1
|
Ren W, Luan J, Yin L, Chen H, Wang C, Zhang P, Cui G, Lv L. Ultrasensitive Room-Temperature NO 2 Gas Sensor Based on MXene-Cu 2O Composites. ACS Sens 2025. [PMID: 40249796 DOI: 10.1021/acssensors.5c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The development of real-time trace-level NO2 quantification platforms that can be operated at room temperature constitutes a critical advancement for occupational safety and public health monitoring systems. This study demonstrates a room-temperature NO2 sensor using MXene-Cu2O composites prepared via a hydrothermal method. Systematic evaluation of MXene-introduced effects identified the 0.84 wt % MXene-Cu2O composite as optimal, exhibiting 4-fold enhanced sensitivity and shorter response (55 s)/recovery (35 s) time compared to pure Cu2O. Additionally, the sensor exhibits a low detection limit (10 ppb), high selectivity, great reversibility, and long-term stability. The enhanced sensing performance originates from precisely engineered interfacial architectures between MXene and Cu2O, which effectively adjust the charge-transfer behavior through the conduction tunnel in the sensing material. Furthermore, oxygen vacancy engineering creates defect-mediated adsorption centers that promote selective NO2 chemisorption through charge polarization effects. This research offers a novel strategy for designing optimized structures to enhance the sensitivity of MOS-based materials for NO2 gas detection.
Collapse
Affiliation(s)
- Wenbin Ren
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Jinfeng Luan
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Liang Yin
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Huijuan Chen
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Changchun Wang
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Pinhua Zhang
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Guangliang Cui
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Li Lv
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| |
Collapse
|
2
|
Batet D, Gabriel G. Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. CHEMSUSCHEM 2025; 18:e202401101. [PMID: 39570276 PMCID: PMC11960596 DOI: 10.1002/cssc.202401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
The spread of point-of-care (PoC) diagnostic tests using electrochemical sensors poses a significant environmental challenge, especially in limited-resource settings due to the lack of waste management infrastructure. This issue is expected to intensify with the emergence of the Internet of Medical Things (IoMT), necessitating eco-friendly solutions for disposable devices. This review discusses efforts to develop green and sustainable PoC diagnostic devices, clarifying terms like biodegradability and transient electronics. It explores potential transient and biodegradable materials and fabrication technologies, emphasizing sustainable electronics with low-energy consumption and low-carbon footprint techniques, particularly favoring printing methods. The review highlights examples of necessary electronic components containing biodegradable materials for electrochemical PoC devices and discusses their role in device sustainability. Finally, it examines the feasibility of integrating these components and technologies into comprehensive biodegradable PoC devices, addressing the imminent need for eco-friendly solutions in diagnostic testing. This comprehensive discussion serves as a guide for researchers and developers striving to mitigate the environmental impact of PoC testing in the era of IoMT and personalized medicine.
Collapse
Affiliation(s)
- David Batet
- Institut de Microelectrònica de BarcelonaIMB-CNM (CSIC)C/dels Til⋅lers sn, Campus UAB08193 Cerdanyola del VallèsBarcelonaSpain
| | - Gemma Gabriel
- Institut de Microelectrònica de BarcelonaIMB-CNM (CSIC)C/dels Til⋅lers sn, Campus UAB08193 Cerdanyola del VallèsBarcelonaSpain
- CIBER de Bioingeniería, Biomateriales y NanomedicinaInstituto de Salud Carlos IIISpain
| |
Collapse
|
3
|
Filippin AN, Campos-Lendinez Á, Delgado-Alvarez J, Moreno-Martinez G, Castillo-Seoane J, Rico VJ, Godinho VF, Barranco Á, Sanchez-Valencia JR, Borras A. Facile integration of single-crystalline phthalocyanine nanowires and nanotrees as photo-enhanced conductometric sensors. NANOSCALE 2025; 17:7945-7956. [PMID: 40066687 PMCID: PMC11894603 DOI: 10.1039/d4nr04761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
This article presents a reproducible and affordable methodology for fabricating organic nanowires (ONWs) and nanotrees (ONTs) as light-enhanced conductometric O2 sensors. This protocol is based on a solventless procedure for the formation of high-density arrays of nanowires and nanotrees on interdigitated electrodes. The synthesis combines physical vapour deposition for the self-assembled growth of free-phthalocyanine nanowires and soft plasma etching to prompt the nucleation sites on the as-grown ONWs to allow for the formation of nanotrees. Electrical conductivity in such low-dimensional electrodes was analysed in the context of density, length, and interconnection between nanowires and nanotrees. Furthermore, the electrodes were immersed in water to improve the nanowires' connectivity. The response of the nanotrees as conductometric O2 sensors was tested at different temperatures (from room temperature to 100 °C), demonstrating that the higher surface area exposed by the nanotrees, in comparison with that of their polycrystalline thin film counterparts, effectively enhances the doping effect of oxygen and increases the response of the ONT-based sensor. Both organic nanowires and nanotrees were used as model systems to study the augmented response of the sensors provided by illumination with white or monochromatic light to organic semiconducting systems. Interestingly, the otherwise negligible sensor response at room temperature can be activated (On/Off) under LED illumination, and no dependency on the illumination wavelength in the visible range was observed. Thus, under low-power LED illumination with white light, we show a response to O2 of 16% and 37% in resistivity for organic nanotrees at room temperature and 100 °C, respectively. These results open the path to developing room temperature long-lasting gas sensors based on one- and three-dimensional single-crystalline small-molecule nanowires.
Collapse
Affiliation(s)
- A Nicolás Filippin
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Ángel Campos-Lendinez
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Juan Delgado-Alvarez
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Gloria Moreno-Martinez
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Javier Castillo-Seoane
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Víctor J Rico
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Vanda F Godinho
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Ángel Barranco
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Juan R Sanchez-Valencia
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Ana Borras
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| |
Collapse
|
4
|
Liu Y, Wang F, Mei Z, Shen Q, Liao K, Zhang S, Wang H, Ma S, Wang L. Advances in cellulose-based self-powered ammonia sensors. Carbohydr Polym 2025; 351:123074. [PMID: 39779004 DOI: 10.1016/j.carbpol.2024.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Ammonia sensors are widely used across applications in food monitoring, environmental surveillance, and medical research, where high safety standards are essential. Cellulose-based materials are particularly well-suited to meet these stringent requirements, with significant potential for innovation due to their biodegradability and biocompatibility. Of the various cellulose-based ammonia sensors available, self-powered sensors, especially those based on triboelectric nanogenerators (TENGs), stand out for their unique advantages, including the absence of an external power supply, environmental sustainability, and ease of integration. This review offers a detailed overview of the integration of cellulose-based materials with ammonia-sensitive components, highlighting their ease of processing and modification. It further classifies and compares cellulose-based ammonia sensors based on their sensing mechanisms, emphasizing TENG-based sensors specifically. The review concludes with a summary of current applications and explores optimization strategies. Finally, it discusses future opportunities and challenges for cellulose-based self-powered ammonia sensors and provides valuable insights into ongoing innovation and potential.
