1
|
Freko S, Weiß LJK, Simmel FC, Wolfrum B. Direct Single-Impact Electrochemistry Using Silver Nanoparticles as a "Digital" Readout for Biosensing Applications. ACS Sens 2025. [PMID: 40515724 DOI: 10.1021/acssensors.5c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Direct single-impact electrochemistry is a rapidly evolving analytical method based on the collision of redox-active species, such as silver nanoparticles (AgNPs), with a biased microelectrode. The collision results in distinct current spikes due to partial or complete oxidation of a particle. In recent years, this technique has been applied in various biosensing strategies as a "digital" readout technique. It offers the quantification of analytes using discrete signals, as opposed to conventional amplitude-based methods. In this review, we explore the latest advancements in direct single-impact electrochemistry for biosensing applications. In addition, we summarize the key factors influencing the "digital" readout performance and their interrelationships, including particle size and corona, electrode size and potential, electrolyte composition, particle mass transport toward the electrode, and data acquisition. Considering recent experimental developments and theoretical principles, we have identified guidelines that are expected to facilitate and accelerate the development of novel direct impact-based sensing platforms, particularly for point-of-care (POC) applications.
Collapse
Affiliation(s)
- Sebastian Freko
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
- Department of Medicine I, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich 81675, Germany
| | - Lennart J K Weiß
- Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Garching 85748, Germany
| | - Friedrich C Simmel
- Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Garching 85748, Germany
| | - Bernhard Wolfrum
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
2
|
Lin J, Cui L, Shi X, Wu S. Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications. J Funct Biomater 2025; 16:166. [PMID: 40422832 DOI: 10.3390/jfb16050166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomaterials science, are revolutionizing biomedical research. This review focuses on the functional design and fabrication of organ-on-a-chip (OoAC) platforms via 3D bioprinting, explores the applications of biomaterials in drug delivery, cell culture, and tissue engineering, and evaluates the potential of microfluidic systems in advancing personalized healthcare. We systematically analyze the evolution of microfluidic materials-from silicon and glass to polymers and paper-and highlight the advantages of 3D bioprinting over traditional fabrication methods. Currently, despite significant advances in microfluidics in medicine, challenges in scalability, stability, and clinical translation remain. The future of microfluidic biomaterials will depend on combining 3D bioprinting with dynamic functional design, developing hybrid strategies that combine traditional molds with bio-printed structures, and using artificial intelligence to monitor drug delivery or tissue response in real time. We believe that interdisciplinary collaborations between materials science, micromachining, and clinical medicine will accelerate the translation of organ-on-a-chip platforms into personalized therapies and high-throughput drug screening tools.
Collapse
Affiliation(s)
- Jiaqi Lin
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lijuan Cui
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaokun Shi
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuping Wu
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Weiß LJK, Nikić M, Simmel FC, Wolfrum B. Stochastic Impact Electrochemistry of Alkanethiolate-Functionalized Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410306. [PMID: 40079073 PMCID: PMC12019921 DOI: 10.1002/smll.202410306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/28/2025] [Indexed: 03/14/2025]
Abstract
This study uses single-impact experiments to explore how the nanoparticles' surface chemistry influences their redox activity. 20 and 40 nm-sized silver nanoparticles are functionalized with alkanethiol ligands of various chain lengths (n = 3, 6, 8, and 11) and moieties (carboxyl ─COOH / hydroxyl ─OH), and the critical role of the particle shell is systematically examined. Short COOH-terminated ligands enable efficient charge transfer, resulting in higher impact rates and fast, high-amplitude transients. Even elevated potentials fail to overcome tunneling barriers for ligand lengths of n ≥ 6 and risk oxidizing the electrode, forming an insulating layer. Electrostatic interactions play a key role in governing reaction dynamics. In general, particles with a COOH-group exhibit higher impact rates and current amplitudes in KCl than those with an OH-group. This effect is more pronounced for 40 nm-sized particles; although, they rarely oxidize completely. The influence of electrolyte composition-concentration, pH, and a biologically relevant electrolyte-reveals that its impact on the redox activity can be as critical as that of the particle shell, with both determining particle adsorption and electron tunneling. These findings provide insights into the complex interdependencies at the electrode-particle-electrolyte interface, aiding the design of custom redox-active (silver) nanoparticles for ultrasensitive electrochemical sensing.
