1
|
Alagarsamy KN, Saleth LR, Diedkova K, Zahorodna V, Gogotsi O, Pogorielov M, Dhingra S. MXenes in healthcare: transformative applications and challenges in medical diagnostics and therapeutics. NANOSCALE 2025; 17:11785-11811. [PMID: 40261131 DOI: 10.1039/d4nr04853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
MXenes, a novel class of two-dimensional transition metal carbides, exhibit exceptional physicochemical properties that make them highly promising for biomedical applications. Their application has been explored in bioinstrumentation, tissue engineering, and infectious disease management. In bioinstrumentation, MXenes enhance the sensitivity and response time of wearable sensors, including piezoresistive, electrochemical, and electrophysiological sensors. They also function effectively as contrast agents in MRI and CT imaging for cancer diagnostics and therapy. In tissue engineering, MXenes contribute to both hard and soft tissue regeneration, playing a key role in neural, cardiac, skin and bone repair. Additionally, they offer innovative solutions in combating infectious and inflammatory diseases by facilitating antimicrobial surfaces and immune modulation. Despite their potential, several challenges hinder the clinical translation of MXene-based technologies. Issues related to synthesis, scalability, biocompatibility, and long-term safety must be addressed to ensure their practical implementation in medical applications. This review provides a comprehensive overview of MXenes in next-generation medical diagnostics, including the role they play in wearable sensors and imaging contrast agents. It further explores their applications in tissue engineering and infectious disease management, highlighting their antimicrobial and immunomodulatory properties. Finally, we discuss the key barriers to clinical translation and propose strategies for overcoming these limitations. This review aims to bridge current advancements with future opportunities for integration of MXenes in healthcare.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Kateryna Diedkova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Veronika Zahorodna
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Oleksiy Gogotsi
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Maksym Pogorielov
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| |
Collapse
|
2
|
Fan W, Li C, Yu B, Liang T, Li J, Wei D, Meng K. Core-Sheath Structured Yarn for Biomechanical Sensing in Health Monitoring. Biomimetics (Basel) 2025; 10:304. [PMID: 40422134 DOI: 10.3390/biomimetics10050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
The rapidly evolving field of functional yarns has garnered substantial research attention due to their exceptional potential in enabling next-generation electronic textiles for wearable health monitoring, human-machine interfaces, and soft robotics. Despite notable advancements, the development of yarn-based strain sensors that simultaneously achieve high flexibility, stretchability, superior comfort, extended operational stability, and exceptional electrical performance remains a critical challenge, hindered by material limitations and structural design constraints. Here, we present a bioinspired, hierarchically structured core-sheath yarn sensor (CSSYS) engineered through an efficient dip-coating process, which synergistically integrates the two-dimensional conductive MXene nanosheets and one-dimensional silver nanowires (AgNWs). Furthermore, the sensor is encapsulated using a yarn-based protective layer, which not only preserves its inherent flexibility and wearability but also effectively mitigates oxidative degradation of the sensitive materials, thereby significantly enhancing long-term durability. Drawing inspiration from the natural architecture of plant stems-where the inner core provides structural integrity while a flexible outer sheath ensures adaptive protection-the CSSYS exhibits outstanding mechanical and electrical performance, including an ultralow strain detection limit (0.05%), an ultrahigh gauge factor (up to 744.45), rapid response kinetics (80 ms), a broad sensing range (0-230% strain), and exceptional cyclic stability (>20,000 cycles). These remarkable characteristics enable the CSSYS to precisely capture a broad spectrum of physiological signals, ranging from subtle arterial pulsations and respiratory rhythms to large-scale joint movements, demonstrating its immense potential for next-generation wearable health monitoring systems.