Collapse
Affiliation(s)
- Yuefan Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhixuan Mei
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Qianru Shen
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Kaixin Liao
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shenzhuo Zhang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Li J, Li Y, Zeng W, Bai B, Ren S. Regulating surface terminals and interlayer structure of Ti 3C 2T x for superior NH 3 sensing. Talanta 2025; 283:127107. [PMID: 39481348 DOI: 10.1016/j.talanta.2024.127107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
MXene materials have exhibited potential in electrochemistry, particularly in gas sensing, due to their excellent conductivity, large specific surface area of layered materials, and unique functional groups. However, the gas sensing performance of intrinsic 2D MXene materials is often limited by their fluorine-containing terminals and interfacial structure. In this study, based on intrinsic Ti3C2Tx, we employed alkali treatment and annealing to prepare oxygen-rich Ti3C2(OH)x/Ti3C2Ox with expanded interlayer spacing, achieving enhanced gas sensing performance for NH3. The surface chemistry and structure of the sensing materials have been optimized through the synergistic regulation of MXene's unique surface terminations and the intercalation effect of layered materials. Compared to intrinsic Ti3C2Tx, the interlayer spacing of oxygen-rich Ti3C2(OH)x/Ti3C2Ox increased from 9.1 Å to 12.1 Å. The surface terminations of oxygen-rich Ti3C2(OH)x/Ti3C2Ox have been defluorinated and oxygenated. The maximum response value of oxygen-rich Ti3C2(OH)x/Ti3C2Ox to NH3 was 35.66, approximately twice that of the original Ti3C2Tx at an NH3 concentration of 200 ppm. DFT (Density functional theory) calculations and DRIFT (In situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy) tests explained the interaction between the surface terminals and NH3, indicating good selectivity and sensitivity of oxygen-rich Ti3C2(OH)x/Ti3C2Ox to NH3. The results demonstrated that the synergistic effects of surface chemistry and structural engineering are crucial for MXene to optimize the electrochemical performance, particularly the gas sensing performance. This provides a feasible approach for the performance optimization of intrinsic MXene materials.
Collapse
Affiliation(s)
- Jiazheng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China.
| | - Yanqiong Li
- School of Electronic Information & Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing, 400030, China.
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China.
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Shan Ren
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
6
|
Zhen YX, Wang G, Li YF, Yu Y. Nanogenerators for gas sensing applications. Front Chem 2025; 12:1532018. [PMID: 39867594 PMCID: PMC11757891 DOI: 10.3389/fchem.2024.1532018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection. The paper thoroughly examines the advancements made in the field of NG-based self-powered gas sensor research in recent years. A systematic description is given of the two main types of NG-based self-powered gas sensors. Lastly, the evolution of sensor use in a few typical gas sensing applications is highlighted, and the field's future development trend is anticipated.
Collapse
Affiliation(s)
- Ye-Xuan Zhen
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Shijiazhuang, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Gong Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Shijiazhuang, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Yun-Fei Li
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Shijiazhuang, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Yu Yu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Shijiazhuang, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| |
Collapse
|
7
|
Wei Q, Cao Y, Yang X, Jiao G, Qi X, Wen G. Recent Developments in Electrospun Nanofiber-Based Triboelectric Nanogenerators: Materials, Structure, and Applications. MEMBRANES 2024; 14:271. [PMID: 39728721 DOI: 10.3390/membranes14120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs. It begins with an exploration of the fundamental principles behind electrospinning and triboelectricity, followed by a detailed examination of the application and performance of various polymer materials, including poly (vinylidene fluoride) (PVDF), polyamide (PA), thermoplastic polyurethane (TPU), polyacrylonitrile (PAN), and other significant polymers. Furthermore, this review analyzes the influence of diverse structural designs-such as fiber architectures, bionic configurations, and multilayer structures-on the performance of TENGs. Applications across self-powered devices, environmental energy harvesting, and wearable technologies are discussed. The review concludes by highlighting current challenges and outlining future research directions, offering valuable insights for researchers and engineers in the field.
Collapse
Affiliation(s)
- Qinglong Wei
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuying Cao
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiao Yang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guosong Jiao
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiaowen Qi
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guilin Wen
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
8
|
Deng S, Akram W, Ye X, Zhang L, Yang Y, Cheng S, Fang J. Comprehensive Insights on MXene-Based TENGs: from Structures, Functions to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404872. [PMID: 39358944 DOI: 10.1002/smll.202404872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Indexed: 10/04/2024]
Abstract
The rapid advancement of triboelectric nanogenerators (TENGs) has introduced a transformative approach to energy harvesting and self-powered sensing in recent years. Nonetheless, the untapped potential of TENGs in practical scenarios necessitates multiple strategies like material selections and structure designs to enhance their output performance. Given the various superior properties, MXenes, a kind of novel 2D materials, have demonstrated great promise in enhancing TENG functionality. Here, this review comprehensively delineates the advantages of incorporating MXenes into TENGs, majoring in six pivotal aspects. First, an overview of TENGs is provided, stating their theoretical foundations, working modes, material considerations, and prevailing challenges. Additionally, the structural characteristics, fabrication methodologies, and family of MXenes, charting their developmental trajectory are highlighted. The selection of MXenes as various functional layers (negative and positive triboelectric layer, electrode layer) while designing TENGs is briefed. Furthermore, the distinctive advantages of MXene-based TENGs and their applications are emphasized. Last, the existing challenges are highlighted, and the future developing directions of MXene-based TENGs are forecasted.
Collapse
Affiliation(s)
- Shengwu Deng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Xiaorui Ye
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Lizi Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Yang Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Si Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| |
Collapse
|
9
|
Zhang D, Zhou L, Wu Y, Yang C, Zhang H. Triboelectric Nanogenerator for Self-Powered Gas Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406964. [PMID: 39377767 DOI: 10.1002/smll.202406964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Indexed: 10/09/2024]
Abstract
With the continuous acceleration of industrialization, gas sensors are evolving to become portable, wearable and environmentally friendly. However, traditional gas sensors rely on external power supply, which severely limits their applications in various industries. As an innovative and environmentally adaptable power generation technology, triboelectric nanogenerators (TENGs) can be integrated with gas sensors to leverage the benefits of both technologies for efficient and environmentally friendly self-powered gas sensing. This paper delves into the basic principles and current research frontiers of the TENG-based self-powered gas sensor, focusing particularly on innovative applications in environmental safety monitoring, healthcare, as well as emerging fields such as food safety assurance and smart agriculture. It emphasizes the significant advantages of TENG-based self-powered gas sensor systems in promoting environmental sustainability, achieving efficient sensing at room temperature, and driving technological innovations in wearable devices. It also objectively analyzes the technical challenges, including issues related to performance enhancement, theoretical refinement, and application expansion, and provides targeted strategies and future research directions aimed at paving the way for continuous progress and widespread applications in the field of self-powered gas sensors.
Collapse
Affiliation(s)
- Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lina Zhou
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Wu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
10
|
Hu Z, Wang F, Liu Y, Ma S, Ouyang S, Li M, Wu Y, Wang L. An electrostatically spun cellulose-based self-powered mask with high efficiency air filtration and ammonia sensing. Int J Biol Macromol 2024; 282:137226. [PMID: 39491701 DOI: 10.1016/j.ijbiomac.2024.137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
On construction sites impacted by particulate matter and hazardous gases, portable integrated air filtration equipment with high efficiency, minimal pressure drops and ammonia (NH3) alarms is critical. Triboelectric nanogenerators (TENG) present a sustainable solution by generating self-powered electricity to fulfill these requirements. In this study, we synthesized zeolitic imidazolate framework-8 (ZIF-8) in situ on the surface of titanium carbide (Ti3C2Tx) to create Ti3C2Tx/ZIF-8, grafted it onto cellulose diacetate via tetraethyl orthosilicate, and ultimately developed a cellulose-based nanofibrous membrane through electrospinning, combining it with a negative triboelectric material to construct a self-powered TENG-based mask. The device achieved a balance between a low pressure drop (61 Pa) and high filtration efficiency (99.21 %, 99.71 %, and 99.98 % for PM0.3, PM0.5, and PM1, respectively). Furthermore, the device responds swiftly to NH3; at a concentration of 100 ppm NH3, it achieves a rapid response rate of 83 %, with a response/recovery time as low as 12/14 s. Notably, the device retains its rapid sterilization capability within a short duration (20 min) and demonstrates remarkable stability across its various performance metrics, even after multiple washes. This study presents a novel approach to the development of multi-use, self-powered wearable devices featuring excellent air filtration performance and NH3 detection capabilities.
