1
|
Escobedo C, Brolo AG. Synergizing microfluidics and plasmonics: advances, applications, and future directions. LAB ON A CHIP 2025; 25:1256-1281. [PMID: 39774486 DOI: 10.1039/d4lc00572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In the past decade, interest in nanoplasmonic structures has experienced significant growth, owing to rapid advancements in materials science and the evolution of novel nanofabrication techniques. The activities in the area are not only leading to remarkable progress in specific applications in photonics, but also permeating to and synergizing with other fields. This review delves into the symbiosis between nanoplasmonics and microfluidics, elucidating fundamental principles on nanophotonics centered on surface plasmon-polaritons, and key achievements arising from the intricate interplay between light and fluids at small scales. This review underscores the unparalleled capabilities of subwavelength plasmonic structures to manipulate light beyond the diffraction limit, concurrently serving as fluidic entities or synergistically combining with micro- and nanofluidic structures. Noteworthy phenomena, techniques and applications arising from this synergy are explored, including the manipulation of fluids at nanoscopic dimensions, the trapping of individual nanoscopic entities like molecules or nanoparticles, and the harnessing of light within a fluidic environment. Additionally, it discusses light-driven fabrication methodologies for microfluidic platforms and, contrariwise, the use of microfluidics in the fabrication of plasmonic nanostructures. Pondering future prospects, this review offers insights into potential future developments, particularly focusing on the integration of two-dimensional materials endowed with exceptional optical, structural and electrical properties, such as goldene and borophene, which enable higher carrier densities and higher plasmonic frequencies. Such advancements could catalyze innovations in diverse applications, including energy harvesting, advanced photothermal cancer therapies, and catalytic processes for hydrogen generation and CO2 conversion.
Collapse
Affiliation(s)
- C Escobedo
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - A G Brolo
- Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
| |
Collapse
|
2
|
Chakraborty D, Ghosh D, Kumar S, Jenkins D, Chandrasekaran N, Mukherjee A. Nano-diagnostics as an emerging platform for oral cancer detection: Current and emerging trends. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1830. [PMID: 35811418 DOI: 10.1002/wnan.1830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 01/31/2023]
Abstract
Globally, oral cancer kills an estimated 150,000 individuals per year, with 300,000 new cases being diagnosed annually. The high incidence rate of oral cancer among the South-Asian and American populations is majorly due to overuse of tobacco, alcohol, and poor dental hygiene. Additionally, socio-economic issues and lack of general awareness delay the primary screening of the disease. The availability of early screening techniques for oral cancer can help in carving out a niche for accurate disease prognosis and also its prevention. However, conventional diagnostic approaches and therapeutics are still far from optimal. Thus, enhancing the analytical performance of diagnostic platforms in terms of specificity and precision can help in understanding the disease progression paradigm. Fabrication of efficient nanoprobes that are sensitive, noninvasive, cost-effective, and less labor-intensive can reduce the global cancer burden. Recent advances in optical, electrochemical, and spectroscopy-based nano biosensors that employ noble and superparamagnetic nanoparticles, have been proven to be extremely efficient. Further, these sensitive nanoprobes can also be employed for predicting disease relapse after chemotherapy, when the majority of the biomarker load is eliminated. Herein, we provide the readers with a brief summary of conventional and new-age oral cancer detection techniques. A comprehensive understanding of the inherent challenges associated with conventional oral cancer detection techniques is discussed. We also elaborate on how nanoparticles have shown tremendous promise and effectiveness in radically transforming the approach toward oral cancer detection. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Debolina Chakraborty
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Debayan Ghosh
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, UK
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
3
|
Ahmed R, Guimarães CF, Wang J, Soto F, Karim AH, Zhang Z, Reis RL, Akin D, Paulmurugan R, Demirci U. Large-Scale Functionalized Metasurface-Based SARS-CoV-2 Detection and Quantification. ACS NANO 2022; 16:15946-15958. [PMID: 36125414 PMCID: PMC9514326 DOI: 10.1021/acsnano.2c02500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/12/2022] [Indexed: 05/09/2023]
Abstract
