atmosphere. The enhancement of isopropanol sensing properties might be ascribed to the unique structure of PtOx@ZnO/In2O3, heterojunctions between the components, and catalytic effect of Pt NPs.
Collapse
Affiliation(s)
- Yongjiao Sun
- Center of Nano Energy and Devices, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Baoxia Wang
- Center of Nano Energy and Devices, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Bingliang Wang
- Center of Nano Energy and Devices, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhenting Zhao
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, P. R. China
| | - Wenlei Zhang
- Center of Nano Energy and Devices, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Wendong Zhang
- Center of Nano Energy and Devices, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Koichi Suematsu
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Jie Hu
- Center of Nano Energy and Devices, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
16
|
Zhu Y, Yang L, Guo S, Hou M, Ma Y. In Situ Synthesis of Hierarchical Flower-like Sn/SnO 2 Heterogeneous Structure for Ethanol GAS Detection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:792. [PMID: 36676526 PMCID: PMC9863574 DOI: 10.3390/ma16020792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/20/2023]
Abstract
In this study, morphogenetic-based Sn/SnO2 graded-structure composites were created by synthesizing two-dimensional SnO sheets using a hydrothermal technique, self-assembling into flower-like structures with an average petal width of roughly 3 um. The morphology and structure of the as-synthesized samples were characterized by utilizing SEM, XRD, XPS, etc. The gas-sensing characteristics of gas sensors based on the flower-like Sn/SnO2 were thoroughly researched. The sensor displayed exceptional selectivity, a rapid response time of 4 s, and an ultrahigh response at 250 °C (Ra/Rg = 17.46). The excellent and enhanced ethanol-gas-sensing properties were mainly owing to the three-dimensional structure and the rise in the Schottky barrier caused by the in situ production of tin particles.
Collapse
Affiliation(s)
- Ye Zhu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Li Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shenghui Guo
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Ming Hou
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yanjia Ma
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
17
|
Chu T, Rong C, Zhou L, Mao X, Zhang B, Xuan F. Progress and Perspectives of Single-Atom Catalysts for Gas Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206783. [PMID: 36106690 DOI: 10.1002/adma.202206783] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) attract extensive attention in the field of heterogeneous catalysis in recent years due to the maximum atom utilization and unique physical and chemical properties. The gas sensing is actually a heterogeneous catalysis process but the SACs are new to this area. Although SACs show huge potential in gas sensing, the SACs gas sensing area currently is still at the infancy stage. This work critically reviews the recent advances and current status of single-atom gas sensing materials. General synthesis routes, characterization methods, and sensing performance indexes are introduced. At the end, the challenges and future prospects on SACs gas sensing are presented from the authors' perspectives. This work is anticipated to provide insights and guideline for the chemical sensing community.
Collapse
Affiliation(s)
- Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lei Zhou
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xinyuan Mao
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
18
|
Xu S, Yang C, Tian Y, Lu J, Jiang Y, Guo H, Zhao J, Peng H. Exploitation of Schottky-Junction-based Sensors for Specifically Detecting ppt-Concentration Gases. ACS Sens 2022; 7:3764-3772. [PMID: 36480642 DOI: 10.1021/acssensors.2c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gas species and concentrations of human-exhaled breath correlate with health, wherein disease markers contain volatile organic compounds (VOCs) of concentrations in parts per billion. It is expected that a gas-sensing strategy possesses a gas specificity and detection limit in the parts per trillion (ppt) range; however, it is still a challenge. This investigation has exploited the Schottky junction of gas sensors for detecting the reactance signal of ppt VOC, aiming for a specific and rapid detection toward disease marker acetone. In this new sensing paradigm, formed by the engineered energy band between metal-semiconductor contact, the Schottky junction is accessed to specific modulation of different adsorbate dopings and the corresponding reactance signal is measured. Regarding the detection toward ppt concentration of acetone, this sensing paradigm possesses rapid (∼100 s) and room-temperature response, molecular specificity, and 34 ppt of detection limit. The proposed detection paradigm is demonstrated to show a high feasibility toward detection of disease marker acetone.