Collapse
Affiliation(s)
- Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shufeng Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Qian W, Yang Y. Cellulose-Templated Nanomaterials for Nanogenerators and Self-Powered Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412858. [PMID: 39428909 DOI: 10.1002/adma.202412858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Energy crisis inspires the development of renewable and clean energy sources, along with related applications such as nanogenerators and self-powered devices. Balancing high performance and environmental sustainability in advanced material innovation is a challenging task. Addressing the global challenges of sustainable development and carbon neutrality lead to increased interest in biopolymer research. Nanocellulose materials, derived from biopolymers, demonstrate potential as template candidates for advanced materials, due to their unique properties, including high strength, high surface area, controllable pore structures and high-water retention. In recent years, cellulose-templated nanomaterials enable delicate nano-/microscale structural construction, thus promoting developments in the field of nanogenerators and self-powered sensors. However, there is still a limited number of reviews focused on cellulose-templated nanomaterials for applications in nanogenerators and self-powered sensors. This review aims to fill this research gap by introducing various cellulose-templated nanomaterials and providing a detailed analysis of their fashionable applications in nanogenerators and self-powered sensors. The goal is to present cellulose-templated nanomaterials as highly promising template and guest materials for templating technologies, offering sustainable nano-/microscale control over advanced materials for the foreseeable future. This potential is promising for new applications in the fields of nanogenerators and self-powered sensors.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Chemical Engineering Center on Nanoenergy Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
12
|
Liu C, Feng Z, Yin T, Wan T, Guan P, Li M, Hu L, Lin CH, Han Z, Xu H, Cheng W, Wu T, Liu G, Zhou Y, Peng S, Wang C, Chu D. Multi-Interface Engineering of MXenes for Self-Powered Wearable Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403791. [PMID: 38780429 DOI: 10.1002/adma.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Self-powered wearable devices with integrated energy supply module and sensitive sensors have significantly blossomed for continuous monitoring of human activity and the surrounding environment in healthcare sectors. The emerging of MXene-based materials has brought research upsurge in the fields of energy and electronics, owing to their excellent electrochemical performance, large surface area, superior mechanical performance, and tunable interfacial properties, where their performance can be further boosted via multi-interface engineering. Herein, a comprehensive review of recent progress in MXenes for self-powered wearable devices is discussed from the aspects of multi-interface engineering. The fundamental properties of MXenes including electronic, mechanical, optical, and thermal characteristics are discussed in detail. Different from previous review works on MXenes, multi-interface engineering of MXenes from termination regulation to surface modification and their impact on the performance of materials and energy storage/conversion devices are summarized. Based on the interfacial manipulation strategies, potential applications of MXene-based self-powered wearable devices are outlined. Finally, proposals and perspectives are provided on the current challenges and future directions in MXene-based self-powered wearable devices.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Yin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW, 2070, Australia
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tom Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Regenerative Medicine Engineering Joint Laboratory, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yang Zhou
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhua Peng
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun Wang
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Yang Y, Yang S, Xia X, Hui S, Wang B, Zou B, Zhang Y, Sun J, Xin JH. MXenes for Wearable Physical Sensors toward Smart Healthcare. ACS NANO 2024; 18:24705-24740. [PMID: 39186373 DOI: 10.1021/acsnano.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors. It begins with an introduction to special structural features of MXenes for sensing performance, followed by an in-depth exploration of versatile functionalities. A detailed description of different sensing mechanisms is also included to illustrate the contribution of MXenes to the sensing performance and its improvement. In addition, the real-world applications of MXenes-based physical sensors for monitoring different physiological signs are included as well. The remaining challenges of MXenes-based materials for wearable physical sensors and their promising opportunities are finally narrated, in conjunction with a prospective for future development.
Collapse
Affiliation(s)
- Yixuan Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shenglin Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Xiaohu Xia
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shigang Hui
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jianping Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - John H Xin
- Research Institute for Intelligent Wearable Systems School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Yu R, Feng S, Sun Q, Xu H, Jiang Q, Guo J, Dai B, Cui D, Wang K. Ambient energy harvesters in wearable electronics: fundamentals, methodologies, and applications. J Nanobiotechnology 2024; 22:497. [PMID: 39164735 PMCID: PMC11334586 DOI: 10.1186/s12951-024-02774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, wearable sensor devices with exceptional portability and the ability to continuously monitor physiological signals in real time have played increasingly prominent roles in the fields of disease diagnosis and health management. This transformation has been largely facilitated by materials science and micro/nano-processing technologies. However, as this technology continues to evolve, the demand for multifunctionality and flexibility in wearable devices has become increasingly urgent, thereby highlighting the problem of stable and sustainable miniaturized power supplies. Here, we comprehensively review the current mainstream energy technologies for powering wearable sensors, including batteries, supercapacitors, solar cells, biofuel cells, thermoelectric generators, radio frequency energy harvesters, and kinetic energy harvesters, as well as hybrid power systems that integrate multiple energy conversion modes. In addition, we consider the energy conversion mechanisms, fundamental characteristics, and typical application cases of these energy sources across various fields. In particular, we focus on the crucial roles of different materials, such as nanomaterials and nano-processing techniques, for enhancing the performance of devices. Finally, the challenges that affect power supplies for wearable electronic products and their future developmental trends are discussed in order to provide valuable references and insights for researchers in related fields.
Collapse
Affiliation(s)
- Ruoyao Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
16
|
Wang Y, Wang Y, Jian M, Jiang Q, Li X. MXene Key Composites: A New Arena for Gas Sensors. NANO-MICRO LETTERS 2024; 16:209. [PMID: 38842597 PMCID: PMC11156835 DOI: 10.1007/s40820-024-01430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
With the development of science and technology, the scale of industrial production continues to grow, and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing. These gases include flammable and explosive gases, and even contain toxic gases. Therefore, it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately. In recent years, a new two-dimensional material called MXene has attracted widespread attention in various applications. Their abundant surface functional groups and sites, excellent current conductivity, tunable surface chemistry, and outstanding stability make them promising for gas sensor applications. Since the birth of MXene materials, researchers have utilized the efficient and convenient solution etching preparation, high flexibility, and easily functionalize MXene with other materials to prepare composites for gas sensing. This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research. However, previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing, without systematically explaining the gas sensing mechanisms generated by different gases, as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials. This article reviews the latest progress in the application of MXene-based composite materials in gas sensing. Firstly, a brief summary was given of the commonly used methods for preparing gas sensing device structures, followed by an introduction to the key attributes of MXene related to gas sensing performance. This article focuses on the performance of MXene-based composite materials used for gas sensing, such as MXene/graphene, MXene/Metal oxide, MXene/Transition metal sulfides (TMDs), MXene/Metal-organic framework (MOF), MXene/Polymer. It summarizes the advantages and disadvantages of MXene composite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases. Finally, future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.