Plasmonic metasurfaces consist of metal-dielectric interfaces that are excitable at background and leakage resonant modes. The sharp and plasmonic excitation profile of metal-free electrons on metasurfaces at the nanoscale can be used for practical applications in diverse fields, including optoelectronics, energy harvesting, and biosensing. Currently, Fano resonant metasurface fabrication processes for biosensor applications are costly, need clean room access, and involve limited small-scale surface areas that are not easy for accurate sample placement. Here, we leverage the large-scale active area with uniform surface patterns present on optical disc-based metasurfaces as a cost-effective method to excite asymmetric plasmonic modes, enabling tunable optical Fano resonance interfacing with a microfluidic channel for multiple target detection in the visible wavelength range. We engineered plasmonic metasurfaces for biosensing through efficient layer-by-layer surface functionalization toward real-time measurement of target binding at the molecular scale. Further, we demonstrated the quantitative detection of antibodies, proteins, and the whole viral particles of SARS-CoV-2 with a high sensitivity and specificity, even distinguishing it from similar RNA viruses such as influenza and MERS. This cost-effective plasmonic metasurface platform offers a small-scale light-manipulation system, presenting considerable potential for fast, real-time detection of SARS-CoV-2 and pathogens in resource-limited settings.
Collapse
Affiliation(s)
- Rajib Ahmed
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Carlos F Guimarães
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Asma H Karim
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Zhaowei Zhang
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, People's Republic of China
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Ramasamy Paulmurugan
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
4
|
Kim DM, Park JS, Jung SW, Yeom J, Yoo SM. Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3191. [PMID: 34064431 PMCID: PMC8125509 DOI: 10.3390/s21093191] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023]
Abstract
Localized surface plasmon resonance (LSPR)-based biosensors have recently garnered increasing attention due to their potential to allow label-free, portable, low-cost, and real-time monitoring of diverse analytes. Recent developments in this technology have focused on biochemical markers in clinical and environmental settings coupled with advances in nanostructure technology. Therefore, this review focuses on the recent advances in LSPR-based biosensor technology for the detection of diverse chemicals and biomolecules. Moreover, we also provide recent examples of sensing strategies based on diverse nanostructure platforms, in addition to their advantages and limitations. Finally, this review discusses potential strategies for the development of biosensors with enhanced sensing performance.
Collapse
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| |
Collapse
|
5
|
Blanco-Formoso M, Alvarez-Puebla RA. Cancer Diagnosis through SERS and Other Related Techniques. Int J Mol Sci 2020; 21:ijms21062253. [PMID: 32214017 PMCID: PMC7139671 DOI: 10.3390/ijms21062253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer heterogeneity increasingly requires ultrasensitive techniques that allow early diagnosis for personalized treatment. In addition, they should preferably be non-invasive tools that do not damage surrounding tissues or contribute to body toxicity. In this context, liquid biopsy of biological samples such as urine, blood, or saliva represents an ideal approximation of what is happening in real time in the affected tissues. Plasmonic nanoparticles are emerging as an alternative or complement to current diagnostic techniques, being able to detect and quantify novel biomarkers such as specific peptides and proteins, microRNA, circulating tumor DNA and cells, and exosomes. Here, we review the latest ideas focusing on the use of plasmonic nanoparticles in coded and label-free surface-enhanced Raman scattering (SERS) spectroscopy. Moreover, surface plasmon resonance (SPR) spectroscopy, colorimetric assays, dynamic light scattering (DLS) spectroscopy, mass spectrometry or total internal reflection fluorescence (TIRF) microscopy among others are briefly examined in order to highlight the potential and versatility of plasmonics.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| |
Collapse
|
6
|
Hu X, Dinu CZ. A bio-pen for direct writing of single molecules on user-functionalized surfaces. NANOSCALE ADVANCES 2020; 2:156-165. [PMID: 36133986 PMCID: PMC9417116 DOI: 10.1039/c9na00379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/30/2019] [Indexed: 06/16/2023]
Abstract