Collapse
Affiliation(s)
- Wenjing Fan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Cheng Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Bingping Yu
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Te Liang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Junrui Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Dapeng Wei
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Keyu Meng
- School of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
3
|
Babar ZUD, Iannotti V, Rosati G, Zaheer A, Velotta R, Della Ventura B, Álvarez-Diduk R, Merkoçi A. MXenes in healthcare: synthesis, fundamentals and applications. Chem Soc Rev 2025; 54:3387-3440. [PMID: 39981873 DOI: 10.1039/d3cs01024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Since their discovery over a decade ago, MXenes have transformed the field of "materials for healthcare", stimulating growing interest in their healthcare-related applications. These developments have also driven significant advancements in MXenes' synthesis. This review systematically examines the synthesis of MXenes and their applications in sensing and biomedical fields, underscoring their pivotal role in addressing critical challenges in modern healthcare. We describe the experimental synthesis of MXenes by combining appropriate laboratory modules with the mechanistic principles underlying each synthesis step. In addition, we provide extensive details on the experimental parameters, critical considerations, and essential instructions for successful laboratory synthesis. Various healthcare applications including sensing, biomedical imaging, synergistic therapies, regenerative medicine, and wearable devices have been explored. We further highlight the emerging trends of MXenes, viz., their role as nanovehicles for drug delivery, vectors for gene therapy, and tools for immune profiling. By identifying the important parameters that define the utility of MXenes in biomedical applications, this review outlines strategies to regulate their biomedical profile, thereby serving as a valuable guide to design MXenes with application-specific properties. The final section integrates experimental research with theoretical studies to provide a comprehensive understanding of the field. It examines the role of emerging technologies, such as artificial intelligence (AI) and machine learning (ML), in accelerating material discovery, structure-property optimization, and automation. Complemented by detailed supplementary information on synthesis, stability, biocompatibility, environmental impact, and theoretical insights, this review offers a profound knowledge base for understanding this diverse family of 2D materials. Finally, we compared the potential of MXenes with that of other 2D materials to underscore the existing challenges and prioritize interdisciplinary collaboration. By synthesizing key studies from its discovery to current trends (especially from 2018 onward), this review provides a cohesive assessment of MXene synthesis with theoretical foundations and their prospects in the healthcare sector.
Collapse
Affiliation(s)
- Zaheer Ud Din Babar
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Scuola Superiore Meridionale (SSM), University of Naples Federico II, Largo S. Marcellino, 10, 80138, Italy
| | - Vincenzo Iannotti
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
- Institute for Superconductors, Oxides and other Innovative Materials and Devices of the National Research Council (CNR-SPIN), Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Ayesha Zaheer
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
| | - Raffaele Velotta
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
| | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
| | - Ruslan Álvarez-Diduk
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
4
|
Wang K, Liu Z, Zhou C, Liu B, Gu F, Xiong S, Liu J, Yang M. A novel structure luminous flexible fiber was prepared via aerosol jet printing. Sci Rep 2025; 15:3440. [PMID: 39870676 PMCID: PMC11772743 DOI: 10.1038/s41598-025-86047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
Utilizing aerosol jet printing (AJP), this study achieves a breakthrough in fabricating luminescent fibers with superior optical performance and flexibility. The Y2O3:Eu3+ coated high silica glass fibers demonstrate luminous efficiency twice that of traditional methods, retaining 80% after 250 bending cycles and 90% after sweat immersion. This AJP technique not only elevates the potential of smart fabrics but also represents a significant innovation in lighting technology, providing new ideas for advanced functional fiber fabrication.
Collapse
Affiliation(s)
- Keke Wang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
- Laboratory of Advanced Materials & Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Zhi Liu
- Laboratory of Advanced Materials & Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Chenxin Zhou
- Laboratory of Advanced Materials & Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Baixiong Liu
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Feng Gu
- Laboratory of Advanced Materials & Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Shixian Xiong
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
- Laboratory of Advanced Materials & Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Particle Technology, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Jianfeng Liu
- Xinyu Iron and Steel Group Co., Ltd, Xinyu, 336600, China
| | - Munan Yang
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
5
|
Ma Y, Wan K, Huang Y, Feng Q, Du Z. Hydrophobic PU fabric with synergistic conductive networks for boosted high sensitivity, wide linear-range wearable strain sensor. NANOTECHNOLOGY 2025; 36:125501. [PMID: 39808842 DOI: 10.1088/1361-6528/ada9f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane (PU)-based conductive fabric (GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy. The GCPU fabric consists of graphene sheets (GS)/carbon nanotubes (CNTs) elastic conductive layer and a PU elastic substrate. GS and CNTs can be constructed into a synergistic conductive network, and the fabric is endowed with high conductivity (1.193 S m-1). Simulated equivalent circuits show that GS in the conductive network will break violently under applied strain, making the GCPU fabric extremely sensitive (gauge factor 102). CNTs are spatially distributed in GS lamellae, avoiding the phenomenon that the constructed synergistic conductive network is violently fractured under the applied strain, which leads to the decrease of linearity (0.996). Styrene-ethylene-butylene-styrene (SEBS) was used as a dispersant and binder to uniformly disperse and closely bond GS and CNTs into PU fabrics. In addition, the hydrophobicity of SEBS makes the GCPU fabric resistant to water environment (The contact angle is 123°). Due to the good mechanical stability of GCPU fabric, GCPU fabric has a wide strain range (0%-50%) and high cycle stability (over 1000 cycles). In practice, GCPU fabric can accurately simulate and detect the size and deformation motion of human body. Therefore, the successful construction of elastic fabrics with synergistic conductive networks provides a feasible path for the design and manufacture of wearable intelligent fabrics.