Collapse
Affiliation(s)
- Lennart J. K. Weiß
- Physics of Synthetic Biological Systems (E14)Department of BioscienceSchool of Natural SciencesTechnical University of Munich80333MünchenGermany
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| | - Marta Nikić
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems (E14)Department of BioscienceSchool of Natural SciencesTechnical University of Munich80333MünchenGermany
| | - Bernhard Wolfrum
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| |
Collapse
|
4
|
Xiao Y, Goderis D, Reilly KS, Severud T, Pratt KA, Dvonch JT, Mason AJ, Ault AP. Aerosol Capture for Coupling to Microfluidics: A Miniaturized Low-Cost Device for Size-Resolved Particle Collection. Anal Chem 2025; 97:6222-6229. [PMID: 40079406 PMCID: PMC12124472 DOI: 10.1021/acs.analchem.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Inhaled aerosols impact human health by depositing harmful species in the lungs (e.g., metals and organic pollutants) and act as a key pathway for airborne disease transmission. Aerosol inhalation is highly size-dependent, with smaller particles (particulate matter <2.5 μm, PM2.5) depositing deeper in the lungs (e.g., alveoli) leading to strong correlations between PM2.5 and mortality, along with other respiratory and cardiovascular diseases. A longstanding challenge for detailed aerosol chemical analysis is that most PM2.5 health studies collect offline samples, which are subsequently analyzed offsite, requiring high-cost collectors and significant downstream effort and cost. Herein, we present a low-cost, miniature 3D-printed impactor coupled to a microfluidic channel to allow for downstream analysis of PM in liquid. After size-segregated collection of airborne particles within the device, water is flowed through a microfluidic channel that resuspends insoluble particles or dissolves soluble particles. Size-dependent collection efficiencies (50% cutoff diameters, d50's) for the supermicron (PM>1) impactor were 0.8 and 1.0 μm using monodisperse (polystyrene latex spheres) and polydisperse (red-fluorescent spheres) standards, respectively. Coarse (PM>2.5) impactor d50's were 2.4 and 2.6 μm, respectively. Optical photothermal infrared (O-PTIR) and Raman microspectroscopy confirmed collected particle composition. The sizes of re-entrained PSLs (1, 1.25, and 1.5 μm) were measured to have diameters of 1.0, 1.2, and 1.5 μm, respectively, with a Coulter Counter, indicating the successful downstream analysis of collected particles without modification during impaction and resuspension. Soluble particles (ammonium sulfate) were dissolved by the flowing water and measured with ion chromatography. This study shows that 3D-printed impactors are capable of collecting particles with a well-defined size cut, as well as nondestructively resuspending and chemically analyzing the particles. These 3D-printed devices are a miniaturized, low-cost (<$2) option that sets the stage for semicontinuous microfluidic analysis of size-selected aerosols to evaluate health impacts ranging from toxin exposure to disease transmission.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Derek Goderis
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kayleigh S Reilly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Theo Severud
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kerri A Pratt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - J Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew J Mason
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Chien YS, Tsai TT, Lin JH, Chang CC, Chen CF. One-step copper deposition-induced signal amplification for multiplex bacterial infection diagnosis on a lateral flow immunoassay device. Biosens Bioelectron 2025; 267:116849. [PMID: 39406071 DOI: 10.1016/j.bios.2024.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
The lateral flow immunoassay (LFIA) is predominant in rapid diagnostic tests owing to its cost-effectiveness and operational simplicity. However, the conventional LFIA exhibits limited sensitivity and is susceptible to human variance for the result readout, impacting result interpretation. In this study, we introduced a novel one-step copper deposition-induced signal amplification lateral flow immunoassay (osa-LFIA) that markedly enhances the detection sensitivity for Staphylococcus aureus (protein A) and Pseudomonas aeruginosa (exotoxin A). Utilizing gold nanoparticles (AuNPs) as a catalyst, this approach employs ascorbic acid to reduce Cu2+ to Cu0, depositing on AuNPs at the test line and amplifying the signal. A user-friendly design features a three-dimensional paper structure incorporating pre-dried reagents, enabling a streamlined, efficient testing process. The osa-LFIA significantly lowers detection limits to 3 ng mL-1 for protein A and 10 ng mL-1 for exotoxin A, offering a tenfold improvement over conventional LFIA. Additionally, we developed a portable grayscale detection device, achieving less than 10% error in quantitative analysis compared to the data acquired and analyzed in the lab. This entire process, from detection to signal amplification, is completed in just 20 min. For the clinical trial, we utilized the osa-LFIA to test synovial fluid samples infected with Staphylococcus aureus. We also successfully detected different concentrations of the exotoxin A in parallel, with a recovery value of 96%-110%. Our findings demonstrate the osa-LFIA's potential as a rapid, highly sensitive, and simple-to-use diagnostic tool for detecting various pathogens, significantly advancing the field of rapid diagnostic testing.
