1
|
Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aggregation-induced emission-based aptasensors for the detection of various targets: Recent progress. Talanta 2025; 292:127995. [PMID: 40120514 DOI: 10.1016/j.talanta.2025.127995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The advancement of aptasensors utilizing aggregation-induced emission (AIE) has progressed remarkably in recent years, owing to various unique benefits provided by aggregation-induced emission luminogens (AIEgens) as a novel category of fluorescent substances and aptamers as exceptional recognition components. AIE refers to a photophysical phenomenon identified in certain luminogens that show minimal or absent emission in dilute solutions, yet display considerable emission when in aggregate or solid states. Fluorescent sensing is an effective technique for the detection of various targets; however, many traditional dyes frequently demonstrate an aggregation-caused quenching (ACQ) effect in solid form, which limits their applicability on a larger scale. In contrast, fluorescent probes that leverage AIE characteristics have garnered considerable interest, owing to their elevated fluorescence quantum yields and ease of fabrication. This review discusses the application of various AIEgens in the design of diverse sensitive and selective AIE-based aptasensors for monitoring various targets, with a particular focus on recent advances. The AIE-based aptasensors exploit the supreme affinity of the aptamers to their targets and the remarkable properties of AIEgen, including its photostability and high quantum yield, and the interaction between AIEgen and DNA. The objective is to acquaint researchers with the various categories of materials exhibiting AIE characteristics and their potential applications in the creation of different aptasensors, enabling them to introduce novel kinds of innovative AIEgens and AIE-integrated aptasensors.
Collapse
Affiliation(s)
- Masoomeh Esmaelpourfarkhani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Huang J, Xiong M, Ou X, Li H, Shang S, Huo Z, Hu L, Chen Q, Zhang R. Development of a light-initiated chemiluminescent assay platform for rapid detection of multiple inflammatory biomarkers. Talanta 2025; 295:128297. [PMID: 40349662 DOI: 10.1016/j.talanta.2025.128297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
The accurate and timely detection of inflammatory biomarkers, including C-reactive protein (CRP), interferon-γ (IFN-γ), and procalcitonin (PCT), is critical for the diagnosis and monitoring of various diseases. Traditional immunoassays often suffer from complex workflows, long incubation times, and limited multiplexing capabilities, which restrict their utility in high-throughput or point-of-care applications. To overcome these challenges, we developed a light-initiated chemiluminescent assay (LICA) platform, leveraging the synthesis and functionalization of photosensitive microspheres and luminescent microspheres encapsulated with β-diketonate-Eu(III) complexes for the rapid detection of CRP, IFN-γ, and PCT. The LICA platform exhibited excellent analytical performances, achieving detection limits of 6.2 ng mL-1 for CRP, 0.32 pg mL-1 for IFN-γ, and 0.012 ng mL-1 for PCT, alongside remarkable specificity and reproducibility. We further validated the LICA platform by analyzing clinical blood samples, and the results were in excellent agreement with those obtained using well-established clinical methods, with a correlation coefficient exceeding 0.9940. Mechanistic investigations revealed that singlet oxygen is the key reactive species driving luminescence, while efficient intramolecular energy transfer from the ligands to the Eu(III) metal center plays a critical role in the emission of luminescence. Our findings underscore the potential of the LICA platform as a transformative tool for the detection of multiple inflammatory biomarkers, particularly in scenarios requiring rapid, multiplexed detection of inflammatory biomarkers.
Collapse
Affiliation(s)
- Jinlian Huang
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, PR China
| | - Mengtian Xiong
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, PR China
| | - Xiaoqi Ou
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, PR China
| | - Haiqin Li
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, PR China
| | - Shibo Shang
- Department of Laboratory Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Zhiming Huo
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, PR China
| | - Liangshan Hu
- Department of Laboratory Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China.
| | - Qingsong Chen
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, PR China.
| | - Runkun Zhang
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, PR China.
| |
Collapse
|
3
|
Qiu W, Zhang J, Ma N, Kong J, Zhang X. FADH 2-mediated radical polymerization amplification for microRNA-21 detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123548. [PMID: 37871544 DOI: 10.1016/j.saa.2023.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
For early diagnosis of disease, ultrasensitive mircoRNA-21 detection has considerable potential. In this paper, an ultra-sensitive fluorescence detection method for microRNA was developed by atom transfer radical polymerization (ATRP). This ATRP reaction was first initiated by using flavin mononucleotide (FADH2). The DNA probe 1 modified with amino group was fixed on the magnetic nanoparticle Fe3O4, and microRNA-21 was added to form the probe 1-microRNA-21. Another carboxy-modified DNA 2 forms a sandwich structure with the bound microRNA-21. Two terminally modified DNA types are used as microRNA probes, using complementary base pairing to form a stable super-sandwich structure between the DNA probe and the microRNA. Under optimal conditions, microRNA was detected in PBS buffer with a detection limit of 0.19 fM. And even in 10% of human serum, microRNA-21 can be detected with a detection limit of 47.8 fM. Results show that this method has high selectivity, efficiency and stability, which broad application prospect in microRNA ultra-sensitive detection.
