1
|
Lai J, Tian Y, Wei H, Bai Y, Wu F, Yu F, Yu P, Mao L. Tailoring the Electrocatalytic Properties of Porphyrin Covalent Organic Frameworks for Highly Selective Oxygen Sensing In Vivo. Anal Chem 2025; 97:3418-3426. [PMID: 39908399 DOI: 10.1021/acs.analchem.4c05606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
In vivo selective sensing of oxygen (O2) dynamics in the central nervous system could provide insights into energy metabolism and neural activities. Although the electrocatalytic four-electron oxygen reduction reaction (ORR) paves an effective way to the electrochemical sensing of O2 in vivo, the concurrent hydrogen peroxide reduction reaction (HPRR) within the potential windows for four-electron ORR unfortunately poses a great challenge to the conventional mechanism employed for selective electrochemical O2 sensing. In this work, we find that regulation of the linkers within the skeleton of porphyrin-based covalent organic frameworks (COFs) could improve the selectivity of the O2 sensor against hydrogen peroxide (H2O2). The electrochemical results reveal that the Co porphyrin active sites facilitate the direct four-electron pathway for ORR and that the Co porphyrin-based COF, enriched with pyrene units, shows enhanced four-electron ORR kinetics and better tolerance to HPRR. The theoretical calculation suggests that introducing pyrene units essentially weakens the adsorption of H2O2, leading to suppression of the HPRR. The microsensor fabricated with the Co porphyrin-based COF as the electrocatalyst features a high selectivity for real-time monitoring of O2 in a living rat brain.
Collapse
Affiliation(s)
- Jiawei Lai
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yao Tian
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuliang Bai
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Xu P, Jetmore HD, Chen R, Shen M. Enzyme-modified Pt nanoelectrodes for glutamate detection. Faraday Discuss 2025; 257:165-181. [PMID: 39465674 DOI: 10.1039/d4fd00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We present here a glutamate oxidase (GluOx)-modified platinum (Pt) nanoelectrode with a planar geometry for glutamate detection. The Pt nanoelectrode was characterized using electrochemistry and scanning electron microscopy (SEM). The radius of the Pt nanoelectrode measured using SEM is ∼210 nm. GluOx-modified Pt nanoelectrodes were generated by dip coating GluOx on the Pt nanoelectrode in a solution of 0.9% (wt%) bovine serum albumin (BSA), 0.126% (wt%) glutaraldehyde, and 100 U mL-1 GluOx. An increase in current was observed at +0.7 V vs. Ag/AgCl/1 M KCl with adding increasing concentrations of glutamate. Two-sample t-test results showed that there is a significant difference for current at +0.7 V between the blank and the added lowest glutamate concentration, as well as between adjacent glutamate concentrations, confirming that the increase in current is related to the increased glutamate concentration. The experimental current-concentration curve of glutamate detection fitted well to the theoretical Michaelis-Menten curve. At the low concentration range (50 μM to 200 μM), a linear relationship between the current and glutamate concentration was observed. The Michaelis-Menten constants of Imax and Km were calculated to be 1.093 pA and 0.227 mM, respectively. Biosensor efficiency (the ratio of glutamate sensitivity to H2O2 sensitivity) is calculated to be 57.9%. Enzact (Imax/H2O2 sensitivity, an indicator of the amount of enzyme loaded on the electrode) of the GluOx-modified Pt nanoelectrode is 0.243 mM. We further compared the sensitivity of a GluOx-modified Pt nanoelectrode with a GluOx-modified carbon fiber microelectrode (7 μm diameter and a sensing length of ∼350 μm). Glutamate detection on the GluOx-modified carbon fiber microelectrode fitted well to a Michaelis-Menten like response. Based on the fitting, the GluOx-modified carbon fiber microelectrode exhibited an Imax of 0.689 nA and a Km of 301.2 μM towards glutamate detection. The best linear range of glutamate detection on the GluOx-modified carbon fiber microelectrode is from 50 μM to 150 μM glutamate. The GluOx-modified carbon fiber microelectrode exhibited a higher potential requirement for glutamate detection compared to the GluOx-modified Pt nanoelectrode.