Collapse
Affiliation(s)
- Yuh-Shiuan Chien
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Jia-Hui Lin
- Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung, 811, Taiwan
| | - Chien-Cheng Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan.
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan; Graduate School of Advanced Technology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
6
|
Freko S, Nikić M, Mayer D, Weiß LJK, Simmel FC, Wolfrum B. Digital CRISPR-Powered Biosensor Concept without Target Amplification Using Single-Impact Electrochemistry. ACS Sens 2024; 9:6197-6206. [PMID: 39435883 PMCID: PMC11590096 DOI: 10.1021/acssensors.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
The rapid and reliable detection and quantification of nucleic acids is crucial for various applications, including infectious disease and cancer diagnostics. While conventional methods, such as the quantitative polymerase chain reaction are widely used, they are limited to the laboratory environment due to their complexity and the requirement for sophisticated equipment. In this study, we present a novel amplification-free digital sensing strategy by combining the collateral cleavage activity of the Cas12a enzyme with single-impact electrochemistry. In doing so, we modified silver nanoparticles using a straightforward temperature-assisted cofunctionalization process to subsequently detect the collision events of particles released by the activated Cas12a as distinct current spikes on a microelectrode array. The functionalization resulted in stable DNA-AgNP conjugates, making them suitable for numerous biosensor applications. Thus, our study demonstrates the potential of clustered regularly interspaced short palindromic repeats-based diagnostics combined with impact-based digital sensing for a rapid and amplification-free quantification of nucleic acids.
Collapse
Affiliation(s)
- Sebastian Freko
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Marta Nikić
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lennart J. K. Weiß
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
7
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
8
|
Calucho E, Álvarez-Diduk R, Piper A, Rossetti M, Nevanen TK, Merkoçi A. Reduced graphene oxide electrodes meet lateral flow assays: A promising path to advanced point-of-care diagnostics. Biosens Bioelectron 2024; 258:116315. [PMID: 38701536 DOI: 10.1016/j.bios.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
Research in electrochemical detection in lateral flow assays (LFAs) has gained significant momentum in recent years. The primary impetus for this surge in interest is the pursuit of achieving lower limits of detection, especially given that LFAs are the most widely employed point-of-care biosensors. Conventionally, the strategy for merging electrochemistry and LFAs has centered on the superposition of screen-printed electrodes onto nitrocellulose substrates during LFA fabrication. Nevertheless, this approach poses substantial limitations regarding scalability. In response, we have developed a novel method for the complete integration of reduced graphene oxide (rGO) electrodes into LFA strips. We employed a CO2 laser to concurrently reduce graphene oxide and pattern nitrocellulose, exposing its backing to create connection sites impervious to sample leakage. Subsequently, rGO and nitrocellulose were juxtaposed and introduced into a roll-to-roll system using a wax printer. The exerted pressure facilitated the transfer of rGO onto the nitrocellulose. We systematically evaluated several electrochemical strategies to harness the synergy between rGO and LFAs. While certain challenges persist, our rGO transfer technology presents compelling potential for setting a new standard in electrochemical LFA fabrication.
Collapse
Affiliation(s)
- Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; Autonomous University of Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Marianna Rossetti
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Tarja K Nevanen
- VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02044, Espoo, Finland
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
9
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Bouza M, Ahlmann N, García-Reyes JF, Franzke J. Solvent-Assisted Laser Desorption Flexible Microtube Plasma Mass Spectrometry for Direct Analysis of Dried Samples on Paper. Anal Chem 2023; 95:18370-18378. [PMID: 37902451 PMCID: PMC10733904 DOI: 10.1021/acs.analchem.3c03009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
The present study investigated the potential for solvent-assisted laser desorption coupled with flexible microtube plasma ionization mass spectrometry (SALD-FμTP-MS) as a rapid analytical technique for direct analysis of surface-deposited samples. Paper was used as the demonstrative substrate, and an infrared hand-held laser was employed for sample desorption, aiming to explore cost-effective sampling and analysis methods. SALD-FμTP-MS offers several advantages, particularly for biofluid analysis, including affordability, the ability to analyze low sample volumes (<10 μL), expanded chemical coverage, sample and substrate stability, and in situ analysis and high throughput potential. The optimization process involved exploring the use of viscous solvents with high boiling points as liquid matrices. This approach aimed to enhance desorption and ionization efficiencies. Ethylene glycol (EG) was identified as a suitable solvent, which not only improved sensitivity but also ensured substrate stability during analysis. Furthermore, the addition of cosolvents such as acetonitrile/water (1:1) and ethyl acetate further enhanced sensitivity and reproducibility for a standard solution containing amphetamine, imazalil, and cholesterol. Optimized conditions for reproducible and sensitive analysis were determined as 1000 ms of laser exposure time using a 1 μL solvent mixture of 60% EG and 40% acetonitrile (ACN)/water (1:1). A mixture of 60% EG and 40% ACN/water (1:1) resulted in signal enhancements and relative standard deviations of 12, 20, and 13% for the evaluated standards, respectively. The applicability of SALD-FμTP-MS was further evaluated by successfully analyzing food, water, and biological samples, highlighting the potential of SALD-FμTP-MS analysis, particularly for thermolabile and polarity diverse compounds.