Collapse
Affiliation(s)
- Yanyan Ma
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Kening Wan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Yuwen Huang
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qichun Feng
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Zhaofang Du
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
6
|
Hou L, Duan J, Xiong F, Carraro C, Shi T, Maboudian R, Long H. Low Power Gas Sensors: From Structure to Application. ACS Sens 2024; 9:6327-6357. [PMID: 39535966 DOI: 10.1021/acssensors.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Gas sensors are pivotal across industries, encompassing environmental monitoring, industrial safety, and healthcare. Recently, a surge in demand for low power gas sensors has emerged, driven by the huge need for applications in portable devices, wireless sensor networks, and the Internet of things (IoT). The practical realization of a densely interconnected sensor network demands gas sensors to have low power consumption for energy-efficient operation. This Perspective offers a comprehensive overview of the progress of low-power sensors for gas and volatile organic compound detection, with a keen focus on the interplay between sensing materials (including metal oxide semiconductors, metal-organic frameworks, and two-dimensional materials), sensor structures, and power consumption. The main gas sensing mechanisms are discussed, and we delve into the mechanisms for achieving low power consumption including material properties and sensor design. Furthermore, typical applications of low power gas sensors are also presented, including wearable technology, food safety, and environmental monitoring. The review will end by discussing some open questions and ongoing needs.
Collapse
Affiliation(s)
- Linlin Hou
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Jian Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Feng Xiong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Carlo Carraro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Roya Maboudian
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Hu Long
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| |
Collapse
|
7
|
Kim J, Choi Y, Jang H, Jiong S, Chen X, Seo B, Choi W. Thermo-Chemo-Mechanically Robust, Multifunctional MXene/PVA/PAA-Hanji Textile with Energy Harvesting, EMI Shielding, Flame-Retardant, and Joule Heating Capabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411248. [PMID: 39363668 PMCID: PMC11586804 DOI: 10.1002/adma.202411248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Indexed: 10/05/2024]
Abstract
The rapid development of wearable electronics, personal mobile equipment, and Internet of Things systems demands smart textiles that integrate multiple functions with enhanced durability. Herein, the study reports robust and multifunctional textiles with energy harvesting, electromagnetic interference (EMI) shielding, flame resistance, and Joule heating capabilities, fabricated by a facile yet effective integration method using the deposition of cross-linked MXene (Ti3C2Tx), poly(vinyl alcohol) (PVA), and poly(acrylic acid) (PAA) onto traditional Korean paper, Hanji via vacuum filtration. Comprehensive analyses confirm robust cross-linking, structural integrity, and interface stability in the MXene/PVA/PAA-Hanji (MPP-H) textiles, which synergistically boost their multifunctional performance. The MPP-H textiles exhibit remarkable power generation lasting over 60 min with a power density of 102.2 µW cm-3 and an energy density of 31.0 mWh cm-3 upon the application of 20 µL of NaCl solution. The EMI shielding effectiveness (SE) per unit thickness in the X-band (8.2-12.4 GHz) is up to 437.6 dB mm-1, with the ratio of absorption to reflection reaching 4.5, outperforming existing EMI shielding materials. Superior thermo-chemo-mechanical properties (flame resistance, rapid Joule heating, durability, and washability) further demonstrate their versatile usability. The MPP-H enables diverse functionalities within a single, robust textile through a scalable fabrication method, offering transformative potential for wearable and mobility platforms.
Collapse
Affiliation(s)
- Jiheon Kim
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yong Choi
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Hoyoung Jang
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sohyung Jiong
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Xinqi Chen
- Department of Materials Science and Engineering, The NUANCE CenterNorthwestern UniversityEvanstonIL60208USA
- Department of Mechanical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Byungseok Seo
- Department of Materials Science and Engineering, The NUANCE CenterNorthwestern UniversityEvanstonIL60208USA
| | - Wonjoon Choi
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
8
|
Chen Y, Xiao H, Fan Q, Tu W, Zhang S, Li X, Hu T. Fully Integrated Biosensing System for Dynamic Monitoring of Sweat Glucose and Real-Time pH Adjustment Based on 3D Graphene MXene Aerogel. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39365144 DOI: 10.1021/acsami.4c13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The development of noninvasive glucose sensors capable of continuous monitoring without restricting user mobility is crucial, particularly for managing diabetes, which demands consistent and long-term observation. Traditional sensors often face challenges with accuracy and stability that curtail their practical applications. To address these issues, we have innovatively applied a three-dimensional porous aerogel composed of Ti3C2Tx MXene and reduced graphene oxide (MX-rGO) in electrochemical sensing. It significantly reduces the electron-transfer distance between the enzyme's redox center and the electrode surface while firmly anchoring the enzyme layer to effectively prevent any leakage. Another pivotal advancement in our study is the integration of the sensor with a real-time adaptive calibration mechanism tailored specifically for analyzing sweat glucose. This sensor not only measures glucose levels but also dynamically monitors and adjusts to pH fluctuations in sweat. Such capabilities ensure the precise delivery of physiological data during physical activities, providing strong support for personalized health management.