Collapse
Affiliation(s)
- Wenhao Qiu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
4
|
Moradi Y, Lee JSH, Armani AM. Detecting Disruption of HER2 Membrane Protein Organization in Cell Membranes with Nanoscale Precision. ACS Sens 2024; 9:52-61. [PMID: 37955934 PMCID: PMC10825864 DOI: 10.1021/acssensors.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
The spatiotemporal organization of proteins within the cell membrane can affect numerous biological functions, including cell signaling, communication, and transportation. Deviations from normal spatial arrangements have been observed in various diseases, and a better understanding of this process is a key stepping stone to advancing development of clinical interventions. However, given the nanometer length scales involved, detecting these subtle changes has primarily relied on complex super-resolution and single-molecule imaging methods. In this work, we demonstrate an alternative fluorescent imaging strategy for detecting protein organization based on a material that exhibits a unique photophysical behavior known as aggregation-induced emission (AIE). Organic AIE molecules have an increase in emission signal when they are in close proximity, and the molecular motion is restricted. This property simultaneously addresses the high background noise and low detection signal that limit conventional widefield fluorescent imaging. To demonstrate the potential of this approach, the fluorescent molecule sensor is conjugated to a human epidermal growth factor receptor 2 (HER2)-specific antibody and used to investigate the spatiotemporal behavior of HER2 clustering in the membrane of HER2-overexpressing breast cancer cells. Notably, the disruption of HER2 clusters in response to an FDA-approved monoclonal antibody therapeutic (Trastuzumab) is successfully detected using a simple widefield fluorescent microscope. While the sensor demonstrated here is optimized for sensing HER2 clustering, it is an easily adaptable platform. Moreover, given the compatibility with widefield imaging, the system has the potential to be used with high-throughput imaging techniques, accelerating investigations into membrane protein spatiotemporal organization.
Collapse
Affiliation(s)
- Yasaman Moradi
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
| | - Jerry S. H. Lee
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
- Keck
School of Medicine, University of Southern
California, Los Angeles, California 90089, United States
| | - Andrea M. Armani
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
| |
Collapse
|
5
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Gao L, Deng Y, Liu H, Solomon K, Zhang B, Cai H. Detection of Pb2+ in Tea Using Aptamer Labeled with AIEgen Nanospheres Based on MOFs Sensors. BIOSENSORS 2022; 12:bios12090745. [PMID: 36140130 PMCID: PMC9496512 DOI: 10.3390/bios12090745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
Tea is an important economic crop and health beverage in China. The presence of heavy metal ions in tea poses a significant threat to public health. Here, we prepared an aptamer biosensor labelled with AIEgen nanospheres to detect Pb2+ in tea. The dsDNA modified by amino and phosphoric acid was combined with the carboxylated AIEgen NPs to form AIEgen-DNA with a fluorescence group, which was then fixed to the surface of Zr-MOFs to quench the fluorescence of AIEgen NPs. At the same time, PEG was added to remove nonspecific adsorption. Then Pb2+ was added to cut the DNA sequences containing the cutting sites, and AIEgen NPs and part of the DNA sequences were separated from the Zr-MOFs surface to recover the fluorescence. By comparing the fluorescence changes before and after adding Pb2+, the detection limit of Pb2+ can reach 1.70 nM. The fluorescence sensor was applied to detect Pb2+ in tea, and the detection results showed that the tea purchased on the market did not contain the concentration of Pb2+ within the detection range. This study provides new insights into monitoring food and agriculture-related pollutants based on fluorescent biosensors.
Collapse
Affiliation(s)
- Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yixi Deng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Haolu Liu
- Nanjing Institute of Mechanization, Ministry of Agriculture, Nanjing 210014, China
| | - King Solomon
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Bianjiang Zhang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Correspondence: (B.Z.); (H.C.)
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
- Correspondence: (B.Z.); (H.C.)
| |
Collapse
|
7
|
Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: A review. Anal Chim Acta 2022; 1234:340326. [DOI: 10.1016/j.aca.2022.340326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
|
8
|
Chen P, Peng W, Qu R, He Y, Liu T, Huang J, Ying B. Fluorescence Aptasensor of Tuberculosis Interferon-γ in Clinical Samples Regulated by Steric Hindrance and Selective Identification. Anal Chem 2022; 94:9122-9129. [PMID: 35694824 DOI: 10.1021/acs.analchem.2c01530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although there are many interferon gamma (IFN-γ)-based tools for tuberculosis (TB) diagnosis, they are less sensitive and laborious. Here, we developed an IFN-γ aptasensor using pyrophosphate-cerium coordination polymeric nanoparticles (PPi-Ce CPNs) as signal reporters and a double-stranded DNA as a probe. The sensor was realized by sterically regulating the polymerization elongation of terminal deoxynucleotidyl transferase (TdT) and the selective recognition reaction of PPi-Ce CPNs. This method employs PPi-Ce CPNs to selectively identify Cu2+ and polyT-templated copper nanoparticles (Cu NPs), as well as a TdT-assisted amplification technique. Our data showed that under optimized experimental conditions, a limit of detection of as low as 0.25 fg/mL was achieved, with a linear range of 1-100 fg/mL, and a good target protein specificity. The detection sensitivity was an order of magnitude higher than that observed with Cu NPs when used as signal reporters. This IFN-γ quantification technique was further validated in clinical samples using 57 clinical TB patients (22 negative and 35 positive). Our findings agreed with those from enzyme-linked immunosorbent assay, GeneXpert MTB/rifampin assay, and polymerase chain reaction detection of TB-DNA and those from clinical imaging techniques. Therefore, our analytical system may provide an additional and more sensitive tool for the early diagnosis of TB.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wu Peng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Runlian Qu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaqin He
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Huang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Peptide-Conjugated Aggregation-Induced Emission Fluorogenic Probe for Glypican-3 Protein Detection and Hepatocellular Carcinoma Cells Imaging. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality on a global scale, and the development of accurate detection and imaging methods for HCC cells is urgently needed. Herein, by connecting peptide L5, which can specifically bind to the overexpressed Glypican-3 (GPC-3) protein of HCC cells with aggregation-induced emission (AIE) moiety ammonium cation-functionalized 9,10-distyrylanthracene (NDSA) via the “click” reaction, we synthesized a fluorescent probe NDSA-L5. In an aqueous solution, the probe shows weak emission, whereas, in the presence of the GPC-3 protein, bright fluorescence can be obtained since NDSA-L5 binds to the GPC-3 protein, leading to the restricted intramolecular movement of AIE-active NDSA-L5. The imaging and flow cytometry experiments demonstrate that the NDSA-L5 probe can rapidly accumulate in the subcutaneous HCC cells and liver tumor tissue and shows a potential application in early detection and surgical navigation for HCC cancer.