Collapse
Affiliation(s)
- Marcos Bouza
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Norman Ahlmann
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Juan F. García-Reyes
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Joachim Franzke
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| |
Collapse
|
11
|
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review. J Pharm Anal 2023; 13:1429-1451. [PMID: 38223444 PMCID: PMC10785256 DOI: 10.1016/j.jpha.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
Collapse
Affiliation(s)
- Changhong Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
12
|
González-Martínez E, Rekas A, Moran-Mirabal J. Simple and Inexpensive Fabrication of High Surface-Area Paper-Based Gold Electrodes for Electrochemical and Surface-Enhanced Raman Scattering Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55183-55192. [PMID: 37972391 DOI: 10.1021/acsami.3c15224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Paper has emerged as an excellent alternative to create environmentally benign disposable electrochemical sensing devices. The critical step to fabricating electrochemical sensors is making paper conductive. In this work, paper-based electrodes with a high electroactive surface area (ESA) were fabricated using a simple electroless deposition technique. The polymerization time of a polydopamine adhesion layer and the gold salt concentration during the electroless deposition step were optimized to obtain uniformly conductive paper-based electrodes. The optimization of these fabrication parameters was key to obtaining the highest ESA possible. Roughening factors (Rf) of 7.2 and 2.3 were obtained when cyclic voltammetry was done in sulfuric acid and potassium ferricyanide, respectively, demonstrating a surface prone to fast electron transfer. As a proof of concept, mercury detection was done through anodic stripping, achieving a limit of quantification (LOQ) of 0.9 ppb. By changing the metal deposition conditions, the roughness of the metalized papers could also be tuned for their use as surface-enhanced Raman scattering (SERS) sensors. Metallized papers with the highest SERS signal for thiophenol detection yielded a LOQ of 10 ppb. We anticipate that this method of fabricating nanostructured paper-based electrodes can accelerate the development of simple, cost-effective, and highly sensitive electrochemical and SERS sensing platforms.
Collapse
Affiliation(s)
| | - Adrianna Rekas
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
13
|
Yadav SK, Verma D, Yadav U, Kalkal A, Priyadarshini N, Kumar A, Mahato K. Point-of-Care Devices for Viral Detection: COVID-19 Pandemic and Beyond. MICROMACHINES 2023; 14:1744. [PMID: 37763907 PMCID: PMC10535693 DOI: 10.3390/mi14091744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The pandemic of COVID-19 and its widespread transmission have made us realize the importance of early, quick diagnostic tests for facilitating effective cure and management. The primary obstacles encountered were accurately distinguishing COVID-19 from other illnesses including the flu, common cold, etc. While the polymerase chain reaction technique is a robust technique for the determination of SARS-CoV-2 in patients of COVID-19, there arises a high demand for affordable, quick, user-friendly, and precise point-of-care (POC) diagnostic in therapeutic settings. The necessity for available tests with rapid outcomes spurred the advancement of POC tests that are characterized by speed, automation, and high precision and accuracy. Paper-based POC devices have gained increasing interest in recent years because of rapid, low-cost detection without requiring external instruments. At present, microfluidic paper-based analysis devices have garnered public attention and accelerated the development of such POCT for efficient multistep assays. In the current review, our focus will be on the fabrication of detection modules for SARS-CoV-2. Here, we have included a discussion on various strategies for the detection of viral moieties. The compilation of these strategies would offer comprehensive insight into the detection of the causative agent preparedness for future pandemics. We also provide a descriptive outline for paper-based diagnostic platforms, involving the determination mechanisms, as well as a commercial kit for COVID-19 as well as their outlook.