Collapse
Affiliation(s)
- Yuxian Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Haoyu Xiao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Qiaolin Fan
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Weilong Tu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Shiqi Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Xiao Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Tao Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Han X, Lin X, Sun Y, Huang L, Huo F, Xie R. Advancements in Flexible Electronics Fabrication: Film Formation, Patterning, and Interface Optimization for Cutting-Edge Healthcare Monitoring Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356954 DOI: 10.1021/acsami.4c11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.
Collapse
Affiliation(s)
- Xu Han
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Xinjing Lin
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Yifei Sun
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Lingling Huang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, 10 Zhenhai Road, Xiamen 361102, Fujian, P. R. China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruijie Xie
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| |
Collapse
|
10
|
Li X, Wang S, Zheng M, Ma Z, Chen Y, Deng L, Xu W, Fan G, Khademolqorani S, Banitaba SN, Osman AI. Synergistic integration of MXene nanostructures into electrospun fibers for advanced biomedical engineering applications. NANOSCALE HORIZONS 2024; 9:1703-1724. [PMID: 39087682 DOI: 10.1039/d4nh00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Minyan Zheng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Zhanying Ma
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Lingjuan Deng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Weixia Xu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Guang Fan
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | | | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
11
|
Namvari M, Chakrabarti BK. Electrophoretic deposition of MXenes and their composites: Toward a scalable approach. Adv Colloid Interface Sci 2024; 331:103208. [PMID: 38852471 DOI: 10.1016/j.cis.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Over the past decade, MXenes, a novel class of advanced 2D nanomaterials, have manifested as a prominent electrode material with diverse applications. Their unique layered structures, negative zeta potential, charge carrier mobility, mechanical properties, adjustable bandgap, hydrophilicity, metallic nature, and surface chemistry collectively contribute to the abundance of active redox sites on the surface and a reduction in the ion diffusion pathway. Despite such promising attributes of MXene, challenges like aggregation and restacking reduce the accessibility of active surface sites for electrolyte ions. Amongst approaches such as surface functionalization, addition of spacers, or facilitating pore formation, the electrophoretic deposition (EPD) of MXene on substrates has commenced to gain attention aiming to mitigate these issues. More importantly, it offers large-scale film fabrication in a short time without the necessity of using a charge-inducing agent. This review compiles recent advances in the use of EPD for preparing MXene-based electrodes and discusses the effect of EPD parameters on the relevant device performance. Recognition is given to understanding the relation of MXene colloidal composition in aqueous (and in some cases, non-aqueous) dispersions, deposition times, and other relevant parameters on respective device performances. In conclusion, the potential avenues offered by MXenes for future research on electrode materials are emphasized.
Collapse
Affiliation(s)
- Mina Namvari
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
| | - Barun Kumar Chakrabarti
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
12
|
Shao B, Chen X, Chen X, Peng S, Song M. Advancements in MXene Composite Materials for Wearable Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4092. [PMID: 39000870 PMCID: PMC11244375 DOI: 10.3390/s24134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
In recent years, advancements in the Internet of Things (IoT), manufacturing processes, and material synthesis technologies have positioned flexible sensors as critical components in wearable devices. These developments are propelling wearable technologies based on flexible sensors towards higher intelligence, convenience, superior performance, and biocompatibility. Recently, two-dimensional nanomaterials known as MXenes have garnered extensive attention due to their excellent mechanical properties, outstanding electrical conductivity, large specific surface area, and abundant surface functional groups. These notable attributes confer significant potential on MXenes for applications in strain sensing, pressure measurement, gas detection, etc. Furthermore, polymer substrates such as polydimethylsiloxane (PDMS), polyurethane (PU), and thermoplastic polyurethane (TPU) are extensively utilized as support materials for MXene and its composites due to their light weight, flexibility, and ease of processing, thereby enhancing the overall performance and wearability of the sensors. This paper reviews the latest advancements in MXene and its composites within the domains of strain sensors, pressure sensors, and gas sensors. We present numerous recent case studies of MXene composite material-based wearable sensors and discuss the optimization of materials and structures for MXene composite material-based wearable sensors, offering strategies and methods to enhance the development of MXene composite material-based wearable sensors. Finally, we summarize the current progress of MXene wearable sensors and project future trends and analyses.