Collapse
|
10
|
Zhou Y, Liu J, Dong H, Liu Z, Wang L, Li Q, Ren J, Zhang Y, Xu M. Target-induced silver nanocluster generation for highly sensitive electrochemical aptasensor towards cell-secreted interferon-γ. Biosens Bioelectron 2022; 203:114042. [DOI: 10.1016/j.bios.2022.114042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
|
11
|
Yerrapragada R M, Mampallil D. Interferon-γ detection in point of care diagnostics: Short review. Talanta 2022; 245:123428. [PMID: 35427946 DOI: 10.1016/j.talanta.2022.123428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
Interferon (IFN)-γ is a cytokine secreted by immune cells. The elevated levels of IFN-γ are an early indicator of multiple diseases such as tuberculosis and autoimmune diseases. This short review focuses on different sensing methods based on optical, electrochemical, and mechanical principles. We explain how specific biorecognition molecules such as antibodies and aptamers are employed in the sensing methods. We also compare different surface functionalization methods and their details. Although the review gives an overview of only IFN-γ sensing, the same strategies can be applied to sensing other analytes with appropriate modifications.
Collapse
Affiliation(s)
- Manjoosha Yerrapragada R
- Indian Institute of Science Education and Research Tirupati, Mangalam P O, Tirupati, 517507, India.
| | - Dileep Mampallil
- Indian Institute of Science Education and Research Tirupati, Mangalam P O, Tirupati, 517507, India.
| |
Collapse
|
12
|
Liu X, Wang T, Wu Y, Tan Y, Jiang T, Li K, Lou B, Chen L, Liu Y, Liu Z. Aptamer based probes for living cell intracellular molecules detection. Biosens Bioelectron 2022; 208:114231. [PMID: 35390719 DOI: 10.1016/j.bios.2022.114231] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022]
Abstract
Biosensors have been employed for monitoring and imaging biological events and molecules. Sensitive detection of different biomolecules in vivo can reflect the changes of physiological conditions in real-time, which is of great significance for the diagnosis and treatment of diseases. The detection of intracellular molecules concentration change can indicate the occurrence and development of disease. But the analysis process of the existing detection methods, such as Western blot detection of intracellular protein, polymerase chain reaction (PCR) technique quantitative analysis of intracellular RNA and DNA, usually need to extract the cell lysis which is complex and time-consuming. Fluorescence bioimaging enables in situ monitoring of intracellular molecules in living cells. By combining the specificity of aptamer for intracellular molecules binding, and biocompatibility of fluorescent materials and nanomaterials, biosensors with different nanostructures have been developed to enter into living cells for analysis. This review summarizes the fluorescence detection methods based on aptamer for intracellular molecules detection. The principles, limit of detection, advantages, and disadvantages of different platforms for intracellular molecular fluorescent response are summarized and reviewed. Finally, the current challenges and future developments were discussed and proposed.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
13
|
Kim J, Noh S, Park JA, Park SC, Park SJ, Lee JH, Ahn JH, Lee T. Recent Advances in Aptasensor for Cytokine Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:8491. [PMID: 34960590 PMCID: PMC8705356 DOI: 10.3390/s21248491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Cytokines are proteins secreted by immune cells. They promote cell signal transduction and are involved in cell replication, death, and recovery. Cytokines are immune modulators, but their excessive secretion causes uncontrolled inflammation that attacks normal cells. Considering the properties of cytokines, monitoring the secretion of cytokines in vivo is of great value for medical and biological research. In this review, we offer a report on recent studies for cytokine detection, especially studies on aptasensors using aptamers. Aptamers are single strand nucleic acids that form a stable three-dimensional structure and have been receiving attention due to various characteristics such as simple production methods, low molecular weight, and ease of modification while performing a physiological role similar to antibodies.
Collapse
Affiliation(s)
- Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Seong Jun Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Korea;
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| |
Collapse
|
14
|
|
15
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 398] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
16
|
Yang J, Xiao X, Xia L, Li G, Shui L. Microfluidic Magnetic Analyte Delivery Technique for Separation, Enrichment, and Fluorescence Detection of Ultratrace Biomarkers. Anal Chem 2021; 93:8273-8280. [PMID: 34061492 DOI: 10.1021/acs.analchem.1c01130] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A microfluidic magnetic analyte delivery (μMAD) technique was developed to realize sample preparation and ultrasensitive biomarker detection. A simply designed microfluidic device was employed to carry out this technique, including a poly(dimethylsiloxane)-glass hybrid microchip having four straight rectangular channels and a permanent magnet. In the μMAD process, functionalized magnetic beads (MBs) were used to recognize and isolate analytes from a complex sample matrix, deliver analytes into tiny microchannels, and preconcentrate analytes in the magnetic trapping/detection region for in situ fluorescence detection. In the feasibility study and sensitivity optimization, horseradish peroxidase-labeled MBs were used, and critical parameters for the signal amplification performance of μMAD were carefully evaluated. At optimized conditions, a sensitivity improvement of at least 2 orders of magnitude was achieved. As a proof of concept, μMAD was combined with the enzyme-linked immunosorbent assay (ELISA), while carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), and interleukin 6 (IL-6) were selected as model biomarkers. The limits of detection (LODs) of μMAD-ELISA were as low as 0.29 pg/mL for CEA, 0.047 pg/mL for PSA, and 0.021 pg/mL for IL-6, which corresponded to an over 200-fold reduction compared to their commercial ELISA results. Meanwhile, μMAD-ELISA revealed high selectivity and reproducibility. In clinical sample analysis, good accuracy was acquired for human serum analysis relative to commercial ELISA kits, and satisfied recoveries of 85.1-102% with RSDs of 1.7-9.8% for IL-6 and 84.7-113% with RSDs of 3.2-8.3% for interferon-γ were obtained. This ultrasensitive and easy operation technique provides a valuable approach for trace-level biomarker detection for practical applications.