Collapse
Affiliation(s)
- Sumit K. Yadav
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Damini Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ujala Yadav
- Department of Life Sciences, Central University of Jharkhand, Ranchi 835205, Jharkhand, India
| | - Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nivedita Priyadarshini
- Department of Zoology, DAV PG College Siwan, Jai Prakash University, Chhapra 841226, Bihar, India
| | - Ashutosh Kumar
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46637, USA
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
14
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
15
|
Peng H, Grob L, Weiß LJK, Hiendlmeier L, Music E, Kopic I, F Teshima T, Rinklin P, Wolfrum B. Inkjet-printed 3D micro-ring-electrode arrays for amperometric nanoparticle detection. NANOSCALE 2023; 15:4006-4013. [PMID: 36727303 DOI: 10.1039/d2nr05640b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chip-based impact electrochemistry can provide means to measure nanoparticles in solution by sensing their stochastic collisions on appropriately-polarized microelectrodes. However, a planar microelectrode array design still restricts the particle detection to the chip surface and does not allow detection in 3D environments. In this work, we report a fast fabrication process for 3D microelectrode arrays by combining ink-jet printing with laser-patterning. To this end, we printed 3D pillars from polyacrylate ink as a scaffold. Then, the metal structures are manufactured via sputtering and laser-ablation. Finally, the chip is passivated with a parylene-C layer and the electrode tips are created via laser-ablation in a vertical alignment. As a proof of principle, we employ our 3D micro-ring-electrode arrays for single impact recordings from silver nanoparticles.
Collapse
Affiliation(s)
- Hu Peng
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Leroy Grob
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Lennart Jakob Konstantin Weiß
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Lukas Hiendlmeier
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Emir Music
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Inola Kopic
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Tetsuhiko F Teshima
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
- Medical & Health Informatics Laboratories NTT Research Incorporated 940 Stewart Dr, Sunnyvale, CA 94085, USA
| | - Philipp Rinklin
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Bernhard Wolfrum
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| |
Collapse
|
16
|
Li L, Yang H, Li L, Tan X, Ge S, Zhang L, Yu J, Zhang Y. Photothermal-Reagent-Triggered Visual Thermoresponsive and Quantized Photoelectrochemical Dual-Signal Assay. ACS Sens 2022; 7:2429-2437. [PMID: 35930687 DOI: 10.1021/acssensors.2c01162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro biosensing chips are urgently needed for early-stage diagnosis and real-time surveillance of epidemic diseases. Herein, a versatile zone with photothermal effects is implanted in the miniature space of a collapsible lab-on-paper photoelectrochemical biosensor for on-site detection of microRNA-141 in body fluids, which can flexibly interconnect the traditional photocurrent signal with functional temperature response. The visualized thermoresponsive results are enhanced by the exciton energy conversion between Fe3O4 nanoparticles (Fe3O4 NPs) and formed Prussian blue nanoparticles under near-infrared irradiation, which not only presents heat energy gradient variations but also generates color changes. Significantly, the controlled release of Fe3O4 NPs is actuated by a target-triggered enzyme assist strand displacement cycle strategy to efficiently improve the accuracy of target temperature signal prediction, which can concurrently mediate photoelectric signal attenuation via promoting the rapid recombination of photoexcited charge carriers on the CuInS2/CoIn2S4 electrode surface, affording dependable ultrasensitive detection results. Benefitting from the ingenious design of the versatile thermoresponsive-photoelectric sensing platform, the preliminary screening and ultrasensitive quantitative analysis can be simultaneously achieved in a single-drop sample. As a consequence, speedy prediction results and satisfied monitoring data are acquired in the ranges of 0.5 pM to 2 nM and 0.001 pM to 5 nM by measuring the temperature change and photocurrent intensity. By right of these advantages, such research paves a prospective paradigm for the manufacture of a visual, rapid, broad-spectrum, and reliable real-time surveillance platform, which allows it to be a promising candidate for epidemic disease home diagnosis and intelligent diagnosis.