Collapse
Affiliation(s)
- Yitong Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Min Jian
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Qinting Jiang
- Key Materials and Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Xifei Li
- Key Materials and Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| |
Collapse
|
17
|
Lv J, Zhang C, Qu G, Pan K, Qin J, Wei K, Liang Y. Modification strategies for semiconductor metal oxide nanomaterials applied to chemiresistive NO x gas sensors: A review. Talanta 2024; 273:125853. [PMID: 38460422 DOI: 10.1016/j.talanta.2024.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Semiconductor metal oxides (SMOs) nanomaterials are a category of sensing materials that are widely applied to chemiresistive NOx gas sensors. However, there is much space to improve the sensing performance of SMOs nanomaterials. Therefore, how to improve the sensing performance of SMOs nanomaterials for NOx gases has always attracted the interest of researchers. Up to now, there are few reviews focus on the modification strategies of SMOs which applied to NOx gas sensors. In order to compensate for the limitation, this review summarizes the existing modification strategies of SMOs, hoping to provide researchers a view of the research progress in this filed as comprehensive as possible. This review focuses on the progress of the modification of SMOs nanomaterials for chemiresistive NOx (NO, NO2) gas sensors, including the morphology modulation of SMOs, compositing SMOs, loading noble metals, doping metal ions, compositing with carbon nanomaterials, compositing with biomass template, and compositing with MXene, MOFs, conducting polymers. The mechanism of each strategy to enhance the NOx sensing performance of SMOs-based nanomaterials is also discussed and summarized. In addition, the limitations of some of the modification strategies and ways to address them are discussed. Finally, future perspectives for SMOs-based NOx gas sensors are also discussed.
Collapse
Affiliation(s)
- Jiaxin Lv
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Chaoneng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China.
| | - Keheng Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Jin Qin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Kunling Wei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Yuqi Liang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| |
Collapse
|
18
|
Wang Z, Yan F, Yu Z, Cao H, Ma Z, YeErKenTai Z, Li Z, Han Y, Zhu Z. Fully Transient 3D Origami Paper-Based Ammonia Gas Sensor Obtained by Facile MXene Spray Coating. ACS Sens 2024; 9:1447-1457. [PMID: 38412069 DOI: 10.1021/acssensors.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH3) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a Ti3C2Tx MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned Ti3C2Tx-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH3 sensing ability. As a result, the 2D kirigami-shaped NH3 sensor exhibited a good response of 7% to 50 ppm of NH3 with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH3. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/H2O2/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Feng Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhichao Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Huina Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhanying Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - ZuNa YeErKenTai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
19
|
Lv Q, Ma X, Zhang C, Han J, He S, Liu K, Jiang S. Nanocellulose-based nanogenerators for sensor applications: A review. Int J Biol Macromol 2024; 259:129268. [PMID: 38199536 DOI: 10.1016/j.ijbiomac.2024.129268] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
With the rapid development of the Internet of Things, nanogenerator as a green energy collection technology has attracted great attention in various fields. Specifically, the natural renewable nanocellulose as a raw material can significantly improve the environmental friendliness of the nanocellulose-based nanogenerators, which also makes the nanocellulose based nanogenerators expected to further develop in areas such as wearable devices and sensor networks. This paper mainly reports the application of nanocellulose in nanogenerator, focusing on the sensor. The types, sources and preparation methods of nanocellulose are briefly introduced. At the same time, the special structure of nanocellulose highlights the advantages of nanocellulose in nanogenerators. Then, the application of nanocellulose-based nanogenerators in sensors is introduced. Finally, the future development prospects and shortcomings of this nanogenerator are discussed.
Collapse
Affiliation(s)
- Qiqi Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kunming Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
20
|
Dinuwan
Gunawardhana KRS, Simorangkir RBVB, McGuinness GB, Rasel MS, Magre Colorado LA, Baberwal SS, Ward TE, O’Flynn B, Coyle SM. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems. ACS NANO 2024; 18:2649-2684. [PMID: 38230863 PMCID: PMC10832067 DOI: 10.1021/acsnano.3c09077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed.
Collapse
Affiliation(s)
- K. R. Sanjaya Dinuwan
Gunawardhana
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | | | | | - M. Salauddin Rasel
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | - Luz A. Magre Colorado
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Sonal S. Baberwal
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Tomás E. Ward
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
- School
of Computing, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Brendan O’Flynn
- Tyndall
National Institute, Lee Maltings Complex
Dyke Parade, T12R5CP Cork, Ireland
| | - Shirley M. Coyle
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| |
Collapse
|
21
|
Hilal M, Yang W, Hwang Y, Xie W. Tailoring MXene Thickness and Functionalization for Enhanced Room-Temperature Trace NO 2 Sensing. NANO-MICRO LETTERS 2024; 16:84. [PMID: 38214765 PMCID: PMC10786774 DOI: 10.1007/s40820-023-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
In this study, precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties, environmental stability, and gas-sensing performance. Utilizing a hybrid method involving high-pressure processing, stirring, and immiscible solutions, sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer. Functionalization control is achieved by defunctionalizing MXene at 650 °C under vacuum and H2 gas in a CVD furnace, followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD. Notably, the introduction of iodine, which has a larger atomic size, lower electronegativity, reduce shielding effect, and lower hydrophilicity (contact angle: 99°), profoundly affecting MXene. It improves the surface area (36.2 cm2 g-1), oxidation stability in aqueous/ambient environments (21 days/80 days), and film conductivity (749 S m-1). Additionally, it significantly enhances the gas-sensing performance, including the sensitivity (0.1119 Ω ppm-1), response (0.2% and 23% to 50 ppb and 200 ppm NO2), and response/recovery times (90/100 s). The reduced shielding effect of the -I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2. This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
Collapse
Affiliation(s)
- Muhammad Hilal
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea
- Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Yongha Hwang
- Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea.
| | - Wanfeng Xie
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea.
- School of Electronics & Information, University- Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
22
|
Ouyang W, Luo F, Yao Y, Qu B, Feng C, Xie Y, Chen B. A Triboelectric Sensor with Double Bubble Structure Applied in a High Security Double Lock System. ACS Sens 2023; 8:4615-4624. [PMID: 38063342 DOI: 10.1021/acssensors.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
With more attention on personal privacy and the need for a security defense, it is necessary to design an intelligent lock system with a higher security performance. Here, a novel high security double lock system integrating triboelectric nanogenerators (TENGs) with a double bubble structure (DB-TENG) and deep learning models is proposed. The TENG as a self-powered sensor is developed using silicone rubber and copper foil. By optimizing the thickness of the top layer film, surface microstructure, the size of the air bubble, and design of the double bubble structure, the sensitivity of the DB-TENG reaches 19.08 V/kPa. For the feasibility study, the sensor is fabricated to a smart belt to collect respiratory behaviors as a respiratory code. A Long Short-Term Memory network is adopted to identify four typical respiratory signals with an average accuracy of 97.00%. The system is deployed on a Raspberry Pi to determine whether the user is permitted through both the collected respiratory code and the related face image and will send an alarm message if one of the two does not match. It is worth mentioning that users can send alarm signals undiscovered by controlling their respiratory signals. Therefore, the proposed system has superb potential in security demanding environments.