Advancing ultrahigh resolution (below 10 nm) direct writing technologies could lead to impacts in areas as diverse as disease detection, genetic analysis and nanomanufacturing. Current methods based on electron-beams and photo- or dip-pen nanolithography are laborious and lack flexibility when aiming to create single molecule patterns for application specific integration. We hypothesize that a novel strategy could be developed to allow for writing of parallel and yet individually addressable patterns of single molecules on user-controlled surfaces. The strategy is based on using in vitro self-recognition of tubulin protein to assemble rigid protofilaments of microtubules, with one such microtubule to be subsequently used as a "bio-pen" capable of writing "inks" of single kinesin molecules in user-defined environments. Our results show that single kinesin inks could be written under the energy of adenosine triphosphate hydrolysis and observed by both atomic force and optical microscopy. Upon extending ink functionalities, the integration of soft and hard materials for nanostructure assembly and complex single molecule pattern formation is envisioned.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Chemical and Biomedical Engineering, West Virginia University, Benjamin M. Statler College of Engineering and Mineral Resources PO Box 6102 Morgantown WV 26506 USA +1 304 293 4139 +1 304 293 9338
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Benjamin M. Statler College of Engineering and Mineral Resources PO Box 6102 Morgantown WV 26506 USA +1 304 293 4139 +1 304 293 9338
| |
Collapse
|
7
|
McKeating KS, Hinman SS, Rais NA, Zhou Z, Cheng Q. Antifouling Lipid Membranes over Protein A for Orientation-Controlled Immunosensing in Undiluted Serum and Plasma. ACS Sens 2019; 4:1774-1782. [PMID: 31262175 DOI: 10.1021/acssensors.9b00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An important advance in biosensor research is the extension and application of laboratory-developed methodologies toward clinical diagnostics, though the propensity toward nonspecific binding of materials in clinically relevant matrices, such as human blood serum and plasma, frequently leads to compromised assays. Several surface chemistries have been developed to minimize nonspecific interactions of proteins and other biological components found within blood and serum samples, though these often exhibit substantially variable outcomes. Herein we report a surface chemistry consisting of a charged-matched supported lipid membrane that has been tailored to form over a gold surface functionalized with protein A. Fine tuning of the interfacial charge of this membrane, along with rational selection of a backfilling self-assembled monolayer, allows for high surface coverage with retention of orientation-controlled capture antibody attachment. We demonstrate using surface-plasmon resonance (SPR) that this highly charged lipid membrane is antifouling, allowing for complete removal of nonspecific human serum and plasma components using only a mild buffer rinse, which we attribute to unique steric interactions with the underlying surface. Furthermore, this surface chemistry is successfully applied for specific detection of IgG and cholera toxin in undiluted human biofluids with negligible sacrifice of SPR signal compared to buffered analysis. This novel lipid membrane interface over protein A may open new avenues for direct biosensing of disease markers within clinical samples.
Collapse
Affiliation(s)
| | | | | | - Zhiguo Zhou
- Luna Innovations Inc., Danville, Virginia 24541, United States
| | | |
Collapse
|
8
|
Kim DS, Kang ES, Baek S, Choo SS, Chung YH, Lee D, Min J, Kim TH. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci Rep 2018; 8:14049. [PMID: 30232374 PMCID: PMC6145913 DOI: 10.1038/s41598-018-32477-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022] Open
Abstract
Dopamine is a key molecule in neurotransmission and has been known to be responsible for several neurological diseases. Hence, its sensitive and selective detection is important for the early diagnosis of diseases related to abnormal levels of dopamine. In this study, we reported a new cylindrical gold nanoelectrode (CAuNE) platform fabricated via sequential laser interference lithography and electrochemical deposition. Among the fabricated electrodes, CAuNEs with a diameter of 700 nm, 150 s deposited, was found to be the best for electrochemical dopamine detection. According to cyclic voltammetry results, the linear range of the CAuNE-700 nm was 1-100 µM of dopamine with a limit of detection (LOD) of 5.83 µM. Moreover, owing to the homogeneous periodic features of CAuNEs, human neural cells were successfully cultured and maintained for more than 5 days in vitro without the use of any extracellular matrix proteins and dopamine was detectable in the presence of these cells on the electrode. Therefore, we concluded that the developed dopamine sensing platform CAuNE can be used for many applications including early diagnosis of neurological diseases; function tests of dopaminergic neurons derived from various stem cell sources; and toxicity assessments of drugs, chemicals, and nanomaterials on human neuronal cells.
Collapse
Affiliation(s)
- Da-Seul Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ee-Seul Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seungho Baek
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sung-Sik Choo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, Asan City, Chungnam, 31499, Republic of Korea
| | - Donghyun Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
- Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Qi H, Niu L, Zhang J, Chen J, Wang S, Yang J, Guo S, Lawson T, Shi B, Song C. Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:476-482. [DOI: 10.1007/s11427-017-9270-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
|
10
|
Abstract
INTRODUCTION Bioanalytical sensing based on the principle of localized surface plasmon resonance experiences is currently an extremely rapid development. Novel sensors with new kinds of plasmonic transducers and innovative concepts for the signal development as well as read-out principles were identified. This review will give an overview of the development of this field. Areas covered: The focus is primarily on types of transducers by preparation or dimension, factors for optimal sensing concepts and the critical view of the usability of these devices as innovative sensors for bioanalytical applications. Expert commentary: Plasmonic sensor devices offer a high potential for future biosensing given that limiting factors such as long-time stability of the transducers, the required high sensitivity and the cost-efficient production are addressed. For higher sensitivity, the design of the sensor in shape and material has to be combined with optimal enhancement strategies. Plasmonic nanoparticles from bottom-up synthesis with a post-synthetic processing show a high potential for cost-efficient sensor production. Regarding the measurement principle, LSPRi offers a large potential for multiplex sensors and can provide a high-throughput as well as highly paralleled sensing. The main trends are expected towards optimal LSPR concepts which represent cost-efficient and robust point-of-care solutions, and the use of multiplexed devices for clinical applications.
Collapse
Affiliation(s)
- Andrea Csáki
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| | - Ondrej Stranik
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| | - Wolfgang Fritzsche
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| |
Collapse
|
11
|
Flexible and Tunable 3D Gold Nanocups Platform as Plasmonic Biosensor for Specific Dual LSPR-SERS Immuno-Detection. Sci Rep 2017; 7:14240. [PMID: 29079816 PMCID: PMC5660151 DOI: 10.1038/s41598-017-14694-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Early medical diagnostic in nanomedicine requires the implementation of innovative nanosensors with highly sensitive, selective, and reliable biomarker detection abilities. In this paper, a dual Localized Surface Plasmon Resonance - Surface Enhanced Raman Scattering (LSPR- SERS) immunosensor based on a flexible three-dimensional (3D) gold (Au) nanocups platform has been implemented for the first time to operate as a relevant “proof-of-concept” for the specific detection of antigen-antibody binding events, using the human IgG - anti-human IgG recognition interaction as a model. Specifically, polydimethylsilane (PDMS) elastomer mold coated with a thin Au film employed for pattern replication of hexagonally close-packed monolayer of polystyrene nanospheres configuration has been employed as plasmonic nanoplatform to convey both SERS and LSPR readout signals, exhibiting both well-defined LSPR response and enhanced 3D electromagnetic field. Synergistic LSPR and SERS sensing use the same reproducible and large-area plasmonic nanoplatform providing complimentary information not only on the presence of anti-human IgG (by LSPR) but also to identify its specific molecular signature by SERS. The development of such smart flexible healthcare nanosensor platforms holds promise for mass production, opening thereby the doors for the next generation of portable point-of-care devices.
Collapse
|
12
|
Atighilorestani M, Brolo AG. Comparing the Electrochemical Response of Nanostructured Electrode Arrays. Anal Chem 2017; 89:6129-6135. [DOI: 10.1021/acs.analchem.7b00932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mahdieh Atighilorestani
- Department of Chemistry, University of Victoria, P.O. Box 1700,
STN CSC, Victoria BC V8W
2Y2, Canada
| | - Alexandre G. Brolo
- Department of Chemistry, University of Victoria, P.O. Box 1700,
STN CSC, Victoria BC V8W
2Y2, Canada
| |
Collapse
|