Collapse
Affiliation(s)
- Jiani Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingling Shui
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
17
|
Dou Y, Zhu Q, Du K. Recent Advances in Two-Photon AIEgens and Their Application in Biological Systems. Chembiochem 2021; 22:1871-1883. [PMID: 33393721 DOI: 10.1002/cbic.202000709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Two-photon fluorescence imaging technology has the advantages of high light stability, little light damage, and high spatiotemporal resolution, which make it a powerful biological analysis method. However, due to the high concentration or aggregation state of traditional organic light-emitting molecules, the fluorescence intensity is easily reduced or disappears completely, and is not conducive to optimal application. The concept of aggregation-induced emission (AIE) provides a solution to the problem of aggregation-induced luminescence quenching (ACQ), and realizes the high fluorescence quantum yield of luminescent molecules in the aggregation state. In addition, two-photon absorption properties can readily be improved just by increasing the loading content of AIE fluorogen (AIEgen). Therefore, the design and preparation of two-photon fluorescence probes based on AIEgen to achieve high-efficiency fluorescence imaging in vitro/in vivo has become a major research hotspot. This review aims to summarize representative two-photon AIEgens based on triphenylamine, tetraphenylethene, quinoline, naphthalene and other new structures from the past five years, and discuss their great potential in bioimaging applications.
Collapse
Affiliation(s)
- Yandong Dou
- Collaborative Innovation Center, Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qing Zhu
- Collaborative Innovation Center, Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| |
Collapse
|
18
|
|
19
|
Jung MJ, Kim SJ, Lee MH. π-Extended Tetraphenylethylene Containing a Dicyanovinyl Group as an Ideal Fluorescence Turn-On and Naked-Eye Color Change Probe for Hydrazine Detection. ACS OMEGA 2020; 5:28369-28374. [PMID: 33163820 PMCID: PMC7643319 DOI: 10.1021/acsomega.0c04370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 05/15/2023]
Abstract
A π-extended tetraphenylethylene derivative 1 was developed as a fluorescent "turn-on" and "naked-eye" color change probe for hydrazine detection. Probe 1 was composed of the representative AIE luminogen (AIEgen), tetraphenylethylene, and a dicyanovinyl group was adopted for hydrazine recognition. Upon exposure of hydrazine, probe 1 immediately gave a significant aggregation-induced emission around 575 nm and excellent photostability. A naked-eye color change was also observed from red to yellow. Moreover, probe 1 was simply coated with a glass-backed silica gel-coated thin-layer chromatography plate, showing rapid and on-site detection of hydrazine vapor.
Collapse
|
20
|
Wang X, Chen X, Song L, Zhou R, Luan S. An enzyme-responsive and photoactivatable carbon-monoxide releasing molecule for bacterial infection theranostics. J Mater Chem B 2020; 8:9325-9334. [PMID: 32968746 DOI: 10.1039/d0tb01761b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infections caused by pathogenic bacteria, especially the drug-resistant bacteria, are posing a devastating threat to public health, which underscores the urgent needs for advanced strategies to effectively prevent and treat these intractable issues. Here we report a feasible and effective theranostic platform based on an enzyme-sensitive and photoactivatable carbon monoxide releasing molecule (CORM-Ac) for the successive detection and elimination of bacterial infection. The extracellular bacterial lipase can trigger the excited state intramolecular proton transfer (ESIPT) via elimination of the ester group in CORM-Ac, thus providing a fluorescence switch for an early warning of infection. Subsequently, the potent bactericidal therapy against the model bacterial strains, Staphylococcus aureus (S. aureus) and notorious methicillin-resistant Staphylococcus aureus (MRSA), was readily realized via photoinduced release of CO. In addition, the CORM-Ac and CORM showed good biocompatibility within a wide range of concentrations. The results of an infected animal wound test also demonstrated that the CORM-Ac-loaded gauze was effective in indicating the wound infection and accelerating the wound healing via the photoinduced CO release. The simplicity, functional integration, good biocompatibility and broad adaptability make CORM-Ac very attractive for bacterial theranostic applications.