Collapse
Affiliation(s)
- Wei Ouyang
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Fangyuan Luo
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Youbin Yao
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Bingbing Qu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Changhao Feng
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Yiyuan Xie
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Bin Chen
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Pazniak H, Plugin IA, Sheverdyaeva PM, Rapenne L, Varezhnikov AS, Agresti A, Pescetelli S, Moras P, Kostin KB, Gorokhovsky AV, Ouisse T, Sysoev VV. Alcohol Vapor Sensor Based on Quasi-2D Nb 2O 5 Derived from Oxidized Nb 2CT z MXenes. SENSORS (BASEL, SWITZERLAND) 2023; 24:38. [PMID: 38202899 PMCID: PMC10780349 DOI: 10.3390/s24010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
MXenes are two-dimensional (2D) materials with a great potential for sensor applications due to their high aspect ratio and fully functionalized surface that can be tuned for specific gas adsorption. Here, we demonstrate that the Nb2CTz-based sensor exhibits high performance towards alcohol vapors at temperatures up to 300-350 °C, with the best sensitivity towards ethanol. We attribute the observed remarkable chemiresistive effect of this material to the formation of quasi-2D Nb2O5 sheets as the result of the oxidation of Nb-based MXenes. These findings are supported by synchrotron X-ray photoelectron spectroscopy studies together with X-ray diffraction and electron microscopy observations. For analyte selectivity, we employ a multisensor approach where the gas recognition is achieved by linear discriminant analysis of the vector response of the on-chip sensor array. The reported protocol demonstrates that MXene layers are efficient precursors for the derivation of 2D oxide architectures, which are suitable for developing gas sensors and sensor arrays.
Collapse
Affiliation(s)
- Hanna Pazniak
- Laboratoire des Matériaux et du Génie Physique, Institut Polytechnique de Grenoble, Centre National de la Recherche Scientifique, Université Grenoble Alpes, CS 50257, 38016 Grenoble, Cedex 1, France; (L.R.); (T.O.)
| | - Ilya A. Plugin
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| | - Polina M. Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), SS 14, Km 163.5, 34149 Trieste, Italy; (P.M.S.); (P.M.)
| | - Laetitia Rapenne
- Laboratoire des Matériaux et du Génie Physique, Institut Polytechnique de Grenoble, Centre National de la Recherche Scientifique, Université Grenoble Alpes, CS 50257, 38016 Grenoble, Cedex 1, France; (L.R.); (T.O.)
| | - Alexey S. Varezhnikov
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| | - Antonio Agresti
- Center for Hybrid and Organic Solar Energy, Electronic Engineering Department, University of Rome Tor Vergata, 00133 Rome, Italy; (A.A.); (S.P.)
| | - Sara Pescetelli
- Center for Hybrid and Organic Solar Energy, Electronic Engineering Department, University of Rome Tor Vergata, 00133 Rome, Italy; (A.A.); (S.P.)
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), SS 14, Km 163.5, 34149 Trieste, Italy; (P.M.S.); (P.M.)
| | - Konstantin B. Kostin
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| | - Alexander V. Gorokhovsky
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| | - Thierry Ouisse
- Laboratoire des Matériaux et du Génie Physique, Institut Polytechnique de Grenoble, Centre National de la Recherche Scientifique, Université Grenoble Alpes, CS 50257, 38016 Grenoble, Cedex 1, France; (L.R.); (T.O.)
| | - Victor V. Sysoev
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| |
Collapse
|
24
|
Sardana S, Sharma V, Beepat KG, Sharma DP, Chawla AK, Mahajan A. Flexible, humidity- and contamination-resistant superhydrophobic MXene-based electrospun triboelectric nanogenerators for distributed energy harvesting applications. NANOSCALE 2023; 15:19369-19380. [PMID: 38014549 DOI: 10.1039/d3nr04537d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The low surface-charge density, poor stability and irreparable surface of triboelectric materials under harsh environments are still some obstacles for developing high-performance triboelectric nanogenerators (TENGs). In particular, a two-dimensional MXene material's surface is likely to be corroded by water molecules under high humidity conditions owing to its hydrophilic nature, limiting the output performance and stability of TENGs. Herein, an approach for fabricating a humidity- and contamination-resistant MXene-based TENG is established using the electrospinning technique. First, nanofibrous layers of MXene/MoS2 composites blended in a cellulosic polymer matrix were prepared, benefitting the high surface roughness and controlled air-trapping pores. Furthermore, the prepared nanofibrous layers were chemically modified with stearic acid (SA), which enhances the hydrophobicity and electronegativity of MXene/MoS2 composites. In a typical synthesis, four different compositions of MXene/MoS2/cellulose acetate nanofibers were prepared, which illustrates that an increasing concentration of MoS2 could effectively tune the surface oxidation, hydrophilic nature, and surface roughness of MXene as well as induce a piezoelectricity-enhanced triboelectric potential. On the other side, the SA modification ultimately generated a superhydrophobic surface with low surface energy and a high water contact angle of ∼154°. The integrated TENG displayed an enhanced output voltage of ∼140 V and an instantaneous power density of ∼2975 mW cm-2 with long-term stability under high humidity conditions. Additionally, the self-cleaning properties were demonstrated, ensuring the sustainability and reusability of the TENG in a contaminated environment. Moreover, the fabricated MXene-based superhydrophobic layer can harvest the energy on dripping water droplets based on the liquid-solid contact-electrification TENG mode. Overall, this work paves the way for the design and development of humidity- and contamination-resistant triboelectric materials and guides the study of harvesting of distributed environmental energy efficiently.
Collapse
Affiliation(s)
- Sagar Sardana
- Department of Physics, Guru Nanak Dev University, Amritsar, India.
| | - Vaishali Sharma
- Department of Physics, Guru Nanak Dev University, Amritsar, India.
| | - Kevin Gurbani Beepat
- Department of Physics, University of West Indies, St. Augustine, Trinidad and Tobago
| | - Davinder Pal Sharma
- Department of Physics, University of West Indies, St. Augustine, Trinidad and Tobago
| | - Amit Kumar Chawla
- Department of Physics, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
| | - Aman Mahajan
- Department of Physics, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
25
|
Zhou Y, Zhang R, She X, Li J, Zhao H, Wang Y, Chen Y, Xie L, Zou C, Li X. Alkalized Cellulose Nanofiber-Interweaved PEDOT:PSS Thin-Film Sensors via Layer-by-Layer Spraying Assembly for Ultrafast Molecular Ammonia Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53802-53814. [PMID: 37934236 DOI: 10.1021/acsami.3c10736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
As a typical representative of conductive polymers (CPs), poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) is intensively employed for chemiresistive ammonia (NH3) sensing on account of its favorable aqueous solubility, benign environmental stability, and outstanding room-temperature conductivity; however, it is severely plagued by low sensitivity and sluggish reaction kinetics. To circumvent these limitations, the guest-alkalized cellulose nanofibers (AC) were introduced into the host PEDOT:PSS matrix by the layer-by-layer spraying assembly method (LBLSA) in this work. The componential proportion-optimized PEDOT:PSS/AC/PEDOT:PSS (P/AC/P) sensor delivered a large sensitivity of 20.2%/ppm within 0.1-3 ppm of NH3 at 21 °C@26% RH, an experimental limit of detection (LoD) as low as 30 ppb, a high response of 18.1%, and a short response/recovery times (4.8/4.0 s) toward 1 ppm of NH3, which ranked among the best cases thus far. Also, excellent repeatability and long-term stability and selectivity were demonstrated. Meanwhile, the flexible P/AC/P sensors worked well under various bending angles and bending times. This work combines a green material system and a facile film deposition method to overcome the liquid dispersion incompatibility when preparing a multicomponent mixture for swift trace NH3 detection. The universality and extensibility of this methodology endow a broad prospect in the field of future wearable optoelectronic systems.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ruijie Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaopeng She
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Hongchao Zhao
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Chen
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lei Xie
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xian Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
26
|
Zhang Y, Jiang Y, Yuan Z, Liu B, Zhao Q, Huang Q, Li Z, Zeng W, Duan Z, Tai H. Synergistic Effect of Electron Scattering and Space Charge Transfer Enabled Unprecedented Room Temperature NO 2 Sensing Response of SnO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303631. [PMID: 37403282 DOI: 10.1002/smll.202303631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Metal oxide gas sensors have long faced the challenge of low response and poor selectivity, especially at room temperature (RT). Herein, a synergistic effect of electron scattering and space charge transfer is proposed to comprehensively improve gas sensing performance of n-type metal oxides toward oxidizing NO2 (electron acceptor) at RT. To this end, the porous SnO2 nanoparticles (NPs) assembled from grains of about 4 nm with rich oxygen vacancies are developed through an acetylacetone-assisted solvent evaporation approach combined with precise N2 and air calcinations. The results show that the as-fabricated porous SnO2 NPs sensor exhibits an unprecedented NO2 -sensing performance, including outstanding response (Rg /Ra = 772.33 @ 5 ppm), fast recovery (<2 s), an extremely low detection limit (10 ppb), and exceptional selectivity (response ratio >30) at RT. Theoretical calculation and experimental tests confirm that the excellent NO2 sensing performance is mainly attributed to the unique synergistic effect of electron scattering and space charge transfer. This work proposes a useful strategy for developing high-performance RT NO2 sensors using metal oxides, and provides an in-depth understanding for the basic characteristics of the synergistic effect on gas sensing, paving the way for efficient and low power consumption gas detection at RT.
