1
|
Sarnaik D, Krishnakumar A, Nejati S, Sullivan CR, Cross TWL, Campbell WW, Johnson JS, Rahimi R. A smart capsule with a bacteria- and pH-triggered enteric polymer coating for targeted colonic microbiome sampling. Acta Biomater 2025:S1742-7061(25)00268-5. [PMID: 40263059 DOI: 10.1016/j.actbio.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
The gut microbiome is recognized as a critical factor in advancing precision nutrition and medicine for health and in developing dietary recommendations and targeted therapies for gastrointestinal (GI) health and diseases. However, conventional sampling methods, such as fecal analysis and colonoscopy, often fail to capture microbial information from specific regions of the GI tract or require invasive procedures, thereby limiting accuracy and clinical utility. As a non-invasive alternative, passive sampling capsules have been developed for site-specific microbiome analysis by employing pH-sensitive enteric coatings that delay sampling until the capsule reaches the targeted intestinal region. Although this approach has been successful in the small intestine, colonic sampling remains challenging due to the high interpersonal variability in intestinal pH, which makes it difficult to rely solely on a pH-triggering mechanism. To overcome this challenge, a dual bacterially and pH triggered polymeric enteric coating was created by blending lactulose and N,N-dimethylaminoethyl methacrylate, enabling complete dissolution within the colonic region. Through systematic characterization of multiple polymer blend compositions using Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry, an optimized design was identified that provides both suitable physical integrity and rapid (∼2 h) degradation in the presence of colonic bacteria, across a pH range of 5 to 8. The optimized blend was subsequently applied as a double-layer enteric coating on a sampling capsule, enabling the dissolution of the outer layer in the small intestine and complete dissolution of the inner layer in the colon. In-vitro and in-vivo pig model studies were conducted to validate the capsule's sampling performance and to ensure the preservation of the microbial environment. Furthermore, 16S rRNA sequencing revealed a taxonomic similarity between samples collected by the capsule and the colonic microbiome (residing between the ileum and fecal matter). Overall, this technology provides an effective approach to targeted microbial sampling and may pave the way for more comprehensive colonic microbiome analyses and improved diagnostic capabilities for GI diseases. STATEMENT OF SIGNIFICANCE: Precise monitoring of the gut microbiome is vital for understanding health and disease, yet current sampling techniques often lack precision or require invasive procedures. Our work introduces a novel, non-invasive capsule that targets the colon using a dual-trigger polymer system activated by both pH and colonic bacteria. This design enables localized sampling of gut microbiota, overcoming the limitations of fecal analysis, endoscopy, and earlier pH-triggered capsule designs. By capturing microbial communities directly from the colon, our technology provides deeper insights into colonic health and conditions such as inflammatory bowel disease and colorectal cancer. This breakthrough represents a significant advancement in precision nutrition and medicine for human health, and advanced diagnostics and targeted therapies to support dietary guidance, clinical practice and biomedical research.
Collapse
Affiliation(s)
- Devendra Sarnaik
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Akshay Krishnakumar
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sina Nejati
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Caitlyn R Sullivan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jay S Johnson
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Ghorbani Siavashani A, Rehan M, Travas-Sejdic J, Thomas D, Diller E, Stine J, Ghodssi R, Avci E. Ingestible Smart Capsules for Chemical Sensing in the Gut. Anal Chem 2025; 97:5343-5354. [PMID: 40047504 DOI: 10.1021/acs.analchem.4c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The development of novel ingestible sensors can aid physicians and patients in obtaining precise data on the health status of the gut at a local level. This in turn can facilitate earlier and more accurate disease diagnosis, improve the delivery of point-of-care medicine, and allow monitoring of the gastrointestinal (GI) tract status. This Tutorial overviews characteristics of the gut for inexpert readers and reviews emerging chemical sensing technologies for the GI tract from an analytical chemistry viewpoint.
Collapse
Affiliation(s)
| | - Muhammad Rehan
- Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Thomas
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Eric Diller
- Microrobotics Lab, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College St., Toronto, ON M5S 3G8, Canada
| | - Justin Stine
- Department of Electrical and Computer Engineering, Institute for Systems Research, and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Reza Ghodssi
- Department of Electrical and Computer Engineering, Institute for Systems Research, and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Ebubekir Avci
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
3
|
Holt BM, Stine JM, Beardslee LA, Ayansola H, Jin Y, Pasricha PJ, Ghodssi R. An ingestible bioimpedance sensing device for wireless monitoring of epithelial barriers. MICROSYSTEMS & NANOENGINEERING 2025; 11:24. [PMID: 39915452 PMCID: PMC11802857 DOI: 10.1038/s41378-025-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 01/04/2025] [Indexed: 02/09/2025]
Abstract
Existing gastrointestinal (GI) diagnostic tools are unable to non-invasively monitor mucosal tight junction integrity in vivo beyond the esophagus. In the GI tract, local inflammatory processes induce alterations in tight junction proteins, enhancing paracellular ion permeability. Although transepithelial electrical resistance (TEER) may be used in the laboratory to assess mucosal barrier integrity, there are no existing methodologies for characterizing tight junction dilation in vivo. Addressing this technology gap, intraluminal bioimpedance sensing may be employed as a localized, non-invasive surrogate to TEER electrodes used in cell cultures. Thus far, bioimpedance has only been implemented in esophagogastroduodenoscopy (EGD) due to the need for external electronics connections. In this work, we develop a novel, noise-resilient Bluetooth-enabled ingestible device for the continuous, non-invasive measurement of intestinal mucosal "leakiness." As a proof-of-concept, we validate wireless impedance readout on excised porcine tissues in motion. Through an animal study, we demonstrate how the device exhibits altered impedance response to tight junction dilation induced on mice colonic tissue through calcium-chelator exposure. Device measurements are validated using standard benchtop methods for assessing mucosal permeability.
Collapse
Affiliation(s)
- Brian M Holt
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Justin M Stine
- Matrix Lab at A. James Clark School of Engineering, University of Maryland, California, MD, 20619, USA
| | - Luke A Beardslee
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
| | - Hammed Ayansola
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Younggeon Jin
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | | | - Reza Ghodssi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA.
- Matrix Lab at A. James Clark School of Engineering, University of Maryland, California, MD, 20619, USA.
| |
Collapse
|
4
|
Gooding JJ. Some of Our Favorite Papers from the First 10 Years of ACS Sensors. ACS Sens 2025; 10:1-3. [PMID: 39849956 DOI: 10.1021/acssensors.4c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- J Justin Gooding
- The University of New South Wales, Sydney, New South Wales 2033, Australia
| |
Collapse
|
5
|
Sel K, Hawkins-Daarud A, Chaudhuri A, Osman D, Bahai A, Paydarfar D, Willcox K, Chung C, Jafari R. Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine. NPJ Digit Med 2025; 8:40. [PMID: 39825103 PMCID: PMC11742391 DOI: 10.1038/s41746-025-01447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Digital twins in precision medicine provide tailored health recommendations by simulating patient-specific trajectories and interventions. We examine the critical role of Verification, Validation, and Uncertainty Quantification (VVUQ) for digital twins in ensuring safety and efficacy, with examples in cardiology and oncology. We highlight challenges and opportunities for developing personalized trial methodologies, validation metrics, and standardizing VVUQ processes. VVUQ frameworks are essential for integrating digital twins into clinical practice.
Collapse
Affiliation(s)
- Kaan Sel
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrea Hawkins-Daarud
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Chaudhuri
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Deen Osman
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ahmad Bahai
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Paydarfar
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Karen Willcox
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Caroline Chung
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roozbeh Jafari
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
| |
Collapse
|
6
|
Wei X, Xi P, Chen M, Wen Y, Wu H, Wang L, Zhu Y, Ren Y, Gu Z. Capsule robots for the monitoring, diagnosis, and treatment of intestinal diseases. Mater Today Bio 2024; 29:101294. [PMID: 39483392 PMCID: PMC11525164 DOI: 10.1016/j.mtbio.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Current evidence suggests that the intestine as the new frontier for human health directly impacts both our physical and mental health. Therefore, it is highly desirable to develop the intelligent tool for the enhanced diagnosis and treatment of intestinal diseases. During the past 20 years, capsule robots have opened new avenues for research and clinical applications, potentially revolutionizing human health monitor, disease diagnosis and treatment. In this review, we summarize the research progress of edible multifunctional capsule robots in intestinal diseases. To begin, we introduce the correlation between the intestinal microbiome, intestinal gas and human diseases. After that, we focus on the technical structure of edible multifunctional robots. Subsequently, the biomedical applications in the monitoring, diagnosis and treatment of intestinal diseases are discussed in detail. Last but not least, the main challenges of multifunctional capsule robots during the development process are summarized, followed by a vision for future development opportunities.
Collapse
Affiliation(s)
- Xiangyu Wei
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Peipei Xi
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Minjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya Wen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hao Wu
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yujuan Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yile Ren
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
7
|
Jeong B, Kim SJ, Yeun J, Lim J, Park N, Bae A, Kim J, Kwon OS, Choi BG, Im SG, Lee KG. Robust Anticorrosive Polymer Thin Film for Reliable Protection of Ingestible Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561383 DOI: 10.1021/acsami.4c14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Ingestible devices (ID) provide a safe and noninvasive method for monitoring, diagnosing, and delivering drugs to specific sites in the human body, particularly within the gastrointestinal (GI) tract. However, the GI environment is highly acidic and humid, which can cause IDs to fail, and their corrosion in the acidic environment can cause leaching of toxic metal ions, thereby substantially limiting their long-term use. Thus, an efficient method is required to protect IDs, especially in the chemically and mechanically harsh GI environment. However, an anticorrosive polymer coating that can safeguard IDs in the GI environment without delamination or performance degradation has not been developed to date. The protective layer must satisfy several critical requirements, e.g., high biocompatibility, mechanical durability, and superior anticorrosion performance. This paper reports a highly cross-linked but submicron-thick siloxane-based anticorrosive polymer thin film that can be deposited directly onto IDs without damaging them. The 500 nm-thick cross-linked polymer coating demonstrates exceptional corrosion resistance and chemical and mechanical stability in the GI environment without cytotoxicity. A printed circuit board (PCB) coated with the developed ultrathin protective film sustained performance after exposure to a pH 1.00 phosphate buffered saline solution at 37 °C for 72 h without leaching of metal ions. The ID continued to operate effectively under such challenging conditions; thus, the developed film is suitable for applications that require prolonged functionality, e.g., diagnostics, drug delivery, and continuous health monitoring in the GI tract.
Collapse
Affiliation(s)
- Booseok Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seo Jin Kim
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jemin Yeun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihoon Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nahyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Aram Bae
- Center for NanoBio Development, National NanoFab Center, Daejeon 34141, Republic of Korea
| | - Jueun Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Oh Seok Kwon
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KI for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- Center for NanoBio Development, National NanoFab Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
9
|
Ulusoy-Gezer HG, Rakıcıoğlu N. The Future of Obesity Management through Precision Nutrition: Putting the Individual at the Center. Curr Nutr Rep 2024; 13:455-477. [PMID: 38806863 PMCID: PMC11327204 DOI: 10.1007/s13668-024-00550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW: The prevalence of obesity continues to rise steadily. While obesity management typically relies on dietary and lifestyle modifications, individual responses to these interventions vary widely. Clinical guidelines for overweight and obesity stress the importance of personalized approaches to care. This review aims to underscore the role of precision nutrition in delivering tailored interventions for obesity management. RECENT FINDINGS: Recent technological strides have expanded our ability to detect obesity-related genetic polymorphisms, with machine learning algorithms proving pivotal in analyzing intricate genomic data. Machine learning algorithms can also predict postprandial glucose, triglyceride, and insulin levels, facilitating customized dietary interventions and ultimately leading to successful weight loss. Additionally, given that adherence to dietary recommendations is one of the key predictors of weight loss success, employing more objective methods for dietary assessment and monitoring can enhance sustained long-term compliance. Biomarkers of food intake hold promise for a more objective dietary assessment. Acknowledging the multifaceted nature of obesity, precision nutrition stands poised to transform obesity management by tailoring dietary interventions to individuals' genetic backgrounds, gut microbiota, metabolic profiles, and behavioral patterns. However, there is insufficient evidence demonstrating the superiority of precision nutrition over traditional dietary recommendations. The integration of precision nutrition into routine clinical practice requires further validation through randomized controlled trials and the accumulation of a larger body of evidence to strengthen its foundation.
Collapse
Affiliation(s)
- Hande Gül Ulusoy-Gezer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye
| | - Neslişah Rakıcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye.
| |
Collapse
|
10
|
Kalantar-Zadeh K, Susic D, Hyett J. Vaginal Sensors. ACS Sens 2024; 9:3810-3827. [PMID: 39024191 DOI: 10.1021/acssensors.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development and market emergence of vaginal sensors have begun to demonstrate their impact on women's healthcare. Until recently, in limited cases, these sensors have exhibited their capabilities in diagnosing and monitoring disorders of the vaginal tract during different stages of women's lives. This Perspective is a compilation of what has been accomplished so far in the landscape of vaginal sensors. The text explores the diverse types of vaginal sensor technologies, their applications, and their potential impact on women's healthcare. The review introduces the anatomy of the vagina and cervix and categorizes vaginal sensors that have been developed, highlighting the technologies and potential applications. The paper covers biomarkers of the vaginal tract and discusses their importance in maintaining the overall characteristics of the vaginal system. The text also explores the clinical implications of vaginal sensors in pregnancy monitoring, disease detection, and sexual health management. In the final step, the manuscript provides future perspectives and possibilities that can be incorporated in the emerging field of vaginal sensors.
Collapse
Affiliation(s)
- Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Daniella Susic
- School of Clinical Medicine, Discipline of Women's Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Obstetrics and Gynaecology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Jon Hyett
- Department of Obstetrics and Gynaecology, Royal Prince Alfred Hospital, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
11
|
Nan K, Wong K, Li D, Ying B, McRae JC, Feig VR, Wang S, Du N, Liang Y, Mao Q, Zhou E, Chen Y, Sang L, Yao K, Zhou J, Li J, Jenkins J, Ishida K, Kuosmanen J, Mohammed Madani WA, Hayward A, Ramadi KB, Yu X, Traverso G. An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut. Nat Commun 2024; 15:6749. [PMID: 39117667 PMCID: PMC11310346 DOI: 10.1038/s41467-024-51102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Ingestible electronics have the capacity to transform our ability to effectively diagnose and potentially treat a broad set of conditions. Current applications could be significantly enhanced by addressing poor electrode-tissue contact, lack of navigation, short dwell time, and limited battery life. Here we report the development of an ingestible, battery-free, and tissue-adhering robotic interface (IngRI) for non-invasive and chronic electrostimulation of the gut, which addresses challenges associated with contact, navigation, retention, and powering (C-N-R-P) faced by existing ingestibles. We show that near-field inductive coupling operating near 13.56 MHz was sufficient to power and modulate the IngRI to deliver therapeutically relevant electrostimulation, which can be further enhanced by a bio-inspired, hydrogel-enabled adhesive interface. In swine models, we demonstrated the electrical interaction of IngRI with the gastric mucosa by recording conductive signaling from the subcutaneous space. We further observed changes in plasma ghrelin levels, the "hunger hormone," while IngRI was activated in vivo, demonstrating its clinical potential in regulating appetite and treating other endocrine conditions. The results of this study suggest that concepts inspired by soft and wireless skin-interfacing electronic devices can be applied to ingestible electronics with potential clinical applications for evaluating and treating gastrointestinal conditions.
Collapse
Affiliation(s)
- Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kiwan Wong
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James C McRae
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivian R Feig
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubing Wang
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ningjie Du
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enjie Zhou
- Department of General Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonglin Chen
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Sang
- School of Microelectronics, Hefei University of Technology, Hefei, 230601, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
| | - Joshua Jenkins
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keiko Ishida
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wiam Abdalla Mohammed Madani
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alison Hayward
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Khalil B Ramadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China.
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, USA.
| |
Collapse
|
12
|
Kadian S, Gopalakrishnan S, Selvamani V, Khan S, Meyer T, Thomas R, Rana MM, Irazoqui PP, Verma MS, Rahimi R. Smart Capsule for Targeted Detection of Inflammation Levels Inside the GI Tract. IEEE Trans Biomed Eng 2024; 71:1565-1576. [PMID: 38096093 PMCID: PMC11187759 DOI: 10.1109/tbme.2023.3343337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Effective management of Inflammatory Bowel Disease (IBD) is contingent upon frequent monitoring of inflammation levels at targeted locations within the gastrointestinal (GI) tract. This is crucial for assessing disease progression and detecting potential relapses. To address this need, a novel single-use capsule technology has been devised that enables region-specific inflammation measurement, thereby facilitating repeatable monitoring within the GI tract. The capsule integrates a pH-responsive coating for location-specific activation, a chemiluminescent paper-based myeloperoxidase (MPO) sensor for inflammation detection, and a miniaturized photodetector, complemented by embedded electronics for real-time wireless data transmission. Demonstrating linear sensitivity within the physiological MPO concentration range, the sensor is capable of effectively identifying inflammation risk in the GI fluid. Luminescence emitted by the sensor, proportional to MPO concentration, is converted into an electrical signal by the photodetector, generating a quantifiable energy output with a sensitivity of 6.14 µJ/U.ml-1. The capsule was also tested with GI fluids collected from pig models simulating various inflammation states. Despite the physiological complexities, the capsule consistently activated in the intended region and accurately detected MPO levels with less than a 5% variation between readings in GI fluid and a PBS solution. This study heralds a significant step towards minimally invasive, in situ GI inflammation monitoring, potentially revolutionizing personalized IBD management and patient-specific therapeutic strategies.
Collapse
|
13
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
14
|
Gradisteanu Pircalabioru G, Raileanu M, Dionisie MV, Lixandru-Petre IO, Iliescu C. Fast detection of bacterial gut pathogens on miniaturized devices: an overview. Expert Rev Mol Diagn 2024; 24:201-218. [PMID: 38347807 DOI: 10.1080/14737159.2024.2316756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation. AREAS COVERED Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges. EXPERT OPINION Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Division of Earth, Environmental and Life Sciences, The Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Mina Raileanu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania
| | - Mihai Viorel Dionisie
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Irina-Oana Lixandru-Petre
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Microsystems in Biomedical and Environmental Applications, National Research and Development Institute for Microtechnology, Bucharest, Romania
| |
Collapse
|
15
|
Stine JM, Ruland KL, Beardslee LA, Levy JA, Abianeh H, Botasini S, Pasricha PJ, Ghodssi R. Miniaturized Capsule System Toward Real-Time Electrochemical Detection of H 2 S in the Gastrointestinal Tract. Adv Healthc Mater 2024; 13:e2302897. [PMID: 38035728 PMCID: PMC11468942 DOI: 10.1002/adhm.202302897] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Hydrogen sulfide (H2 S) is a gaseous inflammatory mediator and important signaling molecule for maintaining gastrointestinal (GI) homeostasis. Excess intraluminal H2 S in the GI tract has been implicated in inflammatory bowel disease and neurodegenerative disorders; however, the role of H2 S in disease pathogenesis and progression is unclear. Herein, an electrochemical gas-sensing ingestible capsule is developed to enable real-time, wireless amperometric measurement of H2 S in GI conditions. A gold (Au) three-electrode sensor is modified with a Nafion solid-polymer electrolyte (Nafion-Au) to enhance selectivity toward H2 S in humid environments. The Nafion-Au sensor-integrated capsule shows a linear current response in H2 S concentration ranging from 0.21 to 4.5 ppm (R2 = 0.954) with a normalized sensitivity of 12.4% ppm-1 when evaluated in a benchtop setting. The sensor proves highly selective toward H2 S in the presence of known interferent gases, such as hydrogen (H2 ), with a selectivity ratio of H2 S:H2 = 1340, as well as toward methane (CH4 ) and carbon dioxide (CO2 ). The packaged capsule demonstrates reliable wireless communication through abdominal tissue analogues, comparable to GI dielectric properties. Also, an assessment of sensor drift and threshold-based notification is investigated, showing potential for in vivo application. Thus, the developed H2 S capsule platform provides an analytical tool to uncover the complex biology-modulating effects of intraluminal H2 S.
Collapse
Affiliation(s)
- Justin M. Stine
- Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMD20742USA
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
- Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
| | - Katie L. Ruland
- Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMD20742USA
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
- Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
| | - Luke A. Beardslee
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
| | - Joshua A. Levy
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
- Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
- Department of Materials Science and EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Hossein Abianeh
- Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Santiago Botasini
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
| | | | - Reza Ghodssi
- Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMD20742USA
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
- Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
- Department of Materials Science and EngineeringUniversity of MarylandCollege ParkMD20742USA
| |
Collapse
|
16
|
Thwaites PA, Yao CK, Halmos EP, Muir JG, Burgell RE, Berean KJ, Kalantar‐zadeh K, Gibson PR. Review article: Current status and future directions of ingestible electronic devices in gastroenterology. Aliment Pharmacol Ther 2024; 59:459-474. [PMID: 38168738 PMCID: PMC10952964 DOI: 10.1111/apt.17844] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Advances in microelectronics have greatly expanded the capabilities and clinical potential of ingestible electronic devices. AIM To provide an overview of the structure and potential impact of ingestible devices in development that are relevant to the gastrointestinal tract. METHODS We performed a detailed literature search to inform this narrative review. RESULTS Technical success of ingestible electronic devices relies on the ability to miniaturise the microelectronic circuits, sensors and components for interventional functions while being sufficiently powered to fulfil the intended function. These devices offer the advantages of being convenient and minimally invasive, with real-time assessment often possible and with minimal interference to normal physiology. Safety has not been a limitation, but defining and controlling device location in the gastrointestinal tract remains challenging. The success of capsule endoscopy has buoyed enthusiasm for the concepts, but few ingestible devices have reached clinical practice to date, partly due to the novelty of the information they provide and also due to the challenges of adding this novel technology to established clinical paradigms. Nonetheless, with ongoing technological advancement and as understanding of their potential impact emerges, acceptance of such technology will grow. These devices have the capacity to provide unique insight into gastrointestinal physiology and pathophysiology. Interventional functions, such as sampling of tissue or luminal contents and delivery of therapies, may further enhance their ability to sharpen gastroenterological diagnoses, monitoring and treatment. CONCLUSIONS The development of miniaturised ingestible microelectronic-based devices offers exciting prospects for enhancing gastroenterological research and the delivery of personalised, point-of-care medicine.
Collapse
Affiliation(s)
- Phoebe A. Thwaites
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Chu K. Yao
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Emma P. Halmos
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Jane G. Muir
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Rebecca E. Burgell
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Kyle J. Berean
- Atmo BiosciencesMelbourneVictoriaAustralia
- School of Engineering, RMIT UniversityMelbourneVictoriaAustralia
| | - Kourosh Kalantar‐zadeh
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneyCamperdownNew South WalesAustralia
| | - Peter R. Gibson
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| |
Collapse
|
17
|
Hong W. Advances and Opportunities of Mobile Health in the Postpandemic Era: Smartphonization of Wearable Devices and Wearable Deviceization of Smartphones. JMIR Mhealth Uhealth 2024; 12:e48803. [PMID: 38252596 PMCID: PMC10823426 DOI: 10.2196/48803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Mobile health (mHealth) with continuous real-time monitoring is leading the era of digital medical convergence. Wearable devices and smartphones optimized as personalized health management platforms enable disease prediction, prevention, diagnosis, and even treatment. Ubiquitous and accessible medical services offered through mHealth strengthen universal health coverage to facilitate service use without discrimination. This viewpoint investigates the latest trends in mHealth technology, which are comprehensive in terms of form factors and detection targets according to body attachment location and type. Insights and breakthroughs from the perspective of mHealth sensing through a new form factor and sensor-integrated display overcome the problems of existing mHealth by proposing a solution of smartphonization of wearable devices and the wearable deviceization of smartphones. This approach maximizes the infinite potential of stagnant mHealth technology and will present a new milestone leading to the popularization of mHealth. In the postpandemic era, innovative mHealth solutions through the smartphonization of wearable devices and the wearable deviceization of smartphones could become the standard for a new paradigm in the field of digital medicine.
Collapse
Affiliation(s)
- Wonki Hong
- Department of Digital Healthcare, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Rane K, Kukreja G, Deshmukh S, Kakad U, Jadhav P, Patole V. Robotic Pills as Innovative Personalized Medicine Tools: A Mini Review. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:2-11. [PMID: 38841731 DOI: 10.2174/0126673878265457231205114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 06/07/2024]
Abstract
The most common route for drug administration is the oral route due to the various advantages offered by this route, such as ease of administration, controlled and sustained drug delivery, convenience, and non-invasiveness. In spite of this, oral drug absorption faces challenges due to various issues related to its stability, permeability and solubility in the GI tract. Biologic drugs generally face problems when administered by oral route as they are readily degradable and thus required to be injected. To overcome these issues in oral absorption, different approaches like novel drug delivery systems and newer pharmaceutical technologies have been adopted. With a combined knowledge of drug delivery and pharmaceutical technology, robotic pills can be designed and used successfully to enhance the adhesion and permeation of drugs through the mucus membrane of the GI tract to achieve drug delivery at the target site. The potential application of robotic pills in diagnosis and drug dispensing is also discussed. The review highlights recent developments in robotic pill drug-device technology and discusses its potential applications to solve the problems and challenges in oral drug delivery.
Collapse
Affiliation(s)
- Komal Rane
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune - 411018, Maharashtra, India
| | - Garima Kukreja
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune - 411018, Maharashtra, India
| | - Siddhi Deshmukh
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune - 411018, Maharashtra, India
| | - Urmisha Kakad
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune - 411018, Maharashtra, India
| | - Pranali Jadhav
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune - 411018, Maharashtra, India
| | - Vinita Patole
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune - 411018, Maharashtra, India
| |
Collapse
|
19
|
Rehan M, Al-Bahadly I, Thomas DG, Young W, Cheng LK, Avci E. Smart capsules for sensing and sampling the gut: status, challenges and prospects. Gut 2023; 73:186-202. [PMID: 37734912 PMCID: PMC10715516 DOI: 10.1136/gutjnl-2023-329614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Smart capsules are developing at a tremendous pace with a promise to become effective clinical tools for the diagnosis and monitoring of gut health. This field emerged in the early 2000s with a successful translation of an endoscopic capsule from laboratory prototype to a commercially viable clinical device. Recently, this field has accelerated and expanded into various domains beyond imaging, including the measurement of gut physiological parameters such as temperature, pH, pressure and gas sensing, and the development of sampling devices for better insight into gut health. In this review, the status of smart capsules for sensing gut parameters is presented to provide a broad picture of these state-of-the-art devices while focusing on the technical and clinical challenges the devices need to overcome to realise their value in clinical settings. Smart capsules are developed to perform sensing operations throughout the length of the gut to better understand the body's response under various conditions. Furthermore, the prospects of such sensing devices are discussed that might help readers, especially health practitioners, to adapt to this inevitable transformation in healthcare. As a compliment to gut sensing smart capsules, significant amount of effort has been put into the development of robotic capsules to collect tissue biopsy and gut microbiota samples to perform in-depth analysis after capsule retrieval which will be a game changer for gut health diagnosis, and this advancement is also covered in this review. The expansion of smart capsules to robotic capsules for gut microbiota collection has opened new avenues for research with a great promise to revolutionise human health diagnosis, monitoring and intervention.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Electronic Engineering, Sir Syed University of Engineering & Technology, Karachi, Pakistan
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch Ltd, Palmerston North, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
20
|
Yi L, Hou B, Liu X. Optical Integration in Wearable, Implantable and Swallowable Healthcare Devices. ACS NANO 2023; 17:19491-19501. [PMID: 37807286 DOI: 10.1021/acsnano.3c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Recent advances in materials and semiconductor technologies have led to extensive research on optical integration in wearable, implantable, and swallowable health devices. These optical systems utilize the properties of light─intensity, wavelength, polarization, and phase─to monitor and potentially intervene in various biological events. The potential of these devices is greatly enhanced through the use of multifunctional optical materials, adaptable integration processes, advanced optical sensing principles, and optimized artificial intelligence algorithms. This synergy creates many possibilities for clinical applications. This Perspective discusses key opportunities, challenges, and future directions, particularly with respect to sensing modalities, multifunctionality, and the integration of miniaturized optoelectronic devices. We present fundamental insights and illustrative examples of such devices in wearable, implantable, and swallowable forms. The constant pursuit of innovation and the dedicated approach to critical challenges are poised to influence diverse fields.
Collapse
Affiliation(s)
- Luying Yi
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Bo Hou
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
21
|
Asci C, Sharma A, Del-Rio-Ruiz R, Sonkusale S. Ingestible pH sensing device for gastrointestinal health monitoring based on thread-based electrochemical sensors. Mikrochim Acta 2023; 190:385. [PMID: 37698743 DOI: 10.1007/s00604-023-05946-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
There exists a strong correlation between the pH levels of the gastrointestinal (GI) tract and GI diseases such as inflammatory bowel disease (IBS), ulcerative colitis, and pancreatis. Existing methods for diagnosing many GI diseases predominantly rely on invasive, expensive, and time-consuming techniques such as colonoscopy and endoscopy. In this study, an autonomous ingestible smart biosensing system in a pill format with integrated pH sensors is reported. The smart sensing pills will measure the pH profile as they transit through the GI tract. The data is then downloaded from the pills after they are collected from the feces. The sensor is based on electrodeposited PANI on carbon-coated conductive threads providing high pH sensitivity. Engineering innovations allowed integration of thread-based sensors on 3D-printed pill surfaces with front-end readout electronics, memory, and microcontroller assembled on mm-size circular printed circuit boards. The entire smart sensing pill possesses an overall length of 22.1 mm and an outer diameter of 9 mm. The modular biosensing system allows integration of thread-based biosensors to monitor other biomarkers in GI tract that mitigates the complex sensor fabrication process as well as overall pill assembly.
Collapse
Affiliation(s)
- Cihan Asci
- Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, 02155, MA, USA
| | - Atul Sharma
- Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, 02155, MA, USA
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, 02155, MA, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, 02155, MA, USA.
| |
Collapse
|
22
|
Gopalakrishnan S, Thomas R, Sedaghat S, Krishnakumar A, Khan S, Meyer T, Ajieren H, Nejati S, Wang J, Verma MS, Irazoqui P, Rahimi R. Smart capsule for monitoring inflammation profile throughout the gastrointestinal tract. BIOSENSORS & BIOELECTRONICS: X 2023; 14:100380. [PMID: 37799507 PMCID: PMC10552446 DOI: 10.1016/j.biosx.2023.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Inflammatory bowel disease (IBD) has become alarmingly prevalent in the last two decades affecting 6.8 million people worldwide with a starkly high relapse rate of 40% within 1 year of remission. Existing visual endoscopy techniques rely on subjective assessment of images that are error-prone and insufficient indicators of early-stage IBD, rendering them unsuitable for frequent and quantitative monitoring of gastrointestinal health necessary for detecting regular relapses in IBD patients. To address these limitations, we have implemented a miniaturized smart capsule (2.2 cm × 11 mm) that allows monitoring reactive oxygen species (ROS) levels as a biomarker of inflammation for quantitative and frequent profiling of inflammatory lesions throughout the gastrointestinal tract. The capsule is composed of a pH and oxidation reduction potential (ORP) sensor to track the capsule's location and ROS levels throughout the gastrointestinal tract, respectively, and an optimized electronic interface for wireless sensing and data communication. The designed sensors provided a linear and stable performance within the physiologically relevant range of the GI tract (pH: 1-8 and ORP: -500 to +500 mV). Additionally, systematic design optimization of the wireless interface electronics offered an efficient sampling rate of 10 ms for long-running measurements up to 48 h for a complete evaluation of the entire gastrointestinal tract. As a proof-of-concept, the capsule the capsule's performance in detecting inflammation risks was validated by conducting tests on in vitro cell culture conditions, simulating healthy and inflamed gut-like environments. The capsule presented here achieves a new milestone in addressing the emerging need for smart ingestible electronics for better diagnosis and treatment of digestive diseases.
Collapse
Affiliation(s)
- Sarath Gopalakrishnan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Rithu Thomas
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sotoudeh Sedaghat
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Akshay Krishnakumar
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sadid Khan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Trevor Meyer
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hans Ajieren
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sina Nejati
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangshan Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
| | - Mohit S. Verma
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, West Lafayette, IN, 47907, USA
| | - Pedro Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rahim Rahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
23
|
Yogev D, Goldberg T, Arami A, Tejman-Yarden S, Winkler TE, Maoz BM. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng 2023; 7:031506. [PMID: 37781727 PMCID: PMC10539032 DOI: 10.1063/5.0152290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Implantable sensors have revolutionized the way we monitor biophysical and biochemical parameters by enabling real-time closed-loop intervention or therapy. These technologies align with the new era of healthcare known as healthcare 5.0, which encompasses smart disease control and detection, virtual care, intelligent health management, smart monitoring, and decision-making. This review explores the diverse biomedical applications of implantable temperature, mechanical, electrophysiological, optical, and electrochemical sensors. We delve into the engineering principles that serve as the foundation for their development. We also address the challenges faced by researchers and designers in bridging the gap between implantable sensor research and their clinical adoption by emphasizing the importance of careful consideration of clinical requirements and engineering challenges. We highlight the need for future research to explore issues such as long-term performance, biocompatibility, and power sources, as well as the potential for implantable sensors to transform healthcare across multiple disciplines. It is evident that implantable sensors have immense potential in the field of medical technology. However, the gap between research and clinical adoption remains wide, and there are still major obstacles to overcome before they can become a widely adopted part of medical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben M. Maoz
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
24
|
Nandhra GK, Chaichanavichkij P, Birch M, Scott SM. Gastrointestinal Transit Times in Health as Determined Using Ingestible Capsule Systems: A Systematic Review. J Clin Med 2023; 12:5272. [PMID: 37629314 PMCID: PMC10455695 DOI: 10.3390/jcm12165272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Ingestible capsule (IC) systems can assess gastrointestinal (GI) transit times as a surrogate for gut motility for extended periods of time within a minimally invasive, radiation-free and ambulatory setting. METHODS A literature review of IC systems and a systematic review of studies utilizing IC systems to measure GI transit times in healthy volunteers was performed. Screening for eligible studies, data extraction and bias assessments was performed by two reviewers. A narrative synthesis of the results was performed. RESULTS The literature review identified 23 different IC systems. The systematic review found 6892 records, of which 22 studies were eligible. GI transit time data were available from a total of 1885 healthy volunteers. Overall, seventeen included studies reported gastric emptying time (GET) and small intestinal transit time (SITT). Colonic transit time (CTT) was reported in nine studies and whole gut transit time (WGTT) was reported in eleven studies. GI transit times in the included studies ranged between 0.4 and 15.3 h for GET, 3.3-7 h for SITT, 15.9-28.9 h for CTT and 23.0-37.4 h for WGTT. GI transit times, notably GET, were influenced by the study protocol. CONCLUSIONS This review provides an up-to-date overview of IC systems and reference ranges for GI transit times. It also highlights the need to standardise protocols to differentiate between normal and pathological function.
Collapse
Affiliation(s)
- Gursharan Kaur Nandhra
- National Bowel Research Centre and GI Physiology Unit, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, London E1 4NS, UK; (P.C.); (M.B.); (S.M.S.)
- Clinical Physics, Barts Health NHS Trust, The Royal London Hospital, London E1 2BL, UK
| | - Phakanant Chaichanavichkij
- National Bowel Research Centre and GI Physiology Unit, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, London E1 4NS, UK; (P.C.); (M.B.); (S.M.S.)
| | - Malcolm Birch
- National Bowel Research Centre and GI Physiology Unit, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, London E1 4NS, UK; (P.C.); (M.B.); (S.M.S.)
- Clinical Physics, Barts Health NHS Trust, The Royal London Hospital, London E1 2BL, UK
| | - S. Mark Scott
- National Bowel Research Centre and GI Physiology Unit, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, London E1 4NS, UK; (P.C.); (M.B.); (S.M.S.)
| |
Collapse
|
25
|
Singh J, Jindal N, Kumar V, Singh K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. CHEMICAL PHYSICS IMPACT 2023; 6:100185. [DOI: 10.1016/j.chphi.2023.100185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
26
|
Feng X, Li P, Xiao M, Li T, Chen B, Wang X, Wang L. Recent advances in the detection of pathogenic microorganisms and toxins based on field-effect transistor biosensors. Crit Rev Food Sci Nutr 2023; 64:9161-9190. [PMID: 37171049 DOI: 10.1080/10408398.2023.2208677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In food safety analysis, the detection and control of foodborne pathogens and their toxins are of great importance. Monitoring of virus transmission is equally important, especially in light of recent findings that coronaviruses have been detected in frozen foods and packages during the current global epidemic of coronavirus disease 2019. In recent years, field-effect transistor (FET) biosensors have attracted considerable scholarly attention for pathogenic microorganisms and toxins detection and sensing due to their rapid response time, high sensitivity, wide dynamic range, high specificity, label-free detection, portability, and cost-effectiveness. FET-based biosensors can be modified with specific recognition elements, thus providing real-time qualitative and semiquantitative analysis. Furthermore, with advances in nanotechnology and device design, various high-performance nanomaterials are gradually applied in the detection of FET-based biosensors. In this article, we review specific detection in different biological recognition elements are immobilized on FET biosensors for the detection of pathogenic microorganisms and toxins, and we also discuss nonspecific detection by FET biosensors. In addition, there are still unresolved challenges in the development and application of FET biosensors for achieving efficient, multiplexed, in situ detection of pathogenic microorganisms and toxins. Therefore, directions for future FET biosensor research and applications are discussed.
Collapse
Affiliation(s)
- Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Wang X, Fu J, Jiang C, Liao X, Chen Y, Jia T, Chen G, Feng X. Specific and Long-Term Luminescent Monitoring of Hydrogen Peroxide in Tumor Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210948. [PMID: 36848628 DOI: 10.1002/adma.202210948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Indexed: 05/19/2023]
Abstract
Luminescent monitoring of endogenous hydrogen peroxide (H2 O2 ) in tumors is conducive to understanding metastasis and developing novel therapeutics. The clinical transformation is obstructed by the limited light penetration depth, toxicity of nano-probes, and lack of long-term monitoring modes of up to days or months. New monitoring modes are introduced via specific probes and implantable devices, which can achieve real-time monitoring with a readout frequency of 0.01 s or long-term monitoring for months to years. Near-infrared dye-sensitized upconversion nanoparticles (UCNPs) are fabricated as the luminescent probes, and the specificity to reactive oxygen species is subtly regulated by the self-assembled monolayers on the surfaces of UCNPs. Combined with the passive implanted system, a 20-day monitoring of H2 O2 in the rat model of ovarian cancer with peritoneal metastasis is achieved, in which the limited light penetration depth and toxicity of nano-probes are circumvented. The developed monitoring modes show great potential in accelerating the clinical transformation of nano-probes and biochemical detection methods.
Collapse
Affiliation(s)
- Xindong Wang
- Center for Flexible Electronics Technology, Tsinghua University, No. 30 Shuangqing Road, Beijing, 100084, P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing, 314006, P. R. China
| | - Ji Fu
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Chang Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xiaohui Liao
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Yiju Chen
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Tao Jia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xue Feng
- Center for Flexible Electronics Technology, Tsinghua University, No. 30 Shuangqing Road, Beijing, 100084, P. R. China
| |
Collapse
|
28
|
Jegan R, Nimi WS. On the development of low power wearable devices for assessment of physiological vital parameters: a systematic review. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2023:1-16. [PMID: 37361281 PMCID: PMC10068243 DOI: 10.1007/s10389-023-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
Aim Smart wearable devices for continuous monitoring of health conditions have bbecome very important in the healthcare sector to acquire and assess the different physiological parameters. This paper reviews the nature of physiological signals, desired vital parameters, role of smart wearable devices, choices of wearable devices and design considerations for wearable devices for early detection of health conditions. Subject and methods This article provides designers with information to identify and develop smart wearable devices based on the data extracted from a literature survey on previously published research articles in the field of wearable devices for monitoring vital parameters. Results The key information available in this article indicates that quality signal acquisition, processing and longtime monitoring of vital parameters requires smart wearable devices. The development of smart wearable devices with the listed design criteria supports the developer to design a low power wearable device for continuous monitoring of patient health conditions. Conclusion The wide range of information gathered from the review indicates that there is a huge demand for smart wearable devices for monitoring health conditions at home. It further supports tracking heath status in the long term via monitoring the vital parameters with the support of wireless communication principles.
Collapse
Affiliation(s)
- R. Jegan
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - W. S. Nimi
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
29
|
Balakrishnan G, Bhat A, Naik D, Kim JS, Marukyan S, Gido L, Ritter M, Khair AS, Bettinger CJ. Gelatin-Based Ingestible Impedance Sensor to Evaluate Gastrointestinal Epithelial Barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211581. [PMID: 36799712 PMCID: PMC10192083 DOI: 10.1002/adma.202211581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Indexed: 05/17/2023]
Abstract
Low-profile and transient ingestible electronic capsules for diagnostics and therapeutics can replace widely used yet invasive procedures such as endoscopies. Several gastrointestinal diseases such as reflux disease, Crohn's disease, irritable bowel syndrome, and eosinophilic esophagitis result in increased intercellular dilation in epithelial barriers. Currently, the primary method of diagnosing and monitoring epithelial barrier integrity is via endoscopic tissue biopsies followed by histological imaging. Here, a gelatin-based ingestible electronic capsule that can monitor epithelial barriers via electrochemical impedance measurements is proposed. Toward this end, material-specific transfer printing methodologies to manufacture soft-gelatin-based electronics, an in vitro synthetic disease model to validate impedance-based sensing, and tests of capsules using ex vivo using porcine esophageal tissue are described. The technologies described herein can advance next generation of oral diagnostic devices that reduce invasiveness and improve convenience for patients.
Collapse
Affiliation(s)
- Gaurav Balakrishnan
- Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Arnav Bhat
- Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Durva Naik
- Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Julie Shin Kim
- Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Chemical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Sona Marukyan
- Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Lily Gido
- Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Chemical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Mia Ritter
- Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Aditya S Khair
- Chemical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Christopher J Bettinger
- Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
30
|
Cheng Q, Xie M, Li G, Xue W, Zeng L, Ma D. Bacteria-Loaded Gastro-Retention Oral Delivery System for Alcohol Abuse. ACS Biomater Sci Eng 2023; 9:1460-1471. [PMID: 36848648 DOI: 10.1021/acsbiomaterials.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Alcohol abuse is harmful to human health, and many strategies have been developed to retard this harm through protecting liver or activating relative enzymes. In this study, a new strategy of decreasing the alcohol absorption directly depending on the dealcoholization by the bacteria in the upper gastrointestinal (GI) tract was reported. To realize this, a bacteria-loaded gastro-retention oral delivery system with pore structure was constructed through emulsification/internal gelation, which could relieve acute alcohol intoxication in mice successfully. It was found that this bacteria-loaded system kept the above 30% suspension ratio in the simulated gastric fluid for 4 min, displayed good protection effect for the bacteria, and decreased the alcohol concentration from 50 to 30% below within 24 h in vitro. The in vivo imaging results demonstrated that it remained in the upper GI tract until 24 h and reduced 41.9% alcohol absorption. The mice with oral administration of the bacteria-loaded system were found with normal gait, smooth coat, and less liver damage. Although the intestinal flora distribution was influenced slightly during the oral administration, it could restore to normal levels only one day after stopping oral administration quickly, suggesting good biosafety. In conclusion, these results revealed that the bacteria-loaded gastro-retention oral delivery system might intake alcohol molecules rapidly and has huge potential in the treatment of alcohol abuse.
Collapse
Affiliation(s)
- Qikun Cheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Mingzhi Xie
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Guowei Li
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lexiang Zeng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou 510120, People's Republic of China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
- Artificial Organs and Materials Engineering Research Center, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
31
|
Lu T, Ji S, Jin W, Yang Q, Luo Q, Ren TL. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. SENSORS (BASEL, SWITZERLAND) 2023; 23:2991. [PMID: 36991702 PMCID: PMC10054135 DOI: 10.3390/s23062991] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/19/2023]
Abstract
Sensors enable the detection of physiological indicators and pathological markers to assist in the diagnosis, treatment, and long-term monitoring of diseases, in addition to playing an essential role in the observation and evaluation of physiological activities. The development of modern medical activities cannot be separated from the precise detection, reliable acquisition, and intelligent analysis of human body information. Therefore, sensors have become the core of new-generation health technologies along with the Internet of Things (IoTs) and artificial intelligence (AI). Previous research on the sensing of human information has conferred many superior properties on sensors, of which biocompatibility is one of the most important. Recently, biocompatible biosensors have developed rapidly to provide the possibility for the long-term and in-situ monitoring of physiological information. In this review, we summarize the ideal features and engineering realization strategies of three different types of biocompatible biosensors, including wearable, ingestible, and implantable sensors from the level of sensor designing and application. Additionally, the detection targets of the biosensors are further divided into vital life parameters (e.g., body temperature, heart rate, blood pressure, and respiratory rate), biochemical indicators, as well as physical and physiological parameters based on the clinical needs. In this review, starting from the emerging concept of next-generation diagnostics and healthcare technologies, we discuss how biocompatible sensors revolutionize the state-of-art healthcare system unprecedentedly, as well as the challenges and opportunities faced in the future development of biocompatible health sensors.
Collapse
Affiliation(s)
- Tian Lu
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Shourui Ji
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qisheng Yang
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tian-Ling Ren
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Koumar OC, Beaufils R, Chesneau C, Normand H, Bessot N. Validation of e-Celsius gastrointestinal telemetry system as measure of core temperature. J Therm Biol 2023; 112:103471. [PMID: 36796916 DOI: 10.1016/j.jtherbio.2023.103471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
The main objective of this study was to validate gastrointestinal measurement with the e-Celsius® system composed of an ingestible electronic capsule and a monitor. Twenty-three healthy volunteers aged 18-59 years stayed at the hospital for 24 h under fasting conditions. They were only allowed for quiet activity and were asked to keep their sleeping habits. Subjects ingested a Jonah capsule and an e-Celsius® capsule, and a rectal probe and an esophageal probe were inserted. Mean temperature measured by the e-Celsius® device was lower than that measured by Vitalsense® (-0.12 ± 0.22°C; p < 0.001) and the rectal probe (-0.11 ± 0.03°C; p = 0.003) and higher than that measured by the esophageal probe (0.17 ± 0.05; p = 0.006). Mean difference (bias) and 95% confidence intervals between temperature of e-Celsius capsule, Vitalsense Jonah capsule, esophageal probe, and rectal probe were computed using Bland and Altman procedure. The magnitude of the measurement bias is significantly greater when comparing the e-Celsius® and the Vitalsense® device pair with any other device pairs containing the esophageal probe. Amplitude of confidence interval between the e-Celsius® system and the Vitalsense® system was 0.67°C. This amplitude was significantly lower than those of the esophageal probe-e-Celsius® pairing (0.83°C; p = 0.027), of the esophageal probe-Vitalsense (0.78°C; p = 0.046) and of the esophageal probe-rectal probe (0.83°C; p = 0.002). The statistical analysis did not reveal any effect of time on the amplitude of bias, whatever the device concerned. When comparing missing data rate of the e-Celsius® system (0.23 ± 0.15%) and the Vitalsense® devices (0.70 ± 0.11%) during the whole experiment, no differences was observed (p = 0.09). The e-Celsius® system could be used when a continuous following of internal temperature is needed.
Collapse
Affiliation(s)
- O C Koumar
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000, Caen, France
| | - R Beaufils
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000, Caen, France
| | - C Chesneau
- LMNO, CNRS, UNICAEN, Normandie Université, 14000, Caen, France
| | - H Normand
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000, Caen, France
| | - N Bessot
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000, Caen, France.
| |
Collapse
|
33
|
Lamanna L, Cataldi P, Friuli M, Demitri C, Caironi M. Monitoring of Drug Release via Intra Body Communication with an Edible Pill. ADVANCED MATERIALS TECHNOLOGIES 2023; 8. [DOI: 10.1002/admt.202200731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 01/03/2025]
Abstract
AbstractOral drug administration provides a convenient and patient‐compliant way for drug delivery, especially for chronic diseases and prolonged pharmacological treatments. However, due to the repetitiveness of such therapeutic approach, the patients are led to neglect/forget the therapy affecting the healthcare delivery. Indeed, the non‐adherence to pharmacological prescriptions and the unknown amount of real‐time drug release result in a non‐compliant therapeutic drug level over the protracted therapies. The proposed technology will enable the monitoring of both pharmacological adherence and real‐time drug release. The approach exploits a passive intrabody communication (IBC) activation in order to enable an edible pill, realized starting from food additives and food‐grade materials, to monitor pharmacological adherence. Following activation, the signal is modulated by IBC coupling switching triggered by pill degradation in a gastrointestinal tract, resulting in a monitored drug release. The proof‐of‐concept is designed for a targeted release and monitoring of Metformin in the intestine. The system shows an in vitro limit of cumulative drug release detection of 18 µg mL−1 and a limit of real‐time drug release detection of 2 µg mL−1 min−1. This platform represents the first solution to monitor passive drug release in real‐time, from intake to complete absorption, enabling unique and long‐sought healthcare therapy and treatment opportunity.
Collapse
Affiliation(s)
- Leonardo Lamanna
- Center for Nano Science and Technology @PoliMi Istituto Italiano di Tecnologia Via G. Pascoli, 70/3 Milano 20133 Italy
- Department of Engineering for Innovation Campus Ecotekne University of Salento Via per Monteroni Lecce 73100 Italy
| | - Pietro Cataldi
- Center for Nano Science and Technology @PoliMi Istituto Italiano di Tecnologia Via G. Pascoli, 70/3 Milano 20133 Italy
| | - Marco Friuli
- Department of Engineering for Innovation Campus Ecotekne University of Salento Via per Monteroni Lecce 73100 Italy
| | - Christian Demitri
- Department of Engineering for Innovation Campus Ecotekne University of Salento Via per Monteroni Lecce 73100 Italy
| | - Mario Caironi
- Center for Nano Science and Technology @PoliMi Istituto Italiano di Tecnologia Via G. Pascoli, 70/3 Milano 20133 Italy
| |
Collapse
|
34
|
A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat Commun 2022; 13:7405. [PMID: 36456568 PMCID: PMC9715945 DOI: 10.1038/s41467-022-35074-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Information related to the diverse and dynamic metabolite composition of the small intestine is crucial for the diagnosis and treatment of various diseases. However, our current understanding of the physiochemical dynamics of metabolic processes within the small intestine is limited due to the lack of in situ access to the intestinal environment. Here, we report a demonstration of a battery-free ingestible biosensing system for monitoring metabolites in the small intestine. As a proof of concept, we monitor the intestinal glucose dynamics on a porcine model. Battery-free operation is achieved through a self-powered glucose biofuel cell/biosensor integrated into a circuit that performs energy harvesting, biosensing, and wireless telemetry via a power-to-frequency conversion scheme using magnetic human body communication. Such long-term biochemical analysis could potentially provide critical information regarding the complex and dynamic small intestine metabolic profiles.
Collapse
|
35
|
Thwaites PA, Yao CK, Maggo J, John J, Chrimes AF, Burgell RE, Muir JG, Parker FC, So D, Kalantar‐Zadeh K, Gearry RB, Berean KJ, Gibson PR. Comparison of gastrointestinal landmarks using the gas-sensing capsule and wireless motility capsule. Aliment Pharmacol Ther 2022; 56:1337-1348. [PMID: 36082475 PMCID: PMC9826325 DOI: 10.1111/apt.17216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Accurate definition of the gastroduodenal and ileocaecal junctions (GDJ, ICJ) is essential for the measurement of regional transit times. AIMS To compare the assessment of these landmarks using the novel gas-sensing capsule and validated wireless motility capsule (WMC), and to evaluate intra-subject variance in transit times METHODS: Healthy subjects ingested the gas-sensing capsule and WMC tandemly in random order. Inter-observer agreement was evaluated by intra-class correlation coefficient (ICC). Agreement between the paired devices' transit times was assessed using Bland-Altman analysis; coefficient of variation was performed to express intra-individual variance in transit times. Similar analyses were completed with tandemly ingested gas-sensing capsules. RESULTS The inter-observer agreement for landmarks for both capsules was excellent (mean ICC ≥0.97) in 50 studies. The GDJ was identifiable in 92% of the gas-sensing capsule studies versus 82% of the WMC studies (p = 0.27); the ICJ in 96% versus 84%, respectively (p = 0.11). In the primary cohort (n = 26), median regional transit times differed by less than 6 min between paired capsules. Bland-Altman revealed a bias of -0.12 (95% limits of agreement, -0.94 to 0.70) hours for GDJ and - 0.446 (-2.86 to 2.0) hours for ICJ. Similar results were found in a demographically distinct validation cohort (n = 24). For tandemly ingested gas-sensing capsules, coefficients of variation of transit times were 11%-35%, which were similar to variance between the paired gas-sensing capsule and WMC, as were the biases. The capsules were well tolerated. CONCLUSIONS Key anatomical landmarks are accurately identified with the gas-sensing capsule in healthy individuals. Intra-individual differences in transit times between capsules are probably due to physiological factors. Studies in populations with gastrointestinal diseases are now required.
Collapse
Affiliation(s)
- Phoebe A. Thwaites
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Chu K. Yao
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | | | - James John
- Atmo BiosciencesMelbourneVictoriaAustralia
| | - Adam F. Chrimes
- Atmo BiosciencesMelbourneVictoriaAustralia
- School of EngineeringRMIT UniversityMelbourneVictoriaAustralia
| | - Rebecca E. Burgell
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Jane G. Muir
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Francis C. Parker
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Daniel So
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Kourosh Kalantar‐Zadeh
- School of Chemical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Kyle J. Berean
- Atmo BiosciencesMelbourneVictoriaAustralia
- School of EngineeringRMIT UniversityMelbourneVictoriaAustralia
| | - Peter R. Gibson
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
- School of EngineeringRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
36
|
Fukada K, Tajima T, Seyama M. Thermally Degradable Inductors with Water-Resistant Metal Leaf/Oleogel Wires and Gelatin/Chitosan Hydrogel Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44697-44703. [PMID: 36095329 DOI: 10.1021/acsami.2c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ingestible electronics monitor biometric information from outside the body. Making them with harmless or digestible materials will contribute to further reducing the burden on the patient's oral intake. Here, considering that the inductive part plays an important role in communications, we demonstrate a degradable inductor fabricated with harmless substances. Such a transient component must meet conflicting requirements for both operation and disassembly. Therefore, we integrated a substrate made of gelatin, a thermally degradable material, and a precision coil pattern made of edible gold or silver leaf. However, gelatin itself lost its initial shape easily due to quick sol-gel changes in physiological conditions. Thus, we managed the gelatin's thermal responsiveness by using a tangle of gelatin/chitosan gel networks and genipin, an organic cross-linking agent, and gained insights into the criteria for developing transient devices with thermo-degradability. In addition, to compensate for the lack of water resistance and low conductivity of thin metal foils, we propose a laminated structure with oleogel (beeswax/olive oil). LCR resonance circuits, by connecting a commercial capacitor to the coil, worked wirelessly in the megahertz band and gradually degraded in a warm-water environment. The presented organic electronics will contribute to the future development of transient wireless communications for implantable and ingestible medical devices or environmental sensors with natural and harmless ingredients.
Collapse
Affiliation(s)
- Kenta Fukada
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Takuro Tajima
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Michiko Seyama
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
37
|
Goodman GR, Vaz C, Albrechta H, Boyer EW, Mayer KH, O'Cleirigh C, Chai PR. Ingestible Electronic Sensors for Monitoring Real-time Adherence to HIV Pre-exposure Prophylaxis and Antiretroviral Therapy. Curr HIV/AIDS Rep 2022; 19:433-445. [PMID: 36048309 PMCID: PMC9509467 DOI: 10.1007/s11904-022-00625-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the recent advancements and future directions of digital pill systems (DPS) - which utilize ingestible sensors to directly measure medication ingestion events in real-time - in the context of HIV prevention and treatment. RECENT FINDINGS Two DPS are cleared by the US Food and Drug Administration. The bioequivalence and stability of digitized pre-exposure prophylaxis (PrEP) and antiretroviral therapy (ART) have been established, and pilot studies have demonstrated the feasibility and acceptability of using DPS for PrEP and ART adherence measurement. Important bioethical and implementation considerations have been identified for future clinical trials. Continued technological advancement may reduce barriers to use, and integration of DPS into behavioral interventions may facilitate adherence improvement efforts. DPS represent an innovative tool for PrEP and ART adherence measurement. Future work will optimize the technology to reduce operational barriers. DPS have significant potential for expansion across a diverse array of diseases, though key bioethical considerations must be examined prior to large-scale implementation.
Collapse
Affiliation(s)
- Georgia R Goodman
- Department of Emergency Medicine, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Clint Vaz
- Department of Emergency Medicine, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
- Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Edward W Boyer
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kenneth H Mayer
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical, Boston, MA, USA
| | - Conall O'Cleirigh
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Peter R Chai
- Department of Emergency Medicine, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA.
- The Fenway Institute, Fenway Health, Boston, MA, USA.
- Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, MA, USA.
- The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
38
|
Asci C, Del-Rio-Ruiz R, Sharma A, Sonkusale S. Ingestible pH Sensing Capsule with Thread-Based Electrochemical Sensors. PROCEEDINGS OF IEEE SENSORS. IEEE INTERNATIONAL CONFERENCE ON SENSORS 2022; 2022:10.1109/sensors52175.2022.9967347. [PMID: 37415919 PMCID: PMC10324471 DOI: 10.1109/sensors52175.2022.9967347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Existing techniques for diagnosing gastrointestinal disorders in stomach, small and large intestines, and colon depend on biopsy, endoscopy or colonoscopy methods which are invasive, expensive and time-consuming. In fact, such methods also lack the ability to access large parts of the small intestine. In this article, we demonstrate a smart ingestible biosensing capsule that is capable of monitoring pH activity in small and large intestines. pH is a known biomarker for several gastrointestinal disorders such as inflammatory bowel disease. Functionalized threads utilized as pH sensing mechanism are integrated with front-end readout electronics and 3D-printed case. This paper demonstrates a modular sensing system design that alleviates the sensor fabrication difficulties as well as the overall assembly of the ingestible capsule.
Collapse
Affiliation(s)
- Cihan Asci
- Nanolab, Advanced Technology Laboratory, Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155
| | - Ruben Del-Rio-Ruiz
- Nanolab, Advanced Technology Laboratory, Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155
| | - Atul Sharma
- Nanolab, Advanced Technology Laboratory, Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155
| | - Sameer Sonkusale
- Nanolab, Advanced Technology Laboratory, Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155
| |
Collapse
|
39
|
Sensor Technology and Intelligent Systems in Anorexia Nervosa: Providing Smarter Healthcare Delivery Systems. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1955056. [PMID: 36193321 PMCID: PMC9526573 DOI: 10.1155/2022/1955056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Ubiquitous technology, big data, more efficient electronic health records, and predictive analytics are now at the core of smart healthcare systems supported by artificial intelligence. In the present narrative review, we focus on sensing technologies for the healthcare of Anorexia Nervosa (AN). We employed a framework inspired by the Interpersonal Neurobiology Theory (IPNB), which posits that human experience is characterized by a flow of energy and information both within us (within our whole body), and between us (in the connections we have with others and with nature). In line with this framework, we focused on sensors designed to evaluate bodily processes (body sensors such as implantable sensors, epidermal sensors, and wearable and portable sensors), human social interaction (sociometric sensors), and the physical environment (indoor and outdoor ambient sensors). There is a myriad of man-made sensors as well as nature-based sensors such as plants that can be used to design and deploy intelligent systems for human monitoring and healthcare. In conclusion, sensing technologies and intelligent systems can be employed for smarter healthcare of AN and help to relieve the burden of health professionals. However, there are technical, ethical, and environmental sustainability issues that must be considered prior to implementing these systems. A joint collaboration of professionals and other members of the society involved in the healthcare of individuals with AN can help in the development of these systems. The evolution of cyberphysical systems should also be considered in these collaborations.
Collapse
|
40
|
Nan K, Feig VR, Ying B, Howarth JG, Kang Z, Yang Y, Traverso G. Mucosa-interfacing electronics. NATURE REVIEWS. MATERIALS 2022; 7:908-925. [PMID: 36124042 PMCID: PMC9472746 DOI: 10.1038/s41578-022-00477-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The surface mucosa that lines many of our organs houses myriad biometric signals and, therefore, has great potential as a sensor-tissue interface for high-fidelity and long-term biosensing. However, progress is still nascent for mucosa-interfacing electronics owing to challenges with establishing robust sensor-tissue interfaces; device localization, retention and removal; and power and data transfer. This is in sharp contrast to the rapidly advancing field of skin-interfacing electronics, which are replacing traditional hospital visits with minimally invasive, real-time, continuous and untethered biosensing. This Review aims to bridge the gap between skin-interfacing electronics and mucosa-interfacing electronics systems through a comparison of the properties and functions of the skin and internal mucosal surfaces. The major physiological signals accessible through mucosa-lined organs are surveyed and design considerations for the next generation of mucosa-interfacing electronics are outlined based on state-of-the-art developments in bio-integrated electronics. With this Review, we aim to inspire hardware solutions that can serve as a foundation for developing personalized biosensing from the mucosa, a relatively uncharted field with great scientific and clinical potential.
Collapse
Affiliation(s)
- Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Vivian R. Feig
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Julia G. Howarth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ziliang Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
41
|
Litvinova O, Klager E, Tzvetkov NT, Kimberger O, Kletecka-Pulker M, Willschke H, Atanasov AG. Digital Pills with Ingestible Sensors: Patent Landscape Analysis. Pharmaceuticals (Basel) 2022; 15:ph15081025. [PMID: 36015173 PMCID: PMC9415622 DOI: 10.3390/ph15081025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The modern healthcare system is directly related to the development of digital health tools and solutions. Pills with digital sensors represent a highly innovative class of new pharmaceuticals. The aim of this work was to analyze the patent landscape and to systematize the main trends in patent protection of digital pills with ingestible sensors worldwide; accordingly, to identify the patenting leaders as well as the main prevailing areas of therapy for patent protection, and the future perspectives in the field. In July 2022, a search was conducted using Internet databases, such as the EPO, USPTO, FDA and the Lens database. The patent landscape analysis shows an increase in the number of patents related to digital pills with ingestible sensors for mobile clinical monitoring, smart drug delivery, and endoscopy diagnostics. The leaders in the number of patents issued are the United States, the European Patent Office, Canada, Australia, and China. The following main areas of patenting digital pills with ingestible sensors were identified: treatment in the field of mental health; HIV/AIDS; pain control; cardiovascular diseases; diabetes; gastroenterology (including hepatitis C); oncology; tuberculosis; and transplantology. The development of scientific and practical approaches towards the implementation of effective and safe digital pills will improve treatment outcomes, increase compliance, reduce hospital stays, provide mobile clinical monitoring, have a positive impact on treatment costs and will contribute to increased patient safety.
Collapse
Affiliation(s)
- Olena Litvinova
- Department of Management, Economy and Quality Assurance in Pharmacy, National University of Pharmacy, The Ministry of Health of Ukraine, 61002 Kharkiv, Ukraine
- Correspondence: (O.L.); (A.G.A.); Tel.: +380-67-300-78-49 (O.L.); +43-1401-6036-250 (A.G.A.)
| | - Elisabeth Klager
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1180 Vienna, Austria
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Oliver Kimberger
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1180 Vienna, Austria
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Kletecka-Pulker
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1180 Vienna, Austria
- Institute for Ethics and Law in Medicine, University of Vienna, 1090 Vienna, Austria
| | - Harald Willschke
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1180 Vienna, Austria
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1180 Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
- Correspondence: (O.L.); (A.G.A.); Tel.: +380-67-300-78-49 (O.L.); +43-1401-6036-250 (A.G.A.)
| |
Collapse
|
42
|
Smith D, Jheeta S, Fuentes HV, Palacios-Pérez M. Feeding Our Microbiota: Stimulation of the Immune/Semiochemical System and the Potential Amelioration of Non-Communicable Diseases. Life (Basel) 2022; 12:1197. [PMID: 36013376 PMCID: PMC9410320 DOI: 10.3390/life12081197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Non-communicable diseases are those conditions to which causative infectious agents cannot readily be assigned. It is increasingly likely that at least some of these conditions are due to the breakdown of the previously mutualistic intestinal microbiota under the influence of a polluted, biocide-rich, environment. Following the mid-20th century African studies of Denis Burkitt, the environmental cause of conditions such as obesity has been ascribed to the absence of sufficient fibre in the modern diet, however in itself that is insufficient to explain the parallel rise of problems with both the immune system and of mental health. Conversely, Burkitt himself noted that the Maasai, a cattle herding people, remained healthy even with their relatively low intake of dietary fibre. Interestingly, however, Burkitt also emphasised that levels of non-communicable disease within a population rose as faecal weight decreased significantly, to about one third of the levels found in healthy populations. Accordingly, a more cogent explanation for all the available facts is that the fully functioning, adequately diverse microbiome, communicating through what has been termed the microbiota-gut-brain axis, helps to control the passage of food through the digestive tract to provide itself with the nutrition it needs. The method of communication is via the production of semiochemicals, interkingdom signalling molecules, potentially including dopamine. In turn, the microbiome aids the immune system of both adult and, most importantly, the neonate. In this article we consider the role of probiotics and prebiotics, including fermented foods and dietary fibre, in the stimulation of the immune system and of semiochemical production in the gut lumen. Finally, we reprise our suggestion of an ingestible sensor, calibrated to the detection of such semiochemicals, to assess both the effectiveness of individual microbiomes and methods of amelioration of the associated non-communicable diseases.
Collapse
Affiliation(s)
- David Smith
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Sohan Jheeta
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Hannya V. Fuentes
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Miryam Palacios-Pérez
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
43
|
State of the Art in Smart Portable, Wearable, Ingestible and Implantable Devices for Health Status Monitoring and Disease Management. SENSORS 2022; 22:s22114228. [PMID: 35684847 PMCID: PMC9185336 DOI: 10.3390/s22114228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023]
Abstract
Several illnesses that are chronic and acute are becoming more relevant as the world's aging population expands, and the medical sector is transforming rapidly, as a consequence of which the need for "point-of-care" (POC), identification/detection, and real time management of health issues that have been required for a long time are increasing. Biomarkers are biological markers that help to detect status of health or disease. Biosensors' applications are for screening for early detection, chronic disease treatment, health management, and well-being surveillance. Smart devices that allow continual monitoring of vital biomarkers for physiological health monitoring, medical diagnosis, and assessment are becoming increasingly widespread in a variety of applications, ranging from biomedical to healthcare systems of surveillance and monitoring. The term "smart" is used due to the ability of these devices to extract data with intelligence and in real time. Wearable, implantable, ingestible, and portable devices can all be considered smart devices; this is due to their ability of smart interpretation of data, through their smart sensors or biosensors and indicators. Wearable and portable devices have progressed more and more in the shape of various accessories, integrated clothes, and body attachments and inserts. Moreover, implantable and ingestible devices allow for the medical diagnosis and treatment of patients using tiny sensors and biomedical gadgets or devices have become available, thus increasing the quality and efficacy of medical treatments by a significant margin. This article summarizes the state of the art in portable, wearable, ingestible, and implantable devices for health status monitoring and disease management and their possible applications. It also identifies some new technologies that have the potential to contribute to the development of personalized care. Further, these devices are non-invasive in nature, providing information with accuracy and in given time, thus making these devices important for the future use of humanity.
Collapse
|
44
|
Mestres J, Leonardi F, Mathwig K. Amperometric Monitoring of Dissolution of pH-Responsive EUDRAGIT® Polymer Film Coatings. MICROMACHINES 2022; 13:mi13030362. [PMID: 35334654 PMCID: PMC8949041 DOI: 10.3390/mi13030362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
Electrochemical sensors are powerful tools for the detection and real-time monitoring of a wide variety of analytes. However, the long-term operation of Faradaic sensors in complex media is challenging due to fouling. The protection of the electrode surface during in vivo operation is a key element for improving the monitoring of analytes. Here, we study different EUDRAGIT® controlled release acrylate copolymers for protecting electrode surfaces. The dissolution of these polymers—namely EUDRAGIT® L 30 D-55 and EUDRAGIT® FS 30 D—is triggered by a change in pH of the environment, and it is electrochemically monitored by detecting electrode access by means of a redox probe. The full dissolution of the polymer is achieved within 30 min and the electrode response indicates a complete recovery of the original electrochemical performance. We demonstrate that amperometric sensing is a practical and straightforward technique for real-time and in situ sensing of EUDRAGIT® dissolution profiles. It will find future applications in determining the protection of polymer electrode coating in real matrices and in vivo applications.
Collapse
Affiliation(s)
- Júlia Mestres
- Stichting Imec Nederland within OnePlanet Research Center, Bronland 10, 6708 WH Wageningen, The Netherlands;
- School of Chemistry, University College Cork, Kane Building, T12 YN60 Cork, Ireland
| | - Francesca Leonardi
- Stichting Imec Nederland within OnePlanet Research Center, Bronland 10, 6708 WH Wageningen, The Netherlands;
- Correspondence: (F.L.); (K.M.)
| | - Klaus Mathwig
- Stichting Imec Nederland within OnePlanet Research Center, Bronland 10, 6708 WH Wageningen, The Netherlands;
- Correspondence: (F.L.); (K.M.)
| |
Collapse
|
45
|
Woldeamanuel YW, Cowan RP. Computerized migraine diagnostic tools: a systematic review. Ther Adv Chronic Dis 2022; 13:20406223211065235. [PMID: 35096362 PMCID: PMC8793115 DOI: 10.1177/20406223211065235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Computerized migraine diagnostic tools have been developed and validated since 1960. We conducted a systematic review to summarize and critically appraise the quality of all published studies involving computerized migraine diagnostic tools. METHODS We performed a systematic literature search using PubMed, Web of Science, Scopus, snowballing, and citation searching. Cutoff date for search was 1 June 2021. Published articles in English that evaluated a computerized/automated migraine diagnostic tool were included. The following summarized each study: publication year, digital tool name, development basis, sample size, sensitivity, specificity, reference diagnosis, strength, and limitations. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was applied to evaluate the quality of included studies in terms of risk of bias and concern of applicability. RESULTS A total of 41 studies (median sample size: 288 participants, median age = 43 years; 77% women) were included. Most (60%) tools were developed based on International Classification of Headache Disorders criteria, half were self-administered, and 82% were evaluated using face-to-face interviews as reference diagnosis. Some of the automated algorithms and machine learning programs involved case-based reasoning, deep learning, classifier ensemble, ant-colony, artificial immune, random forest, white and black box combinations, and hybrid fuzzy expert systems. The median diagnostic accuracy was concordance = 89% [interquartile range (IQR) = 76-93%; range = 45-100%], sensitivity = 87% (IQR = 80-95%; range = 14-100%), and specificity = 90% (IQR = 77-96%; range = 65-100%). Lack of random patient sampling was observed in 95% of studies. Case-control designs were avoided in all studies. Most (76%) reference tests exhibited low risk of bias and low concern of applicability. Patient flow and timing showed low risk of bias in 83%. CONCLUSION Different computerized and automated migraine diagnostic tools are available with varying accuracies. Random patient sampling, head-to-head comparison among tools, and generalizability to other headache diagnoses may improve their utility.
Collapse
Affiliation(s)
- Yohannes W. Woldeamanuel
- Division of Headache & Facial Pain, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Robert P. Cowan
- Division of Headache & Facial Pain, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie PJ, Kolterman O, Eid J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes 2022; 13:1-28. [PMID: 33874858 PMCID: PMC8078720 DOI: 10.1080/19490976.2021.1907272] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridium butyricum is a butyrate-producing human gut symbiont that has been safely used as a probiotic for decades. C. butyricum strains have been investigated for potential protective or ameliorative effects in a wide range of human diseases, including gut-acquired infection, intestinal injury, irritable bowel syndrome, inflammatory bowel disease, neurodegenerative disease, metabolic disease, and colorectal cancer. In this review we summarize the studies on C. butyricum supplementation with special attention to proposed mechanisms for the associated health benefits and the supporting experimental evidence. These mechanisms center on molecular signals (especially butyrate) as well as immunological signals in the digestive system that cascade well beyond the gut to the liver, adipose tissue, brain, and more. The safety of probiotic C. butyricum strains appears well-established. We identify areas where additional human randomized controlled trials would provide valuable further data related to the strains' utility as an intervention.
Collapse
Affiliation(s)
- Magdalena K. Stoeva
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Jeewon Garcia-So
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Nicholas Justice
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Julia Myers
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Surabhi Tyagi
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Madeleine Nemchek
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Paul J. McMurdie
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Orville Kolterman
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - John Eid
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA,CONTACT John Eid Pendulum Therapeutics, Inc, San Francisco, California, USA
| |
Collapse
|
47
|
Abstract
BACKGROUND Adherence to prescribed analgesics for patients seriously ill with cancer pain is essential for comfort. OBJECTIVE The objective of this study was to determine the analgesic adherence in seriously ill patients with cancer and its association with clinical and demographic characteristics. METHODS This is a cross-sectional study. At home, 202 patients with cancer (mean age, 59.9 ± 14.2 years; 58% female, 48% Black, and 42% White) admitted to hospice/palliative care completed measures on a pen tablet: PAIN Report It, Symptom Distress Scale, mood state item, Pittsburgh Sleep Quality Index item, and Pain Management Index. RESULTS The mean current pain intensity was 4.4 ± 2.9, and the mean worst pain in the past 24 hours was 7.2 ± 2.7. More than one-half of participants were not satisfied with their pain level (54%) and reported their pain was more intense than they wanted to tolerate for 18 hours or longer in the last 24 hours (51%). Only 12% were not prescribed analgesics appropriate for the intensity of their pain. Adherence rates were variable: nonsteroidal anti-inflammatory drugs (0.63 ± 0.50), adjuvants (0.93 ± 0.50), World Health Organization step 2 opioids (0.63 ± 0.49), and step 3 opioids (0.80 ± 0.40). With setting/clinical/demographic variables in the model, dose intervals of less than 8 hours were associated with less adherence ( P < .001). CONCLUSION Little progress has been made toward improving analgesic adherence even in settings providing analgesics without cost. Research focused on targeting analgesic dose intervals and barriers not related to cost is needed. IMPLICATION FOR PRACTICE Dose intervals of 8 hours or longer were significantly associated with higher adherence rates; therefore, use of longer-acting analgesics is one strategy to improve pain control at the end of life.
Collapse
|
48
|
Howard J, Murashov V, Cauda E, Snawder J. Advanced sensor technologies and the future of work. Am J Ind Med 2022; 65:3-11. [PMID: 34647336 DOI: 10.1002/ajim.23300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023]
Abstract
Exposure science is fundamental to the field of occupational safety and health. The measurement of worker exposures to hazardous agents informs effective workplace risk mitigation strategies. The modern era of occupational exposure measurement began with the invention of the personal sampling device, which is still widely used today in the practice of occupational hygiene. Newer direct-reading sensor devices are incorporating recent advances in transducers, nanomaterials, electronics miniaturization, portability, batteries with high-power density, wireless communication, energy-efficient microprocessing, and display technology to usher in a new era in exposure science. Commercial applications of new sensor technologies have led to a variety of health and lifestyle management devices for everyday life. These applications are also being investigated as tools to measure occupational and environmental exposures. As the next-generation placeable, wearable, and implantable sensor technologies move from the research laboratory to the workplace, their role in the future of work will be of increasing importance to employers, workers, and occupational safety and health researchers and practitioners. This commentary discusses some of the benefits and challenges of placeable, wearable, and implantable sensor technologies in the future of work.
Collapse
Affiliation(s)
- John Howard
- Office of the Director, National Institute for Occupational Safety and Health, Washington District of Columbia USA
| | - Vladimir Murashov
- Office of the Director, National Institute for Occupational Safety and Health, Washington District of Columbia USA
| | - Emanuele Cauda
- Center for Direct Reading and Sensor Technologies, Pittsburgh Mining Research Division National Institute for Occupational Safety and Health Pittsburgh Pennsylvania USA
| | - John Snawder
- Center for Direct Reading and Sensor Technologies, Health Effects Laboratory Division National Institute for Occupational Safety and Health Cincinnati Ohio USA
| |
Collapse
|
49
|
Pokrajac L, Abbas A, Chrzanowski W, Dias GM, Eggleton BJ, Maguire S, Maine E, Malloy T, Nathwani J, Nazar L, Sips A, Sone J, van den Berg A, Weiss PS, Mitra S. Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS NANO 2021; 15:18608-18623. [PMID: 34910476 DOI: 10.1021/acsnano.1c10919] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanotechnology has important roles to play in international efforts in sustainability. We discuss how current and future capabilities in nanotechnology align with and support the United Nations' Sustainable Development Goals. We argue that, as a field, we can accelerate the progress toward these goals both directly through technological solutions and through our special interdisciplinary skills in communication and tackling difficult challenges. We discuss the roles of targeting solutions, technology translation, the circular economy, and a number of examples from national efforts around the world in reaching these goals. We have formed a network of leading nanocenters to address these challenges globally and seek to recruit others to join us.
Collapse
Affiliation(s)
- Lisa Pokrajac
- Waterloo Institute for Nanotechnology, University of Waterloo, Mike & Ophelia Lazaridis Quantum Nano Centre, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Ali Abbas
- The University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Wojciech Chrzanowski
- The University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Goretty M Dias
- Waterloo Institute for Nanotechnology, University of Waterloo, Mike & Ophelia Lazaridis Quantum Nano Centre, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Benjamin J Eggleton
- The University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Steven Maguire
- The University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Elicia Maine
- Beedie School of Business, Simon Fraser University, 500 Granville Street, Vancouver, British Columbia V6C 1W6, Canada
| | - Timothy Malloy
- University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jatin Nathwani
- Waterloo Institute for Nanotechnology, University of Waterloo, Mike & Ophelia Lazaridis Quantum Nano Centre, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Linda Nazar
- Waterloo Institute for Nanotechnology, University of Waterloo, Mike & Ophelia Lazaridis Quantum Nano Centre, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Adrienne Sips
- National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Jun'ichi Sone
- Japan Science and Technology Agency, Kawaguchi Center Building, 4 Chome-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Albert van den Berg
- MESA+ Institute for Nanotechnology, University of Twente, Hallenweg 15, 7522 NH Enschede, The Netherlands
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry & Biochemistry, Department of Bioengineering, and Department of Materials Science & Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sushanta Mitra
- Waterloo Institute for Nanotechnology, University of Waterloo, Mike & Ophelia Lazaridis Quantum Nano Centre, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
50
|
Nejati S, Wang J, Heredia-Rivera U, Sedaghat S, Woodhouse I, Johnson JS, Verma M, Rahimi R. Small intestinal sampling capsule for inflammatory bowel disease type detection and management. LAB ON A CHIP 2021; 22:57-70. [PMID: 34826326 DOI: 10.1039/d1lc00451d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although serum and fecal biomarkers (e.g., lactoferrin, and calprotectin) have been used in management and distinction between inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), none are proven to be a differential diagnostic tool between Crohn's disease (CD) and ulcerative colitis (UC). The main challenge with laboratory-based biomarkers in the stool test is the inability to indicate the location of the disease/inflammation in the gastrointestinal (GI) tract due to the homogenous nature of the collected fecal sample. For the first time, we have designed and developed a battery-free smart capsule that will allow targeted sampling of inflammatory biomarkers inside the gut lumen of the small intestine. The capsule is designed to provide a simple and non-invasive complementary tool to fecal biomarker analysis to differentiate the type of IBD by pinpointing the site of inflammatory biomarkers secretion (e.g., small or large bowel) throughout the GI tract. The capsule takes advantage of the rapid change from an acidic environment in the stomach to higher pH levels in the small intestine to dissolve a pH-sensitive polymeric coating as a means to activate the sampling process of the capsule within the small intestine. A swelling polyacrylamide hydrogel is placed inside the capsule as a milieu to collect the sampled GI fluid while also providing the required mechanical actuation to close the capsule once the sampling is completed. The hydrogel component along with the collected GI fluid can be easily obtained from the capsule through the screw-cap design for further extraction and analysis. As a proof of concept, the capsule's performance in sampling and extraction of bovine serum albumin (BSA) and calprotectin - a key biomarker of inflammation - was assessed within the physiologically relevant ranges. The ratio of extracted biomarkers relative to that in the initial sampling environment remained constant (∼3%) and independent of the sampling matrix in both in vitro and ex vivo studies. It is believed that the demonstrated technology will provide immediate impact in more effective IBD type differential diagnostic and treatment strategies by providing a non-invasive assessment of inflammation biomarkers profile throughout the digestive tract.
Collapse
Affiliation(s)
- Sina Nejati
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangshan Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ulisses Heredia-Rivera
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sotoudeh Sedaghat
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Woodhouse
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
| | - Mohit Verma
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|