Collapse
Affiliation(s)
- Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xin Chen
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China and Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Rongtao Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
21
|
Du YX, Ye L, Song ZJ, Lv H, Liu Q, Li SG, Liu SS, Hong J, Gao Y, Schneider ME, Du WD. Development of a dendrimer PAMAM‑based gold biochip for rapid and sensitive detection of endogenous IFN‑γ and anti‑IFN‑γ IgG in patients with hemophagocytic lymphohistiocytosis. Mol Med Rep 2020; 22:5369-5377. [PMID: 33173980 PMCID: PMC7647011 DOI: 10.3892/mmr.2020.11605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/11/2020] [Indexed: 11/05/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare but severe disease characterized by immune hyperactivation and cytokine storm. Given the high mortality rate of HLH, there is a need for more effective diagnostic tools and treatments. The present study developed a dendrimer‑based protein biochip for rapid, sensitive and simultaneous detection of serum interferon (IFN)‑γ and endogenous anti‑IFN‑γ antibody (Ab) in patients with HLH. A gold biochip was modified with 1, 4‑phenylene diisothiocyanate (PDITC), polyamidoamine (PAMAM) or PDITC‑activated PAMAM. The optimal immobilization concentration for Ab capture and the reaction concentration for detecting Ab on the PDITC‑activated PAMAM‑modified biochip were 6.25 and 3.12 µg/ml, respectively; the limit of detection of IFN‑γ protein was 50 pg/ml. The efficiency of the protein‑probed biochip in detecting IFN‑γ and anti‑IFN‑γ Ab in serum samples from 77 patients with HLH was evaluated; the positive rates for IFN‑γ and anti‑IFN‑γ IgG Ab were 63.6% (49/77) and 61.0% (47/77), respectively. The present results demonstrated that the PDITC‑activated PAMAM‑modified biochip might be a sensitive tool for the specific detection of IFN‑γ and anti‑IFN‑γ Ab in serum, and might have clinical applicability for the diagnosis of HLH.
Collapse
Affiliation(s)
- Yi-Xin Du
- Division of Experimental Anesthesiology, University Hospital Ulm, D‑89081 Ulm, Germany
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zi-Jian Song
- Department of Orthopaedics, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Hui Lv
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qian Liu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Song-Guo Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sheng-Sheng Liu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jian Hong
- Department of Haematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yi Gao
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Marion E Schneider
- Division of Experimental Anesthesiology, University Hospital Ulm, D‑89081 Ulm, Germany
| | - Wei-Dong Du
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
22
|
Saberi Z, Rezaei B, Rezaei P, Ensafi AA. Design a fluorometric aptasensor based on CoOOH nanosheets and carbon dots for simultaneous detection of lysozyme and adenosine triphosphate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118197. [PMID: 32146425 DOI: 10.1016/j.saa.2020.118197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Simultaneous detection of biomarkers and biomolecules with great analytical performance still is challenging. A simple fluorometric dual-functional aptasensor was designed to detect Lysozyme (LYS) and adenosine triphosphate (ATP) as models of a protein and a small molecule simultaneously. The sensing principle of the aptasensor is based on the interactions between cobalt oxyhydroxide CoOOH nanosheets as fluorescence quencher and carbon dots (CDs) as fluorophores. The aptamer labeled with CDs was able to assemble on CoOOH nanosheets and consequently, the fluorescence signal was quenched. With addition target analytes to the system, the aptamers folded around of targets with a strong and specific affinity. Therefore, the labeled aptamer with CDs was detached from CoOOH nanosheets and the fluorescence signal was restored. The fluorescence spectral overlap of these two CDs is the main limitation for the simultaneous analysis. The least squared support vector machine (LS-SVM) was applied to resolve this problem. Under optimal conditions, when LS-SVR was used, detection limits were found 4.0 and 1.8 nmol L-1 for ATP and LYS. The parallel biosensor is capable of monitoring ATP and LYS levels in the biological samples with satisfactory results.
Collapse
Affiliation(s)
- Zeinab Saberi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Parisa Rezaei
- Department of Medical Laboratory Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
23
|
|
24
|
Feng A, Jiang F, Huang G, Liu P. Synthesis of the cationic fluorescent probes for the detection of anionic surfactants by electrostatic self-assembly. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117446. [PMID: 31400744 DOI: 10.1016/j.saa.2019.117446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/10/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Anionic surfactants were widespread used in car cleaning agents, household detergents, agricultural and industrial processes, and considered as a major source of environmental pollutant. Therefore, it is necessary to develop a fast, simple, highly selective and sensitive probe for the detection of anionic surfactants. Here, we synthesized two aggregation induced emission (AIE)-active molecules 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis (1-(4-bromobenzyl)pyridin-1-ium) bromide (TPE-Br) and 4,4',4″,4‴-(ethene-1,1,2,2-trayltetrakis(benzene-4,1-diyl))tetrakis(1-methylpyridin-1-ium)iodide (TPE-I), which were then applied as fluorescence probes for detecting sodium dodecyl sulfate (SDS) with high selectivity and sensitivity. In the presence of SDS, a multi-fold fluorescence emission intensity enhancement was observed in both two probes (TPE-Br and TPE-I) due to the electrostatic self-assembly of AIE molecular. The limits of detection are 71.5 and 120 nM for TPE-Br and TPE-I, respectively. This study may provide a new strategy for environmental monitoring by AIE-based fluorescent probe.