Collapse
Affiliation(s)
- Yajie Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Bohao Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Qiuni Zhao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Qi Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Ziteng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
27
|
John RAB, Vijayan K, Septiani NLW, Hardiansyah A, Kumar AR, Yuliarto B, Hermawan A. Gas-Sensing Mechanisms and Performances of MXenes and MXene-Based Heterostructures. SENSORS (BASEL, SWITZERLAND) 2023; 23:8674. [PMID: 37960373 PMCID: PMC10650624 DOI: 10.3390/s23218674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 11/15/2023]
Abstract
MXenes are a class of 2D transition-metal carbides, nitrides, and carbonitrides with exceptional properties, including substantial electrical and thermal conductivities, outstanding mechanical strength, and a considerable surface area, rendering them an appealing choice for gas sensors. This manuscript provides a comprehensive analysis of heterostructures based on MXenes employed in gas-sensing applications and focuses on addressing the limited understanding of the sensor mechanisms of MXene-based heterostructures while highlighting their potential to enhance gas-sensing performance. The manuscript begins with a broad overview of gas-sensing mechanisms in both pristine materials and MXene-based heterostructures. Subsequently, it explores various features of MXene-based heterostructures, including their composites with other materials and their prospects for gas-sensing applications. Additionally, the manuscript evaluates different engineering strategies for MXenes and compares their advantages to other materials while discussing the limitations of current state-of-the-art sensors. Ultimately, this review seeks to foster collaboration and knowledge exchange within the field, facilitating the development of high-performance gas sensors based on MXenes.
Collapse
Affiliation(s)
- Riya Alice B. John
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India; (R.A.B.J.); (K.V.); (A.R.K.)
| | - Karthikeyan Vijayan
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India; (R.A.B.J.); (K.V.); (A.R.K.)
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City 15314, Indonesia; (N.L.W.S.); (A.H.)
| | - Andri Hardiansyah
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City 15314, Indonesia; (N.L.W.S.); (A.H.)
| | - A Ruban Kumar
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India; (R.A.B.J.); (K.V.); (A.R.K.)
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung 40132, Indonesia;
| | - Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City 15314, Indonesia; (N.L.W.S.); (A.H.)
- Faculty of Textile Science and Technology, Shinshu University Ueda Campus, Ueda 386-8567, Japan
| |
Collapse
|
28
|
Atkare S, Kaushik SD, Jagtap S, Rout CS. Room-temperature chemiresistive ammonia sensors based on 2D MXenes and their hybrids: recent developments and future prospects. Dalton Trans 2023; 52:13831-13851. [PMID: 37724340 DOI: 10.1039/d3dt02401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Detection of ammonia (NH3) gas at room temperature is essential in a variety of sectors, including pollution monitoring, commercial safety and medical services, etc. Two-dimensional (2D) materials have emerged as fascinating candidates for gas-sensing applications due to their distinct properties. MXenes, a type of 2D transition metal carbides/nitrides/carbonotrides, have drawn the interest of researchers due to their high conductivity, large surface area, and changing surface chemistry. The review begins by describing the NH3 gas-detecting methods of 2D materials and then concentrates on MXene-based sensors, emphasising the benefits that MXenes provide in this context. The study also explains the prime factors involved in evaluating sensor performance, which include sensor response, sensitivity, selectivity, stability, charge transfer values, adsorption energy and response/recovery times. Subsequently, the review covers two main categories: pristine/intercalated MXenes and MXene-based hybrid materials. The review investigates the approaches for improving the sensing characteristics of pristine and intercalated MXenes by introducing MXene hybrids like MXene-metal oxide hybrids, MXene-transition metal dichalcogenides hybrid, MXene-other 2D materials hybrid, MXene-polymers and other hybrids and other MXene-derived materials. In summary, this review offers a thorough overview of current advancements and potential applications for room-temperature ammonia sensors based on 2D MXenes and their hybrids. In order to pave the way for future improvements in MXene-based gas-sensing technology for room temperature ammonia detection, the study concludes by outlining potential future scope and conclusions.
Collapse
Affiliation(s)
- Sayali Atkare
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research Mumbai Centre, R-5 Shed, BARC, Mumbai 400085, India
| | - Shweta Jagtap
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore - 562112, Karnataka, India.
| |
Collapse
|
29
|
Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. NANO-MICRO LETTERS 2023; 15:124. [PMID: 37166487 PMCID: PMC10175533 DOI: 10.1007/s40820-023-01094-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Collapse
Affiliation(s)
- Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
30
|
Gai S, Wang X, Zhang R, Zeng K, Miao S, Wu Y, Wang B. A controllably fabricated polypyrrole nanorods network by doping a tetra-β-carboxylate cobalt phthalocyanine tetrasodium salt for enhanced ammonia sensing at room temperature. RSC Adv 2023; 13:13725-13734. [PMID: 37152582 PMCID: PMC10158350 DOI: 10.1039/d3ra00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The morphology adjustment and functional doping optimization of polypyrrole (PPy) are of great significance in improving its gas sensing performance. Here, the PPy-0.5TcCoPc nanorods with a uniform dispersed 3-D network were prepared using one-step in situ polymerization using the electrostatic interaction between dopant counterion substituents in tetra-β-carboxylate cobalt phthalocyanine tetrasodium salt (TcCoPcTs) with larger space structure and pyrrole (Py) molecules, in which TcCoPcTs is not only used as a dopant molecule crosslinking PPy chains to obtain a 3-D network, thus improving the conductivity, but also as a sensor accelerator to improve the gas-sensing performance. The resulting PPy-TcCoPc hybrid exhibits superior NH3-sensing properties than PPy and tetra-β-carboxylate cobalt phthalocyanine (TcCoPc) under the same test conditions, especially the PPy-0.5TcCoPc sensor shows ultrafast response/recovery time to 50 ppm NH3 (8.1 s/370.8 s), low detection limit of 8.1 ppb and excellent gas selectivity at room temperature (20 °C). Besides, the PPy-0.5TcCoPc sensor also maintains superior response (49.3% to 50 ppm NH3), humidity resistance and conspicuous stability over 45 days. The excellent NH3-sensing performance of the PPy-0.5TcCoPc hybrid arises from the excellent gas selectivity of TcCoPc, the remarkable response mechanism between PPy and NH3, the high electrical conductivity, abundant active sites and good electron transport ability of the unique 3-D network with large specific surface area. The morphology regulation and functional doping optimization strategy of TcCoPcTs doped PPy broaden the research direction of ideal gas sensor materials.