Collapse
Affiliation(s)
- Shipu Xu
- Songshan Lake Materials Laboratory, Dongguan523808, P. R. China
| | - Chen Yang
- State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing100871, P. R. China
| | - Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, P. R. China
| | - Jing Lu
- State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing100871, P. R. China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, P. R. China.,Collaborative Innovation Center of Quantum Matter, Beijing100871, P. R. China.,Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing100871, P. R. China
| | - Hanjie Guo
- Songshan Lake Materials Laboratory, Dongguan523808, P. R. China
| | - Jinkui Zhao
- Songshan Lake Materials Laboratory, Dongguan523808, P. R. China.,The Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, P. R. China
| |
Collapse
|
19
|
Song Z, Tang W, Chen Z, Wan Z, Chan CLJ, Wang C, Ye W, Fan Z. Temperature-Modulated Selective Detection of Part-per-Trillion NO 2 Using Platinum Nanocluster Sensitized 3D Metal Oxide Nanotube Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203212. [PMID: 36058651 DOI: 10.1002/smll.202203212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor chemiresistive gas sensors play critical roles in a smart and sustainable city where a safe and healthy environment is the foundation. However, the poor limits of detection and selectivity are the two bottleneck issues limiting their broad applications. Herein, a unique sensor design with a 3D tin oxide (SnO2 ) nanotube array as the sensing layer and platinum (Pt) nanocluster decoration as the catalytic layer, is demonstrated. The Pt/SnO2 sensor significantly enhances the sensitivity and selectivity of NO2 detection by strengthening the adsorption energy and lowering the activation energy toward NO2 . It not only leads to ultrahigh sensitivity to NO2 with a record limit of detection of 107 parts per trillion, but also enables selective NO2 sensing while suppressing the responses to interfering gases. Furthermore, a wireless sensor system integrated with sensors, a microcontroller, and a Bluetooth unit is developed for the practical indoor and on-road NO2 detection applications. The rational design of the sensors and their successful demonstration pave the way for future real-time gas monitoring in smart home and smart city applications.
Collapse
Affiliation(s)
- Zhilong Song
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
- Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenying Tang
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhu'an Wan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wenhao Ye
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
20
|
Park JY, Kwak Y, Lim HR, Park SW, Lim MS, Cho HB, Myung NV, Choa YH. Tuning the sensing responses towards room-temperature hypersensitive methanol gas sensor using exfoliated graphene-enhanced ZnO quantum dot nanostructures. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129412. [PMID: 35780731 DOI: 10.1016/j.jhazmat.2022.129412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A suitable and non-invasive methanol sensor workable in ambient temperature conditions with a high response has gained wide interest to prevent detrimental consequences for industrial workers from its low-level intoxication. In this work, we present a tunable and highly responsive ppb-level methanol gas sensor device working at room temperature via a bottom-up synthetic approach using exfoliated graphene sheet (EGs) and ZnO quantum dots (QDs) on an aluminum anodic oxide (AAO) template. It is verified that EGs-supported AAO with a vertical electrode configuration enabled high and fast-responsive methanol sensing. Moreover, the hydroxyl and carboxyl groups of the high surface area EGs and ZnO QDs with a 3.37 eV bandgap efficiently absorbing UV light led to 56 times high response due to the enhanced polarization on the sensor surface compared to non-UV-radiated EGs/AAO at 800 ppb of methanol. The optimal resonance frequency of methanol is determined to be 100 kHz, which could detect methanol with high response of 2.65% at 100 ppm. The limit of detection (LOD) concentration is obtained at 2 ppb level. This study demonstrates the potential of UV-assisted ZnO, EGs, and AAO-based capacitance sensor material for rapidly detecting hazardous gaseous light organic molecules at ambient conditions, and the overall approach can be easily expanded to a novel non-invasive monitoring strategy for light and hazardous volatile organic exposures.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Yeonsu Kwak
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark 19716, United States
| | - Hyo-Ryoung Lim
- Major of Human Biocovergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Si-Woo Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Seob Lim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong-Baek Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, United States
| | - Yong-Ho Choa
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
21
|
Defective ZnO Nanoflowers Decorated by Ultra-Fine Pd Clusters for Low-Concentration CH4 Sensing: Controllable Preparation and Sensing Mechanism Analysis. COATINGS 2022. [DOI: 10.3390/coatings12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To detect low concentration of CH4 is indeed meaningful in industrial manufacturing, such as the petrochemical industry and natural gas catalysis, but it is not easy to detect low concentration of CH4 due to its high symmetrical and stable structure. In this work, defect-rich ZnO1−x nanoflowers (NFs) were synthesized by a two-step route so as to obtain defect-enhanced gas-sensing performance, namely hydrothermal synthesis followed by H2 treatment. In order to achieve low-concentration detection of CH4, the ultra-thin Pd clusters’ (Cs, diameter about 1–2 nm) sensitizer was synthesized and decorated onto the surface of ZnO1−x NFs. It is found that Pd Cs-2/ZnO1−x gas sensors show enhanced gas-sensing properties to CH4, even at ppm concentration level. At its optimal working temperature of 260 °C, the gas response to 50 ppm CH4 can reach 5.0 with good gas selectivity; the response and recovery time is only 16.2 and 13.8 s, respectively. In the Results, we discussed the CH4 gas-sensing mechanism deeply. Overall, it is very necessary to detect low-concentration methane safely. It is possible for further safe detection of low-concentration methane gas in the future.
Collapse
|