Collapse
Affiliation(s)
- Aiqing Feng
- Department of Life Science, Luoyang Normal University, Luoyang 471934, PR China
| | - Fangru Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China
| | - Guiyuan Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China
| | - Peilian Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
25
|
Cao C, Jin R, Wei H, Liu Z, Ni S, Liu GJ, Young HA, Chen X, Liu G. Adaptive in vivo device for theranostics of inflammation: Real-time monitoring of interferon-γ and aspirin. Acta Biomater 2020; 101:372-383. [PMID: 31622780 DOI: 10.1016/j.actbio.2019.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/20/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Cytokines mediate and control immune and inflammatory responses. Complex interactions exist among cytokines, inflammation, and the innate and adaptive immune responses in maintaining homeostasis, health, and well-being. On-demand, local delivery of anti-inflammatory drugs to target tissues provides an approach for more effective drug dosing while reducing the adverse effects of systemic drug delivery. This work demonstrates a proof-of-concept theranostic approach for inflammation based on analyte-kissing induced signaling, whereby a drug (in this report, aspirin) can be released upon the detection of a target level of a proinflammatory cytokine (i.e., interferon-γ (IFN-γ)) in real time. The structure-switching aptamer-based biosensor described here is capable of quantitatively and dynamically detecting IFN-γ both in vitro and in vivo with a sensitivity of 10 pg mL-1. Moreover, the released aspirin triggered by the immunoregulatory cytokine IFN-γ is able to inhibit inflammation in a rat model, and the release of aspirin can be quantitatively controlled. The data reported here provide a new and promising strategy for the in vivo detection of proinflammatory cytokines and the subsequent therapeutic delivery of anti-inflammatory molecules. This universal theranostic platform is expected to have great potential for patient-specific personalized medicine. STATEMENT OF SIGNIFICANCE: We developed an adaptive in vivo sensing device whereby a drug, aspirin, can be released upon the detection of a proinflammatory cytokine, interferon-γ (IFN-γ), in real time with a sensitivity of 10 pg mL-1. Moreover, the aspirin triggered by IFN-γ depressed inflammation in the rat model and was delivered indirectly through blood and cerebrospinal fluid or directly to the inflammation tissue or organ without adverse gastrointestinal effects observed in the liver and kidney. We envision that, for the first time, patients with chronic inflammatory disease can receive the right intervention and treatment at the right time. Additionally, this technology may empower patients to monitor their personalized health and disease management program, allowing real-time diagnostics, disease monitoring, and precise and effective treatments.
Collapse
|
26
|
Fang B, Chu M, Tan L, Li P, Hou Y, Shi Y, Zhao YS, Yin M. Near-Infrared Microlasers from Self-Assembled Spiropyrane-Based Microsphercial Caps. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38226-38231. [PMID: 31529963 DOI: 10.1021/acsami.9b10189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Near-infrared (NIR) microlasers play a significant role in telecommunication and biomedical tissue imaging. However, it remains a big challenge to realize NIR microlasers because of the difficulty in preparing highly efficient NIR luminescent materials and perfect optical resonators. Here, we propose a molecular design strategy to creatively realize the first spiropyrane (SP)-based NIR microlasers with low threshold from self-assembled microsphercial caps. The tetraphenylethylene (TPE) moiety with a highly twisted conformation provides a large free volume to facilitate the photoisomerization process of SP and enhance NIR emission of merocyanine in the solid state. Moreover, self-assembled TPE-SP microsphercial caps simultaneously serve as gain media and resonant microcavities, providing optical gain and feedback for NIR laser oscillations with a low threshold (3.68 μJ/cm2). These results are beneficial for deeply understanding the SP microstructures-lasing emission characteristic relationship and provide a useful guideline for the rational molecular design of NIR microlasers with special functionalities.
Collapse
Affiliation(s)
- Bing Fang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100290 , China
| | - Manman Chu
- Key Laboratory of Photochemistry Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Lina Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100290 , China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100290 , China
| | - Yue Hou
- Key Laboratory of Photochemistry Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yan Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100290 , China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100290 , China
| |
Collapse
|
27
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
28
|
|
29
|
Guo M, Song H, Li K, Ma M, Liu Y, Fu Q, He Z. A new approach to developing diagnostics and therapeutics: Aggregation-induced emission-based fluorescence turn-on. Med Res Rev 2019; 40:27-53. [PMID: 31070260 DOI: 10.1002/med.21595] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/21/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Fluorescence imaging is a promising visualization tool and possesses the advantages of in situ response and facile operation; thus, it is widely exploited for bioassays. However, traditional fluorophores suffer from concentration limits because they are always quenched when they aggregate, which impedes applications, especially for trace analysis and real-time monitoring. Recently, novel molecules with aggregation-induced emission (AIE) characteristics were developed to solve the problems encountered when using traditional organic dyes, because these new molecules exhibit weak or even no fluorescence when they are in free movement states but emit intensely upon the restriction of intramolecular motions. Inspired by the excellent performances of AIE molecules, a substantial number of AIE-based probes have been designed, synthesized, and applied to various fields to fulfill diverse detection tasks. According to numerous experiments, AIE probes are more practical than traditional fluorescent probes, especially when used in bioassays. To bridge bioimaging and materials engineering, this review provides a comprehensive understanding of the development of AIE bioprobes. It begins with a summary of mechanisms of the AIE phenomenon. Then, the strategies to realize accurate detection using AIE probes are discussed. In addition, typical examples of AIE-active materials applied in diagnosis, treatment, and nanocarrier tracking are presented. In addition, some challenges are put forward to inspire more ideas in the promising field of AIE-active materials.
Collapse
Affiliation(s)
- Meichen Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hang Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Minchao Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
30
|
Ma K, Liu GJ, Yan L, Wen S, Xu B, Tian W, Goldys EM, Liu G. AIEgen based poly(L-lactic-co-glycolic acid) magnetic nanoparticles to localize cytokine VEGF for early cancer diagnosis and photothermal therapy. Nanomedicine (Lond) 2019. [DOI: 10.2217/nnm-2018-0467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: We demonstrated a novel theranostic system for simultaneous photothermal therapy and magnetic resonance imaging applicable to early diagnostics and treatment of cancer cells. Materials & methods: Oleic acid-Fe3O4 and triphenylamine-divinylanthracene-dicyano were loaded to the poly(L-lactic-co-glycolic acid) nanoparticles (NPs) on which anti-VEGF antibodies were modified to form anti-VEGF/OA-Fe3O4/triphenylamine-divinylanthracene-dicyano@poly(L-lactic-co-glycolic acid) NPs. The 1H nuclear magnetic resonance (NMR), mass spectra, fluorescence, UV absorption, dynamic light scattering, transmission electron microscope and inductively coupled plasma mass spectrometry tests were used to characterize the NPs, and the bioimaging was illustrated by confocal laser scanning microscope (CLSM) and in vivo MRI animal experiment. Results: This system was capable to recognize the overexpressed VEGF-A as low as 68 pg/ml in different cell lines with good selectivity and photothermal therapy effect. Conclusion: These ultrasensitive theranostic NPs were able to identify tumor cells by fluorescence imaging and MRI, and destroy tumors under near infrared illumination.
