1
|
Natarajamani GS, Kannan VP, Madanagurusamy S. Unveiling superior NH 3 sensing performance: ultrafast response and enhanced recovery kinetics in Ti 3C 2T x/ZnO nano-hybrid sensors with UV-induced Schottky junctions. NANOSCALE 2025; 17:12473-12490. [PMID: 40304589 DOI: 10.1039/d5nr00484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Achieving high sensitivity and rapid response/recovery times at ambient temperatures remains a significant challenge in gas sensing. Ti3C2Tx MXenes have gained attention for their gas-sensing potential due to their high conductivity and active surface functional groups, but challenges such as limited sensitivity and slow response/recovery persist. In this study, we present an ultrafast, reversible Ti3C2Tx/ZnO hybrid composite sensor for NH3 detection at room temperature. We evaluated the sensor's performance under both ambient and UV illumination conditions. Under ambient conditions, the Ti3C2Tx/ZnO sensor exhibited a 50-fold enhancement in sensitivity compared to pristine ZnO, with response and recovery times of 49 s and 39 s, respectively, at 10 ppm NH3. Under UV illumination, the optimized Ti3C2Tx/ZnO configuration achieved a sensor response of 88 at 50 ppm NH3, with ultrafast response and recovery times of 10 s and 13 s, respectively, at 10 ppm NH3, and a limit of detection (LOD) of 0.1 ppm. These improvements are attributed to charge