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xiaotong Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xingwei Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Repon MR, Mikučionienė D, Paul TK, Al-Humaidi JY, Rahman MM, Islam T, Shukhratov S. Architectural design and affecting factors of MXene-based textronics for real-world application. RSC Adv 2024; 14:16093-16116. [PMID: 38769956 PMCID: PMC11103351 DOI: 10.1039/d4ra01820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Today, textile-based wearable electronic devices (textronics) have been developed by taking advantage of nanotechnology and textile substrates. Textile substrates offer flexibility, air permeability, breathability, and wearability, whereas, using nanomaterials offers numerous functional properties, like electrical conductivity, hydrophobicity, touch sensitivity, self-healing properties, joule heating properties, and many more. For these reasons, textronics have been extensively used in many applications. Recently, new emerging two-dimensional (2D) transition metal carbide and nitride, known as MXene, nanomaterials have been highly considered for developing textronics because the surface functional groups and hydrophilicity of MXene nanoflakes allow the facile fabrication of MXene-based textronics. In addition, MXene nanosheets possess excellent electroconductivity and mechanical properties as well as large surface area, which also give numerous opportunities to develop novel functional MXene/textile-based wearable electronic devices. Therefore, this review summarizes the recent advancements in the architectural design of MXene-based textronics, like fiber, yarn, and fabric. Regarding the fabrication of MXene/textile composites, numerous factors affect the functional properties (e.g. fabric structure, MXene size, etc.). All the crucial affecting parameters, which should be chosen carefully during the fabrication process, are critically discussed here. Next, the recent applications of MXene-based textronics in supercapacitors, thermotherapy, and sensors are elaborately delineated. Finally, the existing challenges and future scopes associated with the development of MXene-based textronics are presented.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- Department of Textile Engineering, Daffodil International University Dhaka-1216 Bangladesh +88-37066227098
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | - Daiva Mikučionienė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | | | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials Sherpur-2100 Bangladesh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Sharof Shukhratov
- Department of Technological Education, Fergana State University Fergana 150100 Uzbekistan
| |
Collapse
|
14
|
Zhuang Y, Wang X, Lai P, Li J, Chen L, Lin Y, Wang F. Wireless Flexible System for Highly Sensitive Ammonia Detection Based on Polyaniline/Carbon Nanotubes. BIOSENSORS 2024; 14:191. [PMID: 38667184 PMCID: PMC11048023 DOI: 10.3390/bios14040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Ammonia (NH3) is a harmful atmospheric pollutant and an important indicator of environment, health, and food safety conditions. Wearable devices with flexible gas sensors offer convenient real-time NH3 monitoring capabilities. A flexible ammonia gas sensing system to support the internet of things (IoT) is proposed. The flexible gas sensor in this system utilizes polyaniline (PANI) with multiwall carbon nanotubes (MWCNTs) decoration as a sensitive material, coated on a silver interdigital electrode on a polyethylene terephthalate (PET) substrate. Gas sensors are combined with other electronic components to form a flexible electronic system. The IoT functionality of the system comes from a microcontroller with Wi-Fi capability. The flexible gas sensor demonstrates commendable sensitivity, selectivity, humidity resistance, and long lifespan. The experimental data procured from the sensor reveal a remarkably low detection threshold of 0.3 ppm, aligning well with the required specifications for monitoring ammonia concentrations in exhaled breath gas, which typically range from 0.425 to 1.8 ppm. Furthermore, the sensor demonstrates a negligible reaction to the presence of interfering gases, such as ethanol, acetone, and methanol, thereby ensuring high selectivity for ammonia detection. In addition to these attributes, the sensor maintains consistent stability across a range of environmental conditions, including varying humidity levels, repeated bending cycles, and diverse angles of orientation. A portable, stable, and effective flexible IoT system solution for real-time ammonia sensing is demonstrated by collecting data at the edge end, processing the data in the cloud, and displaying the data at the user end.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanjing Lin
- The School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (X.W.); (P.L.); (J.L.); (L.C.)
| | - Fei Wang
- The School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (X.W.); (P.L.); (J.L.); (L.C.)