Collapse
Affiliation(s)
- Ke Ma
- International Research Centre for Nano Handling & Manufacturing of China (CNM), Changchun University of Science & Technology, Changchun 130022, PR China
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, NSW 2052, Australia
- State Key Laboratory of Supramolecular Structure & Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science & Technology Organisation, NSW 2234, Australia
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine & Health, Brain & Mind Centre, University of Sydney, NSW 2050, Australia
| | - Lulin Yan
- State Key Laboratory of Supramolecular Structure & Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shihui Wen
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure & Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure & Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, NSW 2052, Australia
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, NSW 2052, Australia
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
- Joint Research Center for Intelligent Biosensor Technology & Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
31
|
Xie S, Wong AYH, Chen S, Tang BZ. Fluorogenic Detection and Characterization of Proteins by Aggregation‐Induced Emission Methods. Chemistry 2019; 25:5824-5847. [DOI: 10.1002/chem.201805297] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Sheng Xie
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Alex Y. H. Wong
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science, HKUST-Shenzhen Research InstituteThe Hong Kong University of Science and Technology, Kowloon Hong Kong S.A.R. China
- NSFC Center for Luminescence from Molecular AggregatesSCUT-HKUST Joint Research InstituteState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
32
|
Yang J, Li BQ, Li R, Mei X. Quantum 3D thermal imaging at the micro-nanoscale. NANOSCALE 2019; 11:2249-2263. [PMID: 30656329 DOI: 10.1039/c8nr09096c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Real-time and accurate measurement of three-dimensional (3D) temperature field gradient maps of cells and tissues would provide an effective experimental method for analyzing the coupled correlation between metabolism and heat, as well as exploring the thermodynamic properties of nanoparticles under complex environments. In this work, a new principle of quantum 3D thermal imaging is proposed. The photoluminescence principle of quantum dots is expounded and CdTe QDs are prepared by aqueous phase synthesis. Fluorescence spectral characteristics of QDs at different temperatures are studied. The optimized algorithm of the optical spot double helix point spread function is proposed to improve the imaging, where optimized light energy increased by 27.36%. The design scheme of a quantum 3D thermal imaging system is presented. The measurement range is (-8 mm, +8 mm). The temperature is calculated according to the temperature-heat curve of quantum dots. The double helix point spread function has converted the defocus distance of QDs into the rotation angle of the double optical spot, thereby determining its position. The experimental results reveal that real-time 3D tracking and temperature measurements of quantum dots at the micro-nanoscale are achieved. Overall, the proposed nano-scale 3D quantum thermal imaging system with high-resolution may provide a new research direction and exploration of many frontier fields.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | | | | | | |
Collapse
|
33
|
Wang X, Xu M, Huang K, Lou X, Xia F. AIEgens/Nucleic Acid Nanostructures for Bioanalytical Applications. Chem Asian J 2019; 14:689-699. [PMID: 30489015 DOI: 10.1002/asia.201801595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/29/2018] [Indexed: 12/27/2022]
Abstract
DNA occupies significant roles in life processes, which include encoding the sequences of proteins and accurately transferring genetic information from generation to generation. Recent discoveries have demonstrated that a variety of biological functions are correlated with DNA's conformational transitions. The non-B form has attained great attention among the diverse forms of DNA over the past several years. The main reason for this is that a large number of studies have shown that the non-B form of DNA is associated with gross deletions, inversions, duplications, translocations as well as simple repeating sequences, which therefore causes human diseases. Consequently, the conformational transition of DNA between the B-form and the non-B form is important for biology. Conventional fluorescence probes based on the conformational transitions of DNA usually need a fluorophore and a quencher group, which suffers from the complex design of the structure and tedious synthetic procedures. Moreover, conventional fluorescence probes are subject to the aggregation-caused quenching (ACQ) effect, which limits their application toward imaging and analyte detection. Fluorogens exhibiting aggregation-induced emission (AIE) have attracted tremendous attention over the past decade. By taking advantage of this unique behavior, plenty of fluorescent switch-on probes without the incorporation of fluorescent quenchers/fluorophore pairs have been widely developed as biosensors for imaging a variety of analytes. Herein, the recent progress in bioanalytical applications on the basis of aggregation-induced emission luminogens (AIEgens)/nucleic acid nanostructures are presented and discussed.
Collapse
Affiliation(s)
- Xudong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Xu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
34
|
Luu T, Liu M, Chen Y, Hushiarian R, Cass A, Tang BZ, Hong Y. Aptamer-Based Biosensing with a Cationic AIEgen. Aust J Chem 2019. [DOI: 10.1071/ch19238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fabrication of low-cost biosensing platforms with high selectivity and sensitivity is important for constructing portable devices for personal health monitoring. Herein, we report a simple biosensing strategy based on the combination of a cationic AIEgen (aggregation-induced emission fluorogen), TPE-2+, with an aptamer for specific protein detection. The target protein can displace the dye molecules on the dye–aptamer complex, resulting in changes in the fluorescence signal. Selectivity towards different targets can be achieved by simply changing the aptamer sequence. The working mechanism is also investigated.