Collapse
Affiliation(s)
- Shijie Gai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Xiaolin Wang
- School of Material and Chemical Engineering, Heilongjiang Institute of Technology Harbin 150050 P. R. China
| | - Runze Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Kun Zeng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Shoulei Miao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yiqun Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences P.O. Box 800216 Shanghai 201800 China
| | - Bin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| |
Collapse
|
31
|
Prasad C, Madkhali N, Jeong SG, Malkappa K, Choi HY, Govinda V. Recent advances in the hybridization of cellulose and semiconductors: Design, fabrication and emerging multidimensional applications: A review. Int J Biol Macromol 2023; 233:123551. [PMID: 36740107 DOI: 10.1016/j.ijbiomac.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Cellulose is a plentiful, biodegradable, renewable, and natural polymer in the world that can be widely utilized in the production of polymer nanocomposites. Cellulose is developed in nanomaterials owing to its remarkable inherent features of low density, non-toxicity, and affordability, as well as the amazing sample characteristics of strength and thermal stability. Recently, there has been a lot of interest in organic-inorganic composites because of their adaptable qualities. Cellulose and semiconductors have exciting properties, and new combinations of both materials may result in efficient functional hybrid composites with distinct properties. Lately, a huge study was reported on cellulose and semiconductor-based nanocomposites. In this review, we summarize the present research development in the preparation methods, structure, features, and possible applications of multifunctional cellulose and semiconductor-based nanocomposites. The cellulose/semiconductor based nanocomposites have massive potential applications in the areas of photodegradation of organic dyes, hydrogen production, metal removal, biomedical, and sensor applications. It is also assumed that this article will promote additional investigation and will establish innovative capabilities to enhance novel cellulose and semiconductor based nanocomposites with new and exciting applications.
Collapse
Affiliation(s)
- Cheera Prasad
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Kuruma Malkappa
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Hyeong Yeol Choi
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea.
| | - V Govinda
- Department of Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (A), Rushikonda campus, Visakhapatnam 530045, India
| |
Collapse
|
32
|
Chen H, Chen J, Liu Y, Li B, Li H, Zhang X, Lv C, Dong H. Wearable Dual-Signal NH 3 Sensor with High Sensitivity for Non-invasive Diagnosis of Chronic Kidney Disease. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3420-3430. [PMID: 36880227 DOI: 10.1021/acs.langmuir.2c03347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
NH3 gas in human exhaled breath contains abundant physiological information related to human health, especially chronic kidney disease (CKD). Unfortunately, up to now, most wearable NH3 sensors show inevitable defects (low sensitivity, easy to be interfered by the environment, etc.), which may lead to misdiagnosis of CKD. To solve the above dilemma, a nanoporous, heterogeneous, and dual-signal (optical and electrical) wearable NH3 sensor mask is developed successfully. More specifically, a polyacrylonitrile/bromocresol green (PAN/BCG) nanofiber film as a visual NH3 sensor and a polyacrylonitrile/polyaniline/reduced graphene oxide (PAN/PANI/rGO) nanofiber film as a resistive NH3 sensor are constructed. Due to the high specific surface area and abundant NH3 binding sites of these two nanofiber films, they exhibit good NH3 sensing performance. However, although the visual NH3 sensor (PAN/BCG nanofiber film) is simple without the need of any detecting facilities and quite stable when temperature and humidity change, it shows poor sensitivity and resolution. In comparison, the resistive NH3 sensor (PAN/PANI/rGO nanofiber film) is of high sensitivity, fast response, and good resolution, but its electrical signal is easily interfered by the external environment (such as humidity, temperature, etc.). Considering that the sensing principles between a visual NH3 sensor and resistive NH3 sensor are significantly different, a wearable dual-signal NH3 sensor containing both a visual NH3 sensor and resistive NH3 sensor is further explored. Our data prove that the two sensing signals in this dual-signal NH3 sensor mask can not only work well without interference with each other but also complement each other to improve the sensing accuracy, indicating its potential application in non-invasive diagnosis of CKD.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Junlin Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Bingrui Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Haofei Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xing Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chuhan Lv
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| |
Collapse
|
33
|
Wang N, Zhao C, Long G, Xia B, Wan L, Niu K, Hou J, Wang J, Lei L, Wang Z. Polyacrylic Acid/Polyaniline-Coated Multimode Interferometer for Ammonia Detection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1478. [PMID: 36837107 PMCID: PMC9967199 DOI: 10.3390/ma16041478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
A coaxial optical fiber interferometer (COFI) is proposed here for ammonia sensing, which comprises two light-carrying single-mode fibers (SMF) fused to a section of no-core fiber (NCF), thus forming an optical interferometer. The outer surface of the COFI is coated with a layer of polyacrylic acid (PAA)/polyaniline (PAni) film. The refractive index (RI) of the sensitive layer varies when PAA/PAni interacts with ammonia, which leads to the resonance wavelength shift. The surface morphology and structure of the PAA/PAni composites were characterized by using a scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) spectroscopy. When the sensor was exposed to an ammonia atmosphere of different concentrations at room temperature, the sensing performance of the PAA/PAni composite film was superior to that of a sensitive film formed by single-component PAA or PAni. According to the experimental results, the composite film formed by 5 wt% PAA mixed with 2 wt% PAni shows better performance when used for ammonia sensing. A maximum sensitivity of 9.8 pm/ppm was obtained under the ammonia concentration of 50 ppm. In addition, the sensor shows good performance in response time (100 s) and recovery time (180 s) and has good stability and selectivity. The proposed optical fiber ammonia sensor is adapted to monitor leakage in its production, storage, transportation, and application.
Collapse
Affiliation(s)
- Ning Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Chao Zhao
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Gang Long
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Binyun Xia
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Liang Wan
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Kunpeng Niu
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Hou
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Jiale Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Lei
- Zhongshan Institute of Modern Industrial Technology of SCUT, Zhongshan 528437, China
| | - Zhichao Wang
- Wuhan Bureau of Naval Equipment Department, Wuhan 430070, China
| |
Collapse
|
34
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
35
|
Kalasin S, Surareungchai W. Challenges of Emerging Wearable Sensors for Remote Monitoring toward Telemedicine Healthcare. Anal Chem 2023; 95:1773-1784. [PMID: 36629753 DOI: 10.1021/acs.analchem.2c02642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Digitized telemedicine tools with the Internet of Things (IoT) started advancing into our daily lives and have been incorporated with commercial wearable gadgets for noninvasive remote health monitoring. The newly established tools have been steered toward a new era of decentralized healthcare. The advancement of a telemedicine wearable monitoring system has attracted enormous interest in the multimodal big data acquisition of real-time physiological and biochemical information via noninvasive methods for any health-related industries. The expectation of telemedicine wearable creation has been focused on early diagnosis of multiple diseases and minimizing the cost of high-tech and invasive treatments. However, only limited progress has been directed toward the development of telemedicine wearable sensors. This Perspective addresses the advancement of these wearable sensors that encounter multiple challenges on the forefront and technological gaps hampering the realization of health monitoring at molecular levels related to smart materials mostly limited to single use, issues of selectivity to analytes, low sensitivity to targets, miniaturization, and lack of artificial intelligence to perform multiple tasks and secure big data transfer. Sensor stability with minimized signal drift, on-body sensor reusability, and long-term continuous health monitoring provides key analytical challenges. This Perspective also focuses on, promotes, and highlights wearable sensors with a distinct capability to interconnect with telemedicine healthcare for physical sensing and multiplex sensing at deeper levels. Moreover, it points out some critical challenges in different material aspects and promotes what it will take to advance the current state-of-art wearable sensors for telemedicine healthcare. Ultimately, this Perspective is to draw attention to some potential blind spots of wearable technology development and to inspire further development of this integrated technology in mitigating multimorbidity in aging societies through health monitoring at molecular levels to identify signs of diseases.