| |
Collapse
|
15
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
16
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
17
|
Wang M, Wang X, He Z, Liu Z, Chen R, Wang K, Wu J, Han J, Zhao S, Chen Y, Liu J. Stretchable, Washable, and Anti-Ultraviolet i-Textile-Based Wearable Device for Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13052-13059. [PMID: 38414333 DOI: 10.1021/acsami.3c18203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Smart textiles with multifunction and highly stable performance are essential for their application in wearable electronics. Despite the advancement of various smart textiles through the decoration of conductive materials on textile surfaces, improving their stability and functionality remains a challenging topic. In this study, we developed an ionic textile (i-textile) with air permeability, water resistance, UV resistance, and sensing capabilities through in situ photopolymerization of ionogel onto the textile surface. The i-textile presents air permeability comparable to that of bare textile while possessing enhanced UV resistance. Remarkably, the i-textile maintains excellent electrical properties after washing 20 times or being subjected to 300 stretching cycles at 30% tension. When applied to human joint motion detection, the i-textile-based sensors can effectively distinguish joint motion based on their sensitivity and response speed. This research presents a novel method for developing smart textiles that further advances wearable electronics.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xuerong Wang
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Rong Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jicai Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jikun Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shulin Zhao
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yuhui Chen
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
18
|
Boland CS. Performance analysis of solution-processed nanosheet strain sensors-a systematic review of graphene and MXene wearable devices. NANOTECHNOLOGY 2024; 35:202001. [PMID: 38324912 DOI: 10.1088/1361-6528/ad272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nanotechnology has led to the realisation of many potentialInternet of Thingsdevices that can be transformative with regards to future healthcare development. However, there is an over saturation of wearable sensor review articles that essentially quote paper abstracts without critically assessing the works. Reported metrics in many cases cannot be taken at face value, with researchers overly fixated on large gauge factors. These facts hurt the usefulness of such articles and the very nature of the research area, unintentionally misleading those hoping to progress the field. Graphene and MXenes are arguably the most exciting organic and inorganic nanomaterials for polymer nanocomposite strain sensing applications respectively. Due to their combination of cost-efficient, scalable production and device performances, their potential commercial usage is very promising. Here, we explain the methods for colloidal nanosheets suspension creation and the mechanisms, metrics and models which govern the electromechanical properties of the polymer-based nanocomposites they form. Furthermore, the many fabrication procedures applied to make these nanosheet-based sensing devices are discussed. With the performances of 70 different nanocomposite systems from recent (post 2020) publications critically assessed. From the evaluation of these works using universal modelling, the prospects of the field are considered. Finally, we argue that the realisation of commercial nanocomposite devices may in fact have a negative effect on the global climate crisis if current research trends do not change.
Collapse
Affiliation(s)
- Conor S Boland
- School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, United Kingdom
| |
Collapse
|
19
|
Lotfi R, Zandi N, Pourjavadi A, Christiansen JDC, Gurevich L, Mehrali M, Dolatshahi-Pirouz A, Pennisi CP, Tamjid E, Simchi A. Engineering Photo-Cross-Linkable MXene-Based Hydrogels: Durable Conductive Biomaterials for Electroactive Tissues and Interfaces. ACS Biomater Sci Eng 2024; 10:800-813. [PMID: 38159039 DOI: 10.1021/acsbiomaterials.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Light-cured conductive hydrogels have attracted immense interest in the regeneration of electroactive tissues and bioelectronic interfaces. Despite the unique properties of MXene (MX), its light-blocking effect in the range of 300-600 nm hinders the efficient cross-linking of photocurable hydrogels. In this study, we investigated the photo-cross-linking process of MX-gelatin methacrylate (GelMa) composites with different types of photoinitiators and MX concentrations to prepare biocompatible, injectable, conductive, and photocurable composite hydrogels. The examined photoinitiators were Eosin Y, Irgacure 2959 (Type I), and lithium phenyl-2,4,6-trimethylbenzoyl phosphinate (Type II). The light-blocking effect of MX strongly affected the thickness, pore structure, swelling ratio, degradation, and mechanical properties of the light-cured hydrogels. Uniform distribution of MX in the hydrogel matrix was achieved at concentrations up to 0.04 wt % but the film thickness and curing times varied depending on the type of photoinitiator. It was feasible to prepare thin films (0.5 mm) by employing Type I photoinitiators under a relatively long light irradiation (4-5 min) while thick films with centimeter sizes could be rapidly cured by using Type II photoinitiator (<60 s). The mechanical properties, including elastic modulus, toughness, and stress to break for the Type II hydrogels were significantly superior (up to 300%) to those of Type I hydrogels depending on the MX concentration. The swelling ratio was also remarkably higher (648-1274%). A conductivity of about 1 mS/cm was attained at 0.1 mg/mL MX for the composite hydrogel cured by the Type I photoinitiator. In vitro cytocompatibility assays determined that the hydrogels promoted cell viability, metabolic activity, and robust proliferation of C2C12 myoblasts, which indicated their potential to support muscle cell growth during myogenesis. The developed photocurable GelMa-MX hydrogels have the potential to serve as bioactive and conductive scaffolds to modulate cellular functions and for tissue-device interfacing.