Collapse
Affiliation(s)
- Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiaoran Tan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
17
|
Sarabi MR, Yigci D, Alseed MM, Mathyk BA, Ata B, Halicigil C, Tasoglu S. Disposable Paper-Based Microfluidics for Fertility Testing. iScience 2022; 25:104986. [PMID: 36105592 PMCID: PMC9465368 DOI: 10.1016/j.isci.2022.104986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fifteen percent of couples of reproductive age suffer from infertility globally and the burden of infertility disproportionately impacts residents of developing countries. Assisted reproductive technologies (ARTs), including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), have been successful in overcoming various reasons for infertility including borderline and severe male factor infertility which consists of 20%–30% of all infertile cases. Approximately half of male infertility cases stem from suboptimal sperm parameters. Therefore, healthy/normal sperm enrichment and sorting remains crucial in advancing reproductive medicine. Microfluidic technologies have emerged as promising tools to develop in-home rapid fertility tests and point-of-care (POC) diagnostic tools. Here, we review advancements in fabrication methods for paper-based microfluidic devices and their emerging fertility testing applications assessing sperm concentration, sperm motility, sperm DNA analysis, and other sperm functionalities, and provide a glimpse into future directions for paper-based fertility microfluidic systems. Paper-based technologies are emerging to develop in-home rapid fertility tests Fabrication methods for paper-based microfluidic devices are presented Emerging disposable paper-based fertility testing applications are reviewed
Collapse
Affiliation(s)
| | - Defne Yigci
- School of Medicine, Koç University, Istanbul, Türkiye 34450
| | - M. Munzer Alseed
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
| | - Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, HCA Healthcare, University of South Florida Morsani College of Medicine GME, Brandon Regional Hospital, Florida 33511, USA
| | - Baris Ata
- School of Medicine, Koç University, Istanbul, Türkiye 34450
- ART Fertility Clinics, Dubai, United Arab Emirates 337-1500
| | - Cihan Halicigil
- Yale School of Medicine, Yale University, Connecticut 06520, USA
| | - Savas Tasoglu
- School of Mechanical Engineering, Koç University, Istanbul, Türkiye 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Türkiye 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Türkiye 34450
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul, Türkiye 34450
- Corresponding author
| |
Collapse
|
18
|
Weiß LJK, Rinklin P, Thakur B, Music E, Url H, Kopic I, Hoven D, Banzet M, von Trotha T, Mayer D, Wolfrum B. Prototype Digital Lateral Flow Sensor Using Impact Electrochemistry in a Competitive Binding Assay. ACS Sens 2022; 7:1967-1976. [PMID: 35801574 DOI: 10.1021/acssensors.2c00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work demonstrates a lateral flow assay concept on the basis of stochastic-impact electrochemistry. To this end, we first elucidate requirements to employ silver nanoparticles as redox-active labels. Then, we present a prototype that utilizes nanoimpacts from biotinylated silver nanoparticles as readouts to detect free biotin in solution based on competitive binding. The detection is performed in a membrane-based microfluidic system, where free biotin and biotinylated particles compete for streptavidin immobilized on embedded latex beads. Excess nanoparticles are then registered downstream at an array of detection electrodes. In this way, we establish a proof of concept that serves as a blueprint for future "digital" lateral flow sensors.
Collapse
Affiliation(s)
- Lennart J K Weiß
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Bhawana Thakur
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Emir Music
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Heike Url
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Inola Kopic
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Darius Hoven
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Tassilo von Trotha
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| |
Collapse
|
19
|
Current Advances in Paper-Based Biosensor Technologies for Rapid COVID-19 Diagnosis. BIOCHIP JOURNAL 2022; 16:376-396. [PMID: 35968255 PMCID: PMC9363872 DOI: 10.1007/s13206-022-00078-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 12/29/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has had significant economic and social impacts on billions of people worldwide since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, in November 2019. Although polymerase chain reaction (PCR)-based technology serves as a robust test to detect SARS-CoV-2 in patients with COVID-19, there is a high demand for cost-effective, rapid, comfortable, and accurate point-of-care diagnostic tests in medical facilities. This review introduces the SARS-CoV-2 viral structure and diagnostic biomarkers derived from viral components. A comprehensive introduction of a paper-based diagnostic platform, including detection mechanisms for various target biomarkers and a COVID-19 commercial kit is presented. Intrinsic limitations related to the poor performance of currently developed paper-based devices and unresolved issues are discussed. Furthermore, we provide insight into novel paper-based diagnostic platforms integrated with advanced technologies such as nanotechnology, aptamers, surface-enhanced Raman spectroscopy (SERS), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas. Finally, we discuss the prospects for the development of highly sensitive, accurate, cost-effective, and easy-to-use point-of-care COVID-19 diagnostic methods.
Collapse
|