Collapse
Affiliation(s)
- Surachate Kalasin
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, 10140 Bangkok, Thailand
| | - Werasak Surareungchai
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology Thonburi, 10150 Bangkok, Thailand
- School of Bioresource and Technology, King Mongkut's University of Technology Thonburi, 10150 Bangkok, Thailand
| |
Collapse
|
36
|
Yang Z, Hu J, Zhang X, Yang H, Meng P, Zhao H, Sun Y. MXene-based composites as an electrochemical sensor for ultrasensitive determination of ofloxacin. Anal Bioanal Chem 2023; 415:157-166. [PMID: 36348040 DOI: 10.1007/s00216-022-04402-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Sensitive determination of ofloxacin (OFL) is very essential for human health and environmental protection. Here, a novel composite of gold nanoparticles(nAu)@MXene(Ti3C2Tx)/poly-p-aminobenzene sulfonic acid (PABSA) was fabricated on the surface of glassy carbon electrode (GCE) and used to sensitively determine OFL. The results of experiments showed that the obtained nAu@Ti3C2Tx/PABSA/GCE electrode could be used as an electrochemical sensor to directly detect ofloxacin (OFL) by differential pulse voltammetry (DPV). Under the optimal conditions, the proposed electrode displayed a broader linear range and a lower detection limit (LOD) for OFL determination when it was compared to those similar sensors. The linear range was from 5.0 × 10-8 to 5.0 × 10-4 mol/L and the LOD was 3.7 × 10-8 mol/L (S/N = 3). The nAu@Ti3C2Tx/PABSA/GCE electrode also showed good selectivity, repeatability, and reproducibility. Finally, the proposed electrode was used to detect OFL in commercial samples by the standard addition method. The obtained recovery was from 97.3% and 105.7% showing its potential applications in actual sample analysis.
Collapse
Affiliation(s)
- Zuan Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Jing Hu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Xiaoyu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Huimin Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Peiran Meng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Huanying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
37
|
Zhang W, Zhao J, Cai C, Qin Y, Meng X, Liu Y, Nie S. Gas-Sensitive Cellulosic Triboelectric Materials for Self-Powered Ammonia Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203428. [PMID: 36026574 PMCID: PMC9596830 DOI: 10.1002/advs.202203428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/31/2022] [Indexed: 05/26/2023]
Abstract
Gas-sensitive materials are capable of dynamic identification and content monitoring of specific gases in the environment, and their applications in the field of gas sensing are promising. However, weak adsorption properties are the main challenge limiting the application of gas-sensitive materials. A highly adsorbent gas-sensitive cellulose nanofibril (CNF)-based triboelectric material with a layered structure is prepared here and it is applied to self-powered gas sensing. The layered structure of the triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane cellulose nanofiber (PFOTES-CNF)-based gas-sensitive material further enhances the adsorption of the material due to electrostatic adsorption in the electrostatic field induced by triboelectricity. It is found that the ammonia-sensitive material obtained by loading Ti3 C2 Tx in PFOTES-CNF has a fast response/recovery (12/14 s), high sensitivity response (Vair /Vgas = 2.1), high selectivity response (37.6%), and low detection limit (10 ppm) for 100 ppm of ammonia gas. In addition, the ammonia-sensitive CNF-based triboelectric material can accurately identify NH3 concentration changes in the range of 10-120 ppm and transmit the signal wirelessly to the user interface, facilitating real-time online monitoring of NH3 in the environment. A novel strategy is provided here for designing and preparing high-performance gas-sensitive composites and the analysis of self-powered gas sensing is guided.
Collapse
Affiliation(s)
- Wanglin Zhang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jiamin Zhao
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Chenchen Cai
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Ying Qin
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Xiangjiang Meng
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Yanhua Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
38
|
Devaraj M, Rajendran S, Hoang TKA, Soto-Moscoso M. A review on MXene and its nanocomposites for the detection of toxic inorganic gases. CHEMOSPHERE 2022; 302:134933. [PMID: 35561780 DOI: 10.1016/j.chemosphere.2022.134933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In the search of the viable candidate for the sensing of pollutant gases, two-dimensional (2D) material transition metal carbides (MXenes) have attracted immense attention due to their outstanding physical and chemical properties for sensing purposes. The formation of unique 2D layered structure with high conductivity, large mechanical strength, and high adsorption properties furnish their strong interactions with gaseous molecules, which holds a promising place for developing ideal gas sensing devices. This review looks at recent achievements in diversified MXenes, with a focus gaining on in-depth understanding of MXene-based materials in room temperature inorganic gas sensors through both theoretical and experimental studies. In the first part of the review, the properties and advantages of sensing material (MXene) in comparison with other 2D materials are discussed. In the second part, the unique advantages of chemiresistive based sensors and the demerits of other detection methods are summarized in detail. This section is followed by the unique structural design of MXene bases materials for improving the sensing performance towards detection of inorganic gases. The interaction between MXene and the adsorbed gases on its surface is discussed, with a possible sensing mechanism. Finally, an overview of the current progress and opportunities for the demand of MXene is emphasized and perspectives for future improvement of the design of MXene in gas sensors are highlighted. Therefore, this review highlights the opportunities and the advancement in 2D material-based gas sensors which could provide a new avenue for rapid detection of toxic gases in the environment.
Collapse
Affiliation(s)
- Manoj Devaraj
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada
| | | |
Collapse
|
39
|
Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydr Polym 2022; 298:120052. [DOI: 10.1016/j.carbpol.2022.120052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023]
|
40
|
Idumah CI. Emerging advancements in MXene polysaccharide bionanoarchitectures and biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2098297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University Awka, Awka, Anambra State, Nigeria
| |
Collapse
|
41
|
Kumar V, Kumar P, Deka R, Abbas Z, Mobin SM. Recent Development of Morphology-Controlled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. CHEM REC 2022; 22:e202200067. [PMID: 35686889 DOI: 10.1002/tcr.202200067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Being cognizant of modern electronic devices, the scientists are continuing to investigate renewable green-energy resources for a decade. Amid different energy harvesting systems, the triboelectric nanogenerators (TENGs) have been found to be the most promising mechanical harvesting technology and have drawn attention to generate electrical energy. Thanks to its instant output power, choice to opt for wide-ranging materials, low maintenance cost, easy fabrication process and environmentally friendly nature. Due to numerous working modes of TENGs, it is dedicated to desired application at ambient conditions. In this review, an advance correlation of TENGs have been explained based on the variety of nanostructures, including 0D, 1D, 2D, 3D, metal organic frameworks (MOFs), coordination polymers (CPs), covalent organic frameworks (COFs), and perovskite materials. Moreover, an overview of previous and current perspectives of various nanomaterials, synthesis, fabrication and their applications in potential fields have been discussed in detail.
Collapse
Affiliation(s)
- Viresh Kumar
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Rakesh Deka
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Zahir Abbas
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.,Department of Bioscience and Bio-Medical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.,Center for Electric Vehicle and Intelligent Transport Systems, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|