1
|
Wang L, Pang Y, Zhang Z, Li S, Jaffrezic-Renault N, Liu K, Guo Z. Highly sensitive electrochemical Osteoprotegerin (OPG) immunosensor for assessing fracture healing and evaluating drug efficacy. Bioelectrochemistry 2025; 163:108884. [PMID: 39674125 DOI: 10.1016/j.bioelechem.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Tibial fractures are common long bone injuries requiring effective monitoring for optimal healing. Osteoprotegerin (OPG), as a key marker of bone formation, is closely related to the degree of fracture healing. However, existing detection methods have certain limitations in sensitivity and specificity. This study successfully crafted an exceptionally sensitive electrochemical immunosensor based on COOH-CNFs/Ti3C2Tx MXene/PANI-AgNPs nanocomposite material for the quantitative analysis of OPG in serum, providing a methodological basis for auxiliary diagnosis of fracture healing degree and evaluation of drug efficacy. A one-pot hydrothermal method was employed to synthesize and modify the nanocomposite material on gold electrode surfaces, which exhibit high electrochemical activity, low charge transfer resistance, and a large electroactive surface area, thereby enhancing the immunosensor's conductivity and stability, with a wide linear range (10-17 to 10-12 g/mL) and a low detection limit (1.94 × 10-18 g/mL). Methodological validation further confirmed the immunosensor's excellent performance in specificity, reproducibility, and stability. Moreover, the successful application of this immunosensor in detecting OPG in serum samples from actual tibial fracture patients before and after medication demonstrates significant potential for clinical application in assisting the assessment of fracture healing and evaluating the efficacy of orthopedic drugs.
Collapse
Affiliation(s)
- Lu Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yan Pang
- Department of Laboratory Medicine, Fifth Hospital in Wuhan, No. 122 Xian Zheng Street, Hanyang District, Wuhan 430050, PR China
| | - Zhipeng Zhang
- Hubei University of Science & Technology, Xianning Medical College, Xianning, Wuhan 437100, PR China.
| | - Sichao Li
- Department of Infectious Diseases, Wuhan Asia Heart Hospital, No. 300 Taizi Lake South Road, Hanyang Economic and Technological Development Zone, Wuhan 430056, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France.
| | - Kui Liu
- The Affiliated Hospital of Wuhan Sports University, Wuhan 430079, PR China.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
2
|
Li Y, Zhao L, Ma L, Bai Y, Feng F. Argonaute protein powered biosensing for pathogenic biosafety. Int J Biol Macromol 2025; 305:141321. [PMID: 39984107 DOI: 10.1016/j.ijbiomac.2025.141321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
The food safety and medical health issues caused by pathogen are particularly prominent. The development of biosensing technologies is urgent to ensure pathogenic biosafety. Argonaute system, as a promising and cutting-edged next-generation nucleic acid test technology, has the potential to address the challenges faced by CRISPR/Cas system. In this review, we focused on the current state-of-art Argonaute-powered biosensing for pathogenic biosafety. First, we introduced current methods for nucleic acid testing and programmable nucleases, followed by the working principle of Argonaute system (PfAgo, TtAgo, CbAgo, etc). Then Argonaute-medicated nucleic acid biosensing was highlighted through amplification and amplification-free manners. In addition, we summarized the application of Argonaute tools in detecting bacteria, virus, mycoplasma, etc. Finally, we pointed out the challenges and perspectives. Current pathogen methods demonstrate low sensitivity and specificity, as well as lack capabilities for multiple and point-of-care testing. Recent studies have shown that Argonaute-powered biosensing is an innovative and rapidly growing technology that could significantly enhance detection capabilities for pathogen-related issues, addressing the limitations of current methods. The application of Argonaute-powered biosensing is both promising and desirable due to the potential to offer "customized" and streamlined detection in the field of pathogenic biosafety monitoring.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China.
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China; School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China.