Collapse
Affiliation(s)
- Roya Lotfi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Nooshin Zandi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran 14588-89694, Iran
| | | | - Leonid Gurevich
- Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg 9260, Denmark
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14588-89694, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| |
Collapse
|
20
|
Wu Y, Sun M. Recent progress of MXene as an energy storage material. NANOSCALE HORIZONS 2024; 9:215-232. [PMID: 38180501 DOI: 10.1039/d3nh00402c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Thanks to its adjustable interlayer distance, large specific surface area, abundant active sites, and diverse surface functional groups, MXene has always been regarded as an excellent candidate for energy storage materials, including supercapacitors and ion batteries. Recent studies have also shown that MXene can serve as an efficient hydrogen storage catalyst. This review aims to summarize the latest research achievements in the field of MXene, especially its performance and application in energy storage. Different synthesis techniques have different effects on the energy storage performance of MXene. In this review, various common synthesis methods and the latest innovations in synthesis methods are discussed. MXene is prone to oxidation, and how to resist oxidation is also an important topic in MXene research. This article introduces the research results on improving the chemical stability of MXene through annealing. In addition, it aims to gain a deeper understanding of the future development and potential of MXene.
Collapse
Affiliation(s)
- Yuqiang Wu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100086, P. R. China.
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100086, P. R. China.
| |
Collapse
|
21
|
Mirzaei A, Lee MH, Safaeian H, Kim TU, Kim JY, Kim HW, Kim SS. Room Temperature Chemiresistive Gas Sensors Based on 2D MXenes. SENSORS (BASEL, SWITZERLAND) 2023; 23:8829. [PMID: 37960529 PMCID: PMC10650214 DOI: 10.3390/s23218829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Owing to their large surface area, two-dimensional (2D) semiconducting nanomaterials have been extensively studied for gas-sensing applications in recent years. In particular, the possibility of operating at room temperature (RT) is desirable for 2D gas sensors because it significantly reduces the power consumption of the sensing device. Furthermore, RT gas sensors are among the first choices for the development of flexible and wearable devices. In this review, we focus on the 2D MXenes used for the realization of RT gas sensors. Hence, pristine, doped, decorated, and composites of MXenes with other semiconductors for gas sensing are discussed. Two-dimensional MXene nanomaterials are discussed, with greater emphasis on the sensing mechanism. MXenes with the ability to work at RT have great potential for practical applications such as flexible and/or wearable gas sensors.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; (A.M.); (H.S.)
| | - Myoung Hoon Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea; (M.H.L.); (T.-U.K.)
| | - Haniyeh Safaeian
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; (A.M.); (H.S.)
| | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea; (M.H.L.); (T.-U.K.)
| | - Jin-Young Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea;
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea;
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea; (M.H.L.); (T.-U.K.)
| |
Collapse
|
22
|
Li S, Li H, Lu Y, Zhou M, Jiang S, Du X, Guo C. Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring. BIOSENSORS 2023; 13:909. [PMID: 37887102 PMCID: PMC10605256 DOI: 10.3390/bios13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
With the innovation of wearable technology and the rapid development of biosensors, wearable biosensors based on flexible textile materials have become a hot topic. Such textile-based wearable biosensors promote the development of health monitoring, motion detection and medical management, and they have become an important support tool for human healthcare monitoring. Textile-based wearable biosensors not only non-invasively monitor various physiological indicators of the human body in real time, but they also provide accurate feedback of individual health information. This review examines the recent research progress of fabric-based wearable biosensors. Moreover, materials, detection principles and fabrication methods for textile-based wearable biosensors are introduced. In addition, the applications of biosensors in monitoring vital signs and detecting body fluids are also presented. Finally, we also discuss several challenges faced by textile-based wearable biosensors and the direction of future development.
Collapse
Affiliation(s)
- Sheng Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
| | - Huan Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Yongcai Lu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Minhao Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Sai Jiang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Xiaosong Du
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Chang Guo
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| |
Collapse
|
23
|
Zhu M, Lu C, Liu L. Progress and challenges of emerging MXene based materials for thermoelectric applications. iScience 2023; 26:106718. [PMID: 37234091 PMCID: PMC10206441 DOI: 10.1016/j.isci.2023.106718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
To realize sustainable development, more and more countries forwarded carbon neutrality goal. Accordingly, improving the utilization efficiency of traditional fossil fuel is an effective strategy for this great goal. Keeping this in mind, developing thermoelectric devices to recover waste heat energy resulted in the consumption process of fuel is demonstrated to be promising. High performance thermoelectric devices require advanced materials. MXenes are a kind of 2D materials with a layered structure, which demonstrate excellent thermoelectric performance owing to their unique physical, mechanical, and chemical properties. Also, substantial achievement has been gained during the past few years in synthesizing MXene based materials for thermoelectric devices. In this review, the mainstream synthetic routes of MXene from etching MAX were summarized. Significantly, the current state and challenges of research on improving the performance of MXene based thermoelectrics are explored, including pristine MXene and MXene based composites.