Collapse
Affiliation(s)
- Peibo Xu
- Chan Zuckerberg Biohub Chicago, USA
| | - Henry David Jetmore
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.
| | - Ran Chen
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.
| | - Mei Shen
- Chan Zuckerberg Biohub Chicago, USA
| |
Collapse
|
3
|
Yang T, Shen T, Duan B, Liu Z, Wang C. In Vivo Electrochemical Biosensing Technologies for Neurochemicals: Recent Advances in Electrochemical Sensors and Devices. ACS Sens 2025; 10:100-121. [PMID: 39748564 DOI: 10.1021/acssensors.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In vivo electrochemical sensing of neurotransmitters, neuromodulators, and metabolites plays a critical role in real-time monitoring of various physiological or psychological processes in the central nervous system. Currently, advanced electrochemical biosensors and technologies have been emerging as prominent ways to meet the surging requirements of in vivo monitoring of neurotransmitters and neuromodulators ranging from single cells to brain slices, even the entire brain. This review introduces the fundamental working principles and summarizes the achievements of in vivo electrochemical biosensing technologies including voltammetry, amperometry, potentiometry, field-effect transistor (FET), and organic electrochemical transistor (OECT). According to the elaborate feature of sensing technology, versatile strategies have been devoted to solve critical issues associated with the sensing of neurochemicals under an intricate physiological environment. Voltammetry is a universal technique to investigate electrochemical processes in complex matrices which could realize the miniaturization of electrodes, while amperometry serves as a well-suited approach offering high temporal resolution which is favorable for the fast oxidation-reduction kinetics of neurochemicals. Potentiometry realizes quantitative analysis by recording the potential difference with reduced invasiveness and high compatibility. FET and OECT serve as amplification strategies with higher sensitivity than traditional technologies. Furthermore, we point out the current shortcomings and address the challenges and perspectives of in vivo electrochemical biosensing technologies.
Collapse
Affiliation(s)
- Tuo Yang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tongjun Shen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Boyuan Duan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zeyang Liu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
4
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
5
|
Wang Q, Yang C, Chen S, Li J. Miniaturized Electrochemical Sensing Platforms for Quantitative Monitoring of Glutamate Dynamics in the Central Nervous System. Angew Chem Int Ed Engl 2024; 63:e202406867. [PMID: 38829963 DOI: 10.1002/anie.202406867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra-synaptic paths highlights the importance of the real-time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co-design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio-integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.
Collapse
Affiliation(s)
- Qi Wang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Yang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Robbins E, Wong B, Pwint MY, Salavatian S, Mahajan A, Cui XT. Improving Sensitivity and Longevity of In Vivo Glutamate Sensors with Electrodeposited NanoPt. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40570-40580. [PMID: 39078097 PMCID: PMC11310907 DOI: 10.1021/acsami.4c06692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
In vivo glutamate sensing has provided valuable insight into the physiology and pathology of the brain. Electrochemical glutamate biosensors, constructed by cross-linking glutamate oxidase onto an electrode and oxidizing H2O2 as a proxy for glutamate, are the gold standard for in vivo glutamate measurements for many applications. While glutamate sensors have been employed ubiquitously for acute measurements, there are almost no reports of long-term, chronic glutamate sensing in vivo, despite demonstrations of glutamate sensors lasting for weeks in vitro. To address this, we utilized a platinum electrode with nanometer-scale roughness (nanoPt) to improve the glutamate sensors' sensitivity and longevity. NanoPt improved the GLU sensitivity by 67.4% and the sensors were stable in vitro for 3 weeks. In vivo, nanoPt glutamate sensors had a measurable signal above a control electrode on the same array for 7 days. We demonstrate the utility of the nanoPt sensors by studying the effect of traumatic brain injury on glutamate in the rat striatum with a flexible electrode array and report measurements of glutamate taken during the injury itself. We also show the flexibility of the nanoPt platform to be applied to other oxidase enzyme-based biosensors by measuring γ-aminobutyric acid in the porcine spinal cord. NanoPt is a simple, effective way to build high sensitivity, robust biosensors harnessing enzymes to detect neurotransmitters in vivo.
Collapse
Affiliation(s)
- Elaine
M. Robbins
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Benjamin Wong
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - May Yoon Pwint
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center
for Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Siamak Salavatian
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Aman Mahajan
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Xinyan Tracy Cui
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center
for Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United
States
| |
Collapse
|
7
|
Fernández-Vega L, Meléndez-Rodríguez DE, Ospina-Alejandro M, Casanova K, Vázquez Y, Cunci L. Development of a Neuropeptide Y-Sensitive Implantable Microelectrode for Continuous Measurements. ACS Sens 2024; 9:2645-2652. [PMID: 38709872 PMCID: PMC11127761 DOI: 10.1021/acssensors.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.