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China.
| |
Collapse
|
3
|
Xiong Q, Zhu C, Yin X, Zhu L. CRISPR/Cas and Argonaute-based biosensors for nucleic acid detection. Talanta 2025; 294:128210. [PMID: 40280080 DOI: 10.1016/j.talanta.2025.128210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Nowadays, nucleic acid detection technology has been applied to disease diagnosis, prevention, food safety, environmental testing and many other aspects. However, traditional methods still have shortcomings. Therefore, there is an urgent need for a simple, rapid, sensitive, and specific new method to supersede traditional nucleic acid detection technology. CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) system and Argonaute (Ago) system play an important role in microbial immune defense. Their targeting specificity, programmability and special trans-cleavage activity make it possible to develop some new platforms for nucleic acid detection in combination with a variety of biosensors. We introduce the origins of these two systems and the biosensors developed based on CRISPR/Cas system and Ago system, respectively, especially the prospects for the future development of Cascade Amplification biosensors. This review is expected to provide useful guidance for researchers in related fields and provide inspiration for the development of Cascade Amplification biosensors in the future.
Collapse
Affiliation(s)
- Qiangyuan Xiong
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Cancan Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Xueer Yin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
4
|
Shen H, Li Y, Tang K, Liang H, Xu ZL, Liu Y, Liu W. Programmable AIESTA: All-in-One Isothermal Enzymatic Signal Transduction Amplifier for Portable Profiling. Anal Chem 2025; 97:8088-8097. [PMID: 40162959 DOI: 10.1021/acs.analchem.5c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Argonaute (Ago) protein exhibits high specificity in nucleic acid recognition and cleavage, making it highly promising for biosensing applications. Its potential is further enhanced by its independence from protospacer adjacent motif (PAM) requirements and the cost-effectiveness of using short DNA guides. Both Ago and CRISPR/Cas systems face challenges in signal amplification, which limit their ability to detect targets at ultralow concentrations. To overcome this limitation, a thermostable quadratic amplification system (T-QAS) was constructed by integrating a thermostable nicking-enzyme-mediated amplification (NEMA) strategy with TtAgo. The system leverages the high stability of T-QAS at elevated temperatures to enhance guide-target interactions and decrease false positives caused by nonspecific amplification. Additionally, nanozyme is integrated with T-QAS to construct the AIESTA platform (all-in-one isothermal enzymatic signal transduction amplifier), which is a single-tube visual sensing platform. Within the AIESTA system, T-QAS improves specificity through high operational temperatures and offers programmable functions, enabling the sensitive detection of miRNA and foodborne toxins. The combination of T-QAS and nanozyme makes AIESTA a candidate of point-of-care testing (POCT) field, showcasing the potential for biosensing in resource-limited and complex environments.
Collapse
Affiliation(s)
- Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yanling Li
- China Tobacco Hunan Industrial Co. Ltd., Changsha 41007, China
| | - Kangling Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Mao S, Yang Z, Liu Z, Wang Y, Zeng Y, Jaffrezic-Renault N, Zhang Z, Dong Y, Guo Z. A DNA sensor based on CbAgo effector protein and on a dual electrochemical signal amplification strategy for B19 parvovirus detection. Bioelectrochemistry 2025; 162:108860. [PMID: 39612515 DOI: 10.1016/j.bioelechem.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Human parvovirus B19 is a prevalent childhood infectious virus that poses a great challenge to public health, so the detection of B19V is of great importance. In this study, a DNA sensor based on CbAgo, a Cas effector, and a dual electrochemical signal amplification strategy was developed by using a novel nanocomposite MnO2/CMK-3/g-C3N4/AgNPs for initial signal amplification, with CMK being an ordered mesoporous carbon nanomaterial. Single-walled carbon nanotubes (SWCNTs) were used as electrocatalytic probes for secondary signal amplification to detect B19 DNA. The detection process begins with polymerase chain reaction (PCR) amplification using the B19V infectious clone plasmid (pB19-M20) as a template and NS1-F/R as primers, followed by specific cleavage of B19 DNA based on the programmable cutting sites of CbAgo effector protein. This study enriches the application of Argonaute proteins in sensing and introduces a novel method to detect B19V. Under optimized conditions, the biosensor can detect B19 DNA in the range of 10-15-10-10 M, with a detection limit (LOD) of 0.2 fM. The results indicate that the developed DNA sensor holds promise for reliable and sensitive detection of B19 DNA in human serum.
Collapse
Affiliation(s)
- Siying Mao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhiyi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yue Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yonghua Zeng
- Department of Emergency Medicine, Shanghai Zhongye Hospital, No. 456 Chunlei Road, Baoshan District, Shanghai 200941, China
| | | | - Zhipeng Zhang
- Hubei University of Science & Technology, Xianning Medical College, Xianning, Hubei 437100, China.
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Zhang J, Su Z, Luo Q, Wei H, Liao J, Chen W, Lin J, Zhang J, Cai S, Wang X, Lin M. TtrAgo-mediated nucleic acid detection system and portable device for rapid detection of sexually transmitted diseases. Biosens Bioelectron 2025; 272:117029. [PMID: 39778245 DOI: 10.1016/j.bios.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
The development of rapid and multiplexed point-of-care (POC) diagnostic tools is vital for the prevention and control of sexually transmitted diseases (STIs). Here, we developed a POC-comprehensive Thermococcus thioreducensArgonaute (TtrAgo)-mediated nucleic acid detection system (POC-CANDY) and palm-sized portable detection device "Owl-1" for the simultaneous detection of Ureaplasma urealyticum, Chlamydia trachomatis, Neisseria gonorrhoeae, human papillomavirus types 16/18 and antibiotic resistance molecular markers [tetM, and gyrA mutation (S91F)]. Using recombinase polymerase amplification (RPA), the optimized POC-CANDY could finish the whole detection procedure within 55 min and achieve a limit of detection of 10 copies/μL. When validated by clinical STI samples, POC-CANDY showed 100% consistency with quantitative PCR. Additionally, compared with the PfAgo-based system, POC-CANDY significantly improved the sensitivity of distinguishing single nucleotide variations. The results demonstrated that POC-CANDY can be easily applied locally or on site. This study also promotes the utility of the TtrAgo-mediated technique in clinical diagnosis.
Collapse
Affiliation(s)
- Jiexiu Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Qiulan Luo
- Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Huagui Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, China
| | - Jiayu Liao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Weizhong Chen
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Jie Lin
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Juntian Zhang
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Shuheng Cai
- Guangdong Kaipu Technology Intelligent Manufacturing Co., Ltd., Chaozhou, Guangdong, China
| | - Xiaozhong Wang
- Guangdong Kaipu Technology Intelligent Manufacturing Co., Ltd., Chaozhou, Guangdong, China
| | - Min Lin
- Hanshan Normal University, Chaozhou, Guangdong Province, China.
| |
Collapse
|
7
|
Fu R, Hou J, Wang Z, Zhu C, Xianyu Y. A CRISPR-Cas and Argonaute-Driven Two-Factor Authentication Strategy for Information Security. ACS NANO 2025; 19:4983-4992. [PMID: 39853972 DOI: 10.1021/acsnano.4c17560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The escalating growth in computing power and the advent of quantum computing present a critical threat to the security of modern cryptography. Two-factor authentication strategies can effectively resist brute-force attacks to improve the security of access control. Herein, we proposed a two-factor and two-authentication entity strategy based on the trans-cleavage activity of CRISPR-Cas and the "dual-step" sequence-specific cleavage of Pyrococcus furiosus Argonaute. In this strategy, the output of authentication entity 1 acted as a component to operate authentication entity 2, thus enabling a role-based molecular model that implemented access control for the three roles. To further enhance information security, we designed knowledge suppression factors to constitute the command library and possession suppression factors to resist brute-force attacks. This study will promote the development of advanced molecular access control and its applications in biomedical diagnostics and data security.
Collapse
Affiliation(s)
- Ruijie Fu
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Jinjie Hou
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Zexiang Wang
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Chenggong Zhu
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital and Department Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350108, People's Republic of China
| | - Yunlei Xianyu
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| |
Collapse
|
8
|
Li L, Wang M, Dong Y, Yu D, Chen Y. Micropore Resistance Counting Platform for Multiplexed and Ultrasensitive Detection of Mycotoxins and Biomarkers. ACS NANO 2025; 19:920-932. [PMID: 39750018 DOI: 10.1021/acsnano.4c12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Development of a multiplexed and sensitive biosensing platform is a priority for public health security. We report a micropore resistance counting platform based on polystyrene microsphere size-based encoding and Clostridium butyricum Argonaute (CbAgo) decoding for multiplexed and ultrasensitive detection. Initially, we constructed a target DNA-modified polystyrene microsphere coding system based on micropore resistance counting. Subsequently, the precise recognition and cleavage capabilities of the guide DNA-activated CbAgo protein enable the decoding of the encoded microsphere system. Changes in the concentration of polystyrene microspheres are presented as a signal readout. The platform demonstrated excellent performance in multiplexed detection of three mycotoxins (with a sensitivity range over 4 orders of magnitude reaching the pg/mL level) and two inflammatory markers at pg/mL. Combining precise enzyme cleavage by CbAgo with micropore resistance counting, the developed platform is a multiplexed and highly sensitive detection tool with wide-ranging potential in applications such as clinical diagnosis, food safety inspection, and environmental monitoring.
Collapse
Affiliation(s)
- Letian Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Mengjiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070 Hubei, China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| |
Collapse
|
9
|
Gao H, Zhang H, Qi X, Miao M, Que L, Gu X, Chang D, Pan H. CRISPR/Cas12a dual-mode biosensor for Staphylococcus aureus detection via enzyme-free isothermal amplification. Talanta 2025; 282:127013. [PMID: 39406093 DOI: 10.1016/j.talanta.2024.127013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024]
Abstract
Accurate and reliable detection of Staphylococcus aureus (S. aureus) is essential for preventing infections, particularly in healthcare and food safety contexts. This work presents a novel dual-mode biosensor that integrates the CRISPR/Cas12a system with an enzyme-free isothermal amplification method for detecting S. aureus. Hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) amplify the aptamer-triggered response, significantly enhancing sensitivity. CRISPR/Cas12a's nuclease activity is utilized in two modes: cis cleavage generates a fluorescence signal, while trans cleavage produces an electrochemical signal, enabling dual-mode detection. The biosensor demonstrates outstanding performance, with a limit of detection (LOD) as low as 5.7 CFU mL-1 in electrochemical mode and 133.7 CFU mL-1 in fluorescence mode, showcasing excellent accuracy, stability, and sensitivity. It has been successfully applied to detecting actual samples, confirming its practical applicability. This innovative approach offers a powerful tool for the swift and precise identification of S. aureus and paves the way for developing next-generation dual-mode biosensors for various analytes. Future research will aim to simplify the detection process further, making it more accessible for use in resource-limited settings.
Collapse
Affiliation(s)
- Hongmin Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xue Qi
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Meng Miao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Longbin Que
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xin Gu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People's Republic of China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; The Affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
10
|
Tan S, Zeng F, Zhong W, Chen T, Chen X, Li L, Wei H, Zhang S. Using Recombinase-Aid Amplification Combined with Pyrococcus furiosus Argonaute for Rapid Sex Identification in Flamingo ( Phoenicopteridae). Animals (Basel) 2024; 15:7. [PMID: 39794950 PMCID: PMC11718780 DOI: 10.3390/ani15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Flamingos (Phoenicopteridae) are among the oldest birds worldwide and are loved by people for their bright red feathers. In addition, flamingos are sexually monomorphic birds, and distinguishing between males and females is difficult. The polymerase chain reaction (PCR) is widely used for sex identification. However, the PCR method requires a precise thermal cycler in the laboratory and is time-consuming. Therefore, developing a rapid, sensitive, and accurate method to identify the sex of flamingos is crucial. In this study, we established a sex identification system using a recombinase-aided amplification-Pyrococcus furiosus Argonaute (RAA-PfAgo) technique for greater flamingo (Phoenicopterus roseus). The greater flamingo-RAA-PfAgo system can identify unknown-sex greater flamingos in less than 1 h and can be visualized using a fluorescent detector or blue light. The results showed that optimal RAA-PfAgo conditions could detect 0.6 ng of genomic DNA and effectively differentiate between males and females. Random sample evaluations revealed that the system had a 100% coincidence rate compared with conventional PCR. In conclusion, this study provides a sensitive, specific, and accurate reference method for greater flamingo sexing.
Collapse
Affiliation(s)
- Shenluan Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.T.); (L.L.)
| | - Fanwen Zeng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510075, China; (F.Z.); (T.C.); (X.C.)
| | - Wanhuan Zhong
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China;
| | - Tanzipeng Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510075, China; (F.Z.); (T.C.); (X.C.)
| | - Xuanjiao Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510075, China; (F.Z.); (T.C.); (X.C.)
| | - Li Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.T.); (L.L.)
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.T.); (L.L.)
| | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.T.); (L.L.)
| |
Collapse
|
11
|
Yang X, Wang Y, Xu C, Liu Z, Guan Y, Wang F, Chen S, Wang Y, Cheng Y, Dong Y. MIRA /PfAgo-Mediated Biosensor for Multiplex Human Enteroviruses Virus Typing Detection on HFMD. ACS Synth Biol 2024; 13:4119-4130. [PMID: 39635874 DOI: 10.1021/acssynbio.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Hand, foot, and mouth disease (HFMD), caused by enteroviruses, mostly including EV71, CVA6, CVA10, and CVA16, is an acute infectious disease commonly found in children. Due to no approved antiviral therapies and available vaccines, except for EV71, developing accurate diagnostic methods of HFMD is essential for controlling its spread and mitigating its impact on public health. Here, we create a MIRA-HEV-PAND multiple nucleic acid typing method that utilizes PfAgo to identify enterovirus type A pathogens (EV71, CVA6, CVA10, and CVA16) and universal type EVU. The MDC (minimum detection concentration) level of MIRA-HEV-PAND is within the range of 1.66 aM (1.0 copy/μL), which was matched to that of qPCR assays and even more sensitive up to 10%. Importantly, the MIRA-HEV-PAND method exhibits higher sensitivity and less time-consuming efficiency compared to the approach that combines PCR amplification instead of MIRA amplification. Meanwhile, though the quintuple and single-tube multiple MIRA-HEV-PAND detection system can be used for one viral target or multiple viral target detection, the single-tube detection system detects more efficiently and rapidly than the quintuple-tube multiple detection system. Moreover, the diagnostic results obtained by evaluating clinical samples using MIRA-HEV-PAND show a complete consistency of 100% with qPCR assays. The MIRA-HEV-PAND method can screen a wider range of target regions using low-cost guide DNA without being limited to PAM sequences, compared to the MARPLES based on the CRISPR-Cas12a. The utilization of this correlation can be beneficial for the application of molecular testing for clinical diagnoses and the study of human enteroviruses A infection and virus typing on an epidemiological scale.
Collapse
Affiliation(s)
- Xuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Yue Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Chengming Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Zhiyi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Yuanqi Guan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Shuliang Chen
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, Hubei, China
| | - Yuan Wang
- School of Basic Medicine, Hubei University of Arts and Sciences, Xiangyang 441053, Hubei, China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, China
| |
Collapse
|
12
|
Li Y, Zhao L, Wang J, Ma L, Bai Y, Feng F. Argonaute-Based Nucleic Acid Detection Technology: Advantages, Current Status, Challenges, and Perspectives. ACS Sens 2024; 9:5665-5682. [PMID: 39526595 DOI: 10.1021/acssensors.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rapid and accurate detection is a prerequisite for precise clinical diagnostics, ensuring food safety, and facilitating biotechnological applications. The Argonaute system, as a cutting-edge technique, has been successfully repurposed in biosensing beyond the CRISPR/Cas system (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins), which has been extensively researched, but recognition of PAM sequences remains restricted. Argonaute, as a programmable and target-activated nuclease, is repurposed for fabricating novel detection methods due to its unparalleled biological features. In this comprehensive review, we initially elaborate on the current methods for nucleic acid testing and programmable nucleases, followed by delving into the structure and nuclease activity of the Argonaute system. The advantages of Argonaute compared with the CRISPR/Cas system in nucleic acid detection are highlighted and discussed. Furthermore, we summarize the applications of Argonaute-based nucleic acid detection and provide an in-depth analysis of future perspectives and challenges. Recent research has demonstrated that Argonaute-based biosensing is an innovative and rapidly advancing technology that can overcome the limitations of existing methods and potentially replace them. In summary, the implementation of Argonaute and its integration with other technologies hold promise in developing customized and intelligent detection methods for nucleic acid testing across various aspects.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Jiali Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
13
|
Jiao J, Zeng D, Wu Y, Li C, Mo T. Programmable and ultra-efficient Argonaute protein-mediated nucleic acid tests: A review. Int J Biol Macromol 2024; 278:134755. [PMID: 39147338 DOI: 10.1016/j.ijbiomac.2024.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
With the attributes of high sensitivity, single-base resolution, multiplex detection capability, and programmability upon nucleic acid recognition, Argonaute (Ago)-based biosensing assays are increasingly recognized as one of the most promising tools for precise identification and quantification of target analytes. Employed as highly specific sequence recognition elements of these robust diagnostic methods, Agos are revolutionizing how nucleic acid targets are detected. A systematic and comprehensive summary of this emerging and rapid-advancing technology is necessary to give play to the potential of Ago-based biosensing assays. The structure and function of Agos were briefly overviewed at the beginning of the work, followed by a review of the recent advancements in employing Agos sensing for detecting various targets with a comprehensive analysis such as viruses, tumor biomarkers, pathogens, mycoplasma, and parasite. The significance and benefits of these platforms were then deliberated. In addition, the authors shared subjective viewpoints on the existing challenges and offered relevant guidance for the future progress of Agos assays. Finally, the future research outlook regarding Ago-based sensing in this field was also outlined. As such, this review is expected to offer valuable information and fresh perspectives for a broader group of researchers.
Collapse
Affiliation(s)
- Jinlong Jiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dandan Zeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chentao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
14
|
Zhao X, He Y, Shao S, Ci Q, Chen L, Lu X, Liu Q, Chen J. CRISPR/Cas14 and G-Quadruplex DNAzyme-Driven Biosensor for Paper-Based Colorimetric Detection of African Swine Fever Virus. ACS Sens 2024; 9:2413-2420. [PMID: 38635911 PMCID: PMC11216275 DOI: 10.1021/acssensors.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The highly contagious nature and 100% fatality rate contribute to the ongoing and expanding impact of the African swine fever virus (ASFV), causing significant economic losses worldwide. Herein, we developed a cascaded colorimetric detection using the combination of a CRISPR/Cas14a system, G-quadruplex DNAzyme, and microfluidic paper-based analytical device. This CRISPR/Cas14a-G4 biosensor could detect ASFV as low as 5 copies/μL and differentiate the wild-type and mutated ASFV DNA with 2-nt difference. Moreover, this approach was employed to detect ASFV in porcine plasma. A broad linear detection range was observed, and the limit of detection in spiked porcine plasma was calculated to be as low as 42-85 copies/μL. Our results indicate that the developed paper platform exhibits the advantages of high sensitivity, excellent specificity, and low cost, making it promising for clinical applications in the field of DNA disease detection and suitable for popularization in low-resourced areas.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shengjie Shao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Qiaoqiao Ci
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
15
|
Ke X, Liang A, Chen C, Hu T. A one-pot CRISPR-RCA strategy for ultrasensitive and specific detection of circRNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3256-3262. [PMID: 38726809 DOI: 10.1039/d4ay00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Accurate and precise detection of circular RNA (circRNA) is imperative for its clinical use. However, the inherent challenges in circRNA detection, arising from its low abundance and potential interference from linear isomers, necessitate innovative solutions. In this study, we introduce, for the first time, the application of the CRISPR/Cas12a system to establish a one-pot, rapid (30 minutes to 2 hours), specific and ultrasensitive circRNA detection strategy, termed RETA-CRISPR (reverse transcription-rolling circle amplification (RT-RCA) with the CRISPR/Cas12a). This method comprises two steps: (1) the RT-RCA process of circRNA amplification, generating repeat units containing the back-splicing junction (BSJ) sequences; and (2) leveraging the protospacer adjacent motif (PAM)-independent Cas12a/crRNA complex to precisely recognize target sequences with BSJ, thereby initiating the collateral cleavage activity of Cas12a to generate a robust fluorescence signal. Remarkably, this approach exhibits the capability to detect circRNAs at a concentration as low as 300 aM. The sensor has been successfully employed for accurate detection of a potential hepatocellular carcinoma biomarker hsa_circ_0001445 (circRNA1445) in various cell lines. In conclusion, RETA-CRISPR seamlessly integrates the advantages of exponential amplification reaction and the robust collateral cleavage activity of Cas12a, positioning it as a compelling tool for practical CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Xinxin Ke
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Ajuan Liang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Obstetrics and Gynecology Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Tao Hu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
16
|
Zhou X, Wang S, Ma Y, Jiang Y, Li Y, Shi J, Deng G, Tian G, Kong H, Wang X. On-Site and Visual Detection of the H5 Subtype Avian Influenza Virus Based on RT-RPA and CRISPR/Cas12a. Viruses 2024; 16:753. [PMID: 38793634 PMCID: PMC11125590 DOI: 10.3390/v16050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/μL (blue light) and 1.9 × 103 copies/μL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (S.W.); (Y.M.); (Y.J.); (Y.L.); (J.S.); (G.D.); (G.T.)
| | - Xiurong Wang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (S.W.); (Y.M.); (Y.J.); (Y.L.); (J.S.); (G.D.); (G.T.)
| |
Collapse
|
17
|
Han X, Song D, Xu W, Lu L, Zhu A, Long F. CRISPR/Cas12a powered air-displacement enhanced evanescent wave fluorescence fiber-embedded microfluidic biochip for nucleic acid amplification-free detection of Escherichia coli O157:H7. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134037. [PMID: 38521032 DOI: 10.1016/j.jhazmat.2024.134037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Simple yet ultrasensitive and contamination-free quantification of environmental pathogenic bacteria is in high demand. In this study, we present a portable clustered regularly interspaced short palindromic repeats-associated protein 12a (CRISPR/Cas12a) powered Air-displacement enhanced Evanescent wave fluorescence Fiber-embedded microfluidic Biochip (AEFB) for the high-frequency and nucleic acid amplification-free ultrasensitive detection of Escherichia coli O157:H7. The performance of AEFB was dramatically enhanced upon employing a simple air-solution displacement process. Theoretical assays demonstrated that air-solution displacement significantly enhances evanescent wave field intensity on the fiber biosensor surface and increases the V-number in tapered fiber biosensors. Consequently, light-matter interaction is strengthened, and fluorescence coupling and collection efficiency are improved, considerably enhancing sensitivity. By integrating the CRISPR biosensing mechanism, AEFB facilitated rapid, accurate, nucleic acid amplification-free detection of E.coli O157:H7 with polymerase chain reaction (PCR)-level sensitivity (176 cfu/mL). To validate its practicality, AEFB was used to detect E.coli O157:H7 in surface water and wastewater. Comparison with RT-PCR showed a strong linear relationship (R2 = 0.9871), indicating the excellent accuracy and reliability of this technology in real applications. AEFB is highly versatile and can be easily extended to detect other pathogenic bacteria, which will significantly promote the high-frequency assessment and early-warning of bacterial contamination in aquatic environments.
Collapse
Affiliation(s)
- Xiangzhi Han
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Laiya Lu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Anna Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
18
|
Zhang Z, Li J, Chen C, Tong Y, Liu D, Li C, Lu H, Huang L, Feng W, Sun X. Exploring T7 RNA polymerase-assisted CRISPR/Cas13a amplification for the detection of BNP via electrochemiluminescence sensing platform. Anal Chim Acta 2024; 1300:342409. [PMID: 38521567 DOI: 10.1016/j.aca.2024.342409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
Brain natriuretic peptide (BNP) is considered to be an important biomarker of heart failure (HF) attracting attention. However, its low concentration and short half-life in blood lead to a low-sensitivity detection of BNP, which is a challenge that has to be overcome. In this work, we propose a highly specific, highly sensitive T7 RNA polymerase-assisted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a system to detect BNP via an electrochemiluminescence (ECL) sensing platform and incorporate exonuclease III (Exo III)-hairpin and dumbbell-shaped hybridization chain reaction (HCR) technologies. In this detection scheme, the ECL sensing platform possesses low background signal and high sensitivity. Firstly, the T7 promoter-initiated T7 RNA polymerase acts as a signal amplification technique to generate large amounts of RNAs that can activate CRISPR/Cas13a activity. Secondly, CRISPR/Cas13a is able to trans-cleave the surrounding trigger strand to produce DNA1. Thirdly, DNA1 is involved in the co-amplification reaction of Exo III and hairpin DNA, which subsequently triggers a dumbbell-shaped HCR technology. Eventually, a large number of Ru (II) molecules are inserted into the interstitial space of the dumbbell-shaped HCR to generate a strong ECL signal. The CRISPR/Cas13a possesses outstanding specificity for a single base and increased sensitivity. The tightly conformed dumbbell-shaped HCR provides higher sensitivity than the traditional linear HCR amplification technique. Ultimately, the clever combination of several amplification reactions enables the limit of detection (LOD) as low as 3.2 fg/mL. It showed promise for clinical sample testing, with recovery rates ranging from 98.4% to 103% in 5% human serum samples. This detection method offered a valuable tool for early HF detection, emphasizing the synergy of amplification strategies and specificity conferred by CRISPR/Cas13a technology.
Collapse
Affiliation(s)
- Zaiyong Zhang
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Jinglong Li
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Chunlin Chen
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Yuwei Tong
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Dehui Liu
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Cuizhi Li
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Huan Lu
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China.
| | - Li Huang
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Wanling Feng
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Xiaoting Sun
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| |
Collapse
|
19
|
Yang J, Li G, Chen S, Su X, Xu D, Zhai Y, Liu Y, Hu G, Guo C, Yang HB, Occhipinti LG, Hu FX. Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection. ACS Sens 2024; 9:1945-1956. [PMID: 38530950 DOI: 10.1021/acssensors.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Urinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels. Colorimetric sensor arrays are built from the SAN Fe1-NC functionalized with four types of recognition ligands, generating unique microbial identification fingerprints. By integrating the colorimetric sensor arrays with a trained computational classification model, the platform can identify more than 10 microorganisms in UTI urine samples within 1 h. Diagnostic accuracy of up to 97% was achieved in 60 UTI clinical samples, holding great potential for translation into clinical practice applications.
Collapse
Affiliation(s)
- Jianyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ge Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shihong Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Dong Xu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, Taizhou, Zhejiang 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital, Taizhou, Zhejiang 317502, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guangxuan Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Luigi G Occhipinti
- Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Fang Xin Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
20
|
Chen Y, Zhang X, Yang X, Su L, Chen W, Zhao J, Hu Y, Wang Y, Wu Y, Dong Y. PfAgo-Based Zika Virus Detection. Viruses 2024; 16:539. [PMID: 38675882 PMCID: PMC11054744 DOI: 10.3390/v16040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
As a mosquito-borne flavivirus, Zika virus (ZIKV) has been identified as a global health threat. The virus has been linked to severe congenital disabilities, including microcephaly and other congenital malformations, resulting in fatal intrauterine death. Therefore, developing sensitive and specific methods for the early detection and accurate diagnosis of the ZIKV is essential for controlling its spread and mitigating its impact on public health. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the non-structural protein 5 (NS5) region of the ZIKV genome (abbreviated ZIKV-PAND). Without preamplification with the polymerase chain reaction (PCR), the minimum detection concentration (MDC) of ZIKV-PAND was about 10 nM. When introducing an amplification step, the MDC can be dramatically decreased to the aM level (8.3 aM), which is comparable to qRT-PCR assay (1.6 aM). In addition, the diagnostic findings from the analysis of simulated clinical samples or Zika virus samples using ZIKV-PAND show a complete agreement of 100% with qRT-PCR assays. This correlation can aid in the implementation of molecular testing for clinical diagnoses and the investigation of ZIKV infection on an epidemiological scale.
Collapse
Affiliation(s)
- Yuhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xianyi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lifang Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weiran Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jixiang Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunhong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuan Wang
- School of Basic Medicine, Hubei University of Arts and Sciences, Xiangyang 441053, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|