Collapse
Affiliation(s)
- Maiyong Zhu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Congcong Lu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lingran Liu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
24
|
Bakker E. Wearable Sensors. ACS Sens 2023; 8:1368-1370. [PMID: 36942872 DOI: 10.1021/acssensors.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
|
25
|
Li QF, Chen X, Wang H, Liu M, Peng HL. Pt/MXene-Based Flexible Wearable Non-Enzymatic Electrochemical Sensor for Continuous Glucose Detection in Sweat. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13290-13298. [PMID: 36862063 DOI: 10.1021/acsami.2c20543] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable non-invasive sensors facilitate the continuous measurement of glucose in sweat for the treatment and management of diabetes. However, the catalysis of glucose and sweat sampling are challenges in the development of efficient wearable glucose sensors. Herein, we report a flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. We synthesized a catalyst (Pt/MXene) by the hybridization of Pt nanoparticles onto MXene (Ti3C2Tx) nanosheets with a broad linear range of glucose detection (0-8 mmol/L) under neutral conditions. Furthermore, we optimized the structure of the sensor by immobilizing Pt/MXene with a conductive hydrogel to enhance the stability of the sensor. Based on Pt/MXene and the optimized structure, we fabricated a flexible wearable glucose sensor by integrating a microfluidic patch for sweat collection onto a flexible sensor. We evaluated the utility of the sensor for the detection of glucose in sweat, and the sensor could detect the glucose change with the replenishment and consumption of energy by the body, and a similar trend was observed in the blood. An in vivo glucose test in sweat indicated that the fabricated sensor is promising for the continuous measurement of glucose, which is essential for the treatment and management of diabetes.
Collapse
Affiliation(s)
- Quan-Fu Li
- Guangxi Key Laboratory of Integrated Circuits and Microsystems, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xu Chen
- Guangxi Key Laboratory of Integrated Circuits and Microsystems, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hai Wang
- Guangxi Key Laboratory of Nuclear Physics and Technology, College of Physics and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ming Liu
- Guangxi Key Laboratory of Nuclear Physics and Technology, College of Physics and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hui-Ling Peng
- Guangxi Key Laboratory of Integrated Circuits and Microsystems, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
26
|
Tran VA, Tran NT, Doan VD, Nguyen TQ, Thi HHP, Vo GNL. Application Prospects of MXenes Materials Modifications for Sensors. MICROMACHINES 2023; 14:247. [PMID: 36837947 PMCID: PMC9959414 DOI: 10.3390/mi14020247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 06/01/2023]
Abstract
The first two-dimensional (2D) substance sparked a boom in research since this type of material showed potential promise for applications in field sensors. A class of 2D transition metal nitrides, carbides, and carbonitrides are referred to as MXenes. Following the 2011 synthesis of Ti3C2 from Ti3AlC2, much research has been published. Since these materials have several advantages over conventional 2D materials, they have been extensively researched, synthesized, and studied by many research organizations. To give readers a general understanding of these well-liked materials, this review examines the structures of MXenes, discusses various synthesis procedures, and analyzes physicochemistry properties, particularly optical, electronic, structural, and mechanical properties. The focus of this review is the analysis of modern advancements in the development of MXene-based sensors, including electrochemical sensors, gas sensors, biosensors, optical sensors, and wearable sensors. Finally, the opportunities and challenges for further study on the creation of MXenes-based sensors are discussed.
Collapse
Affiliation(s)
- Vy Anh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Quang Nguyen
- Department of External Relations and Project Development, Institute of Applied Science and Technology (IAST), Van Lang University, Ho Chi Minh City 700000, Vietnam
| | - Hai Ha Pham Thi
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Giang N. L. Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
27
|
MXene-based flexible pressure sensor with piezoresistive properties significantly enhanced by atomic layer infiltration. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Koyappayil A, Chavan SG, Roh YG, Lee MH. Advances of MXenes; Perspectives on Biomedical Research. BIOSENSORS 2022; 12:454. [PMID: 35884257 PMCID: PMC9313156 DOI: 10.3390/bios12070454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Yun-Gil Roh
- Department of Convergence in Health and Biomedicine, Chungbuk University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea;
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| |
Collapse
|