Collapse
Affiliation(s)
- Lauren Fernández-Vega
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | | | - Mónica Ospina-Alejandro
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Karina Casanova
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Yolimar Vázquez
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| |
Collapse
|
8
|
Yu Z, Tang J, Zeng C, Gao Y, Wu D, Zeng Y, Liu X, Tang D. Shaping the Future of the Neurotransmitter Sensor: Tailored CdS Nanostructures for State-of-the-Art Self-Powered Photoelectrochemical Devices. ACS Sens 2024; 9:2684-2694. [PMID: 38693685 DOI: 10.1021/acssensors.4c00621] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Chenyi Zeng
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Di Wu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
9
|
Forderhase AG, Ligons LA, Norwood E, McCarty GS, Sombers LA. Optimized Fabrication of Carbon-Fiber Microbiosensors for Codetection of Glucose and Dopamine in Brain Tissue. ACS Sens 2024; 9:2662-2672. [PMID: 38689483 DOI: 10.1021/acssensors.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Dopamine (DA) signaling is critically important in striatal function, and this metabolically demanding process is fueled largely by glucose. However, DA and glucose are typically studied independently and, as such, the precise relationship between DA release and glucose availability remains unclear. Fast-scan cyclic voltammetry (FSCV) is commonly coupled with carbon-fiber microelectrodes to study DA transients. These microelectrodes can be modified with glucose oxidase (GOx) to generate microbiosensors capable of simultaneously quantifying real-time and physiologically relevant fluctuations of glucose, a nonelectrochemically active substrate, and DA, which is readily oxidized and reduced at the electrode surface. A chitosan hydrogel can be electrodeposited to entrap the oxidase enzyme on the sensor surface for stable, sensitive, and selective codetection of glucose and DA using FSCV. This strategy can also be used to entrap lactate oxidase on the carbon-fiber surface for codetection of lactate and DA. However, these custom probes are individually fabricated by hand, and performance is variable. This study characterizes the physical nature of the hydrogel and its effects on the acquired electrochemical data in the detection of glucose (2.6 mM) and DA (1 μM). The results demonstrate that the electrodeposition of the hydrogel membrane is improved using a linear potential sweep rather than a direct step to the target potential. Electrochemical impedance spectroscopy data relate information on the physical nature of the electrode/solution interface to the electrochemical performance of bare and enzyme-modified carbon-fiber microelectrodes. The electrodeposition waveform and scan rate were characterized for optimal membrane formation and performance. Finally, codetection of both DA/glucose and DA/lactate was demonstrated in intact rat striatum using probes fabricated according to the optimized protocol. Overall, this work improves the reliable fabrication of carbon-fiber microbiosensors for codetection of DA and important energetic substrates that are locally delivered to the recording site to meet metabolic demand.
Collapse
Affiliation(s)
- Alexandra G Forderhase
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lailah A Ligons
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States
| | - Emilie Norwood
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States
| | - Gregory S McCarty
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Amjad U, Choi J, Gibson DJ, Murray R, Graybiel AM, Schwerdt HN. Synchronous Measurements of Extracellular Action Potentials and Neurochemical Activity with Carbon Fiber Electrodes in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573130. [PMID: 38187624 PMCID: PMC10769335 DOI: 10.1101/2023.12.23.573130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Measuring the dynamic relationship between neuromodulators, such as dopamine, and neuronal action potentials is imperative to understand how these fundamental modes of neural signaling interact to mediate behavior. Here, we developed methods to measure concurrently dopamine and extracellular action potentials (i.e., spikes) and applied these in a monkey performing a behavioral task. Standard fast-scan cyclic voltammetric (FSCV) electrochemical (EChem) and electrophysiological (EPhys) recording systems are combined and used to collect spike and dopamine signals, respectively, from an array of carbon fiber (CF) sensors implanted in the monkey striatum. FSCV requires the application of small voltages at the implanted sensors to measure redox currents generated from target molecules, such as dopamine. These applied voltages create artifacts at neighboring EPhys-measurement sensors, producing signals that may falsely be classified as physiological spikes. Therefore, simple automated temporal interpolation algorithms were designed to remove these artifacts and enable accurate spike extraction. We validated these methods using simulated artifacts and demonstrated an average spike recovery rate of 84.5%. This spike extraction was performed on data collected from concurrent EChem and EPhys recordings made in a task-performing monkey to discriminate cell-type specific striatal units. These identified units were shown to correlate to specific behavioral task parameters related to reward size and eye-movement direction. Synchronous measures of spike and dopamine signals displayed contrasting relations to the behavioral task parameters, as taken from our small set of representative data, suggesting a complex relationship between these two modes of neural signaling. Future application of our methods will help advance our understanding of the interactions between neuromodulator signaling and neuronal activity, to elucidate more detailed mechanisms of neural circuitry and plasticity mediating behaviors in health and in disease.
Collapse
Affiliation(s)
- Usamma Amjad
- Department of Bioengineering, University of Pittsburgh, USA
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel J Gibson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Raymond Murray
- Department of Bioengineering, University of Pittsburgh, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|