Collapse
|
35
|
Hiremath SD, Gawas RU, Mascarenhas SC, Ganguly A, Banerjee M, Chatterjee A. A water-soluble AIE-gen for organic-solvent-free detection and wash-free imaging of Al3+ ions and subsequent sensing of F− ions and DNA tracking. NEW J CHEM 2019. [DOI: 10.1039/c9nj00418a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A water-soluble TPE-based AIEgen (TPE-diBuS) was developed for organic-solvent-free detection of Al3+ ions and its wash-free cell imaging. The TPE-diBuS-Al ensemble was used for the detection of F− ions and DNA tracking.
Collapse
Affiliation(s)
| | - Ram U. Gawas
- Department of Chemistry
- BITS
- Pilani – K. K. Birla Goa Campus
- Zuarinagar
- India
| | | | - Anasuya Ganguly
- Department of Biological Sciences
- BITS
- Pilani – K. K. Birla Goa Campus
- Zuarinagar
- India
| | - Mainak Banerjee
- Department of Chemistry
- BITS
- Pilani – K. K. Birla Goa Campus
- Zuarinagar
- India
| | - Amrita Chatterjee
- Department of Chemistry
- BITS
- Pilani – K. K. Birla Goa Campus
- Zuarinagar
- India
| |
Collapse
|
36
|
Dou Y, Kenry K, Liu J, Zhang F, Cai C, Zhu Q. 2-Styrylquinoline-based two-photon AIEgens for dual monitoring of pH and viscosity in living cells. J Mater Chem B 2019; 7:7771-7775. [DOI: 10.1039/c9tb02036e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new class of aggregation-induced emission (AIE) fluorophores HAPHs with excellent two-photon properties is developed from styrylquinoline.
Collapse
Affiliation(s)
- Yandong Dou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Kenry Kenry
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Fangfang Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chunhui Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
37
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
38
|
Cao C, Jin R, Wei H, Yang W, Goldys EM, Hutchinson MR, Liu S, Chen X, Yang G, Liu G. Graphene Oxide Based Recyclable in Vivo Device for Amperometric Monitoring of Interferon-γ in Inflammatory Mice. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33078-33087. [PMID: 30199621 DOI: 10.1021/acsami.8b13518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cytokine sensing is challenging due to their typically low abundances in physiological conditions. Nanomaterial fabricated interfaces demonstrated unique advantages in ultrasensitive sensing. Here, we demonstrate an amperometric sensing device based on graphene oxide (GO) and structure-switching aptamers for long-term detection of cytokines in a living organism. The device incorporates a single layer of GO acting as a signal amplifier on glassy carbon electrodes. The hairpin aptamers specific to interferon-γ (IFN-γ), which were loaded with redox probes, are covalently attached to GO to serve as biorecognition moieties. IFN-γ was able to trigger the configuration change of aptamers while releasing the trapped redox probes to introduce the electrochemical signal. This in vivo device was capable of quantitatively and dynamically detecting IFN-γ down to 1.3 pg mL-1 secreted by immune cells in cell culture medium with no baseline drift even at a high concentration of other nonspecific proteins. The biocompatible devices were also implanted into subcutaneous tissue of enteritis mice, where they performed precise detection of IFN-γ over 48 h without using physical barriers or active drift correction algorithms. Moreover, the device could be reused even after multiple rounds of regeneration of the sensing interface.
Collapse
Affiliation(s)
- Chaomin Cao
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , P. R. China
| | - Ronghua Jin
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an , 710049 , P. R. China
| | - Hui Wei
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , P. R. China
| | - Wenchao Yang
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , P. R. China
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP) , The University of New South Wales , Sydney , New South Wales , 2052 , Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP) , The University of Adelaide , Adelaide , South Australia , 5000 , Australia
- Discipline of Physiology, Adelaide Medical School , University of Adelaide , Adelaide , South Australia , 5005 , Australia
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology , The Fourth Military Medical University , Xi'an , 710032 , P. R. China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an , 710049 , P. R. China
| | - Guangfu Yang
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , P. R. China
| | - Guozhen Liu
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , P. R. China
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP) , The University of New South Wales , Sydney , New South Wales , 2052 , Australia
| |
Collapse
|
39
|
Li X, Wang X, Zhang L, Gong J. High-Throughput Signal-On Photoelectrochemical Immunoassay of Lysozyme Based on Hole-Trapping Triggered by Disintegrating Bioconjugates of Dopamine-Grafted Silica Nanospheres. ACS Sens 2018; 3:1480-1488. [PMID: 29984996 DOI: 10.1021/acssensors.8b00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique split-type photoelectrochemical (PEC) immunoassay has been constructed for detection of low-abundance biocompounds (lysozyme, Lyz, used in this case) via a new trigger strategy by disintegrating bioconjugates of dopamine-grafted silica nanospheres (DA@SiO2NSs) for signal amplification. The preferred electron donor assembly of DA@SiO2NSs is first used as a molecular printboard for positioning anti-Lyz secondary antibody (Ab2) through an amide reaction. With specific immunoreactions in a high-binding microplate, a sandwich immunoassay, the DA@SiO2NSs-based bioconjugate is achieved. By initiating the disintegration of the bioconjugates via acid etching, numerous electron donors of DA are released, thus efficiently triggering hole-trapping with amplified signals obtained. The smart integration of ZnIn2S4-based heterojunctions as photoactive material, a split-type detection mode, and a new trigger strategy by disintegrating the DA@SiO2NSs-based bioconjugate offer an attractive high-throughput signal-on PEC immunoassay for detection of Lyz. Such an unusual PEC sensor exhibits an outstanding linear response to the concentration in the range between 0.002 and 500 ng mL-1, and the detection limit is as low as 0.6 ppt ( S/ N = 3). The as-fabricated assay is cost-effective and sensitive. It has been successfully used for measuring Lyz in real samples, which demonstrates great promise for practical applications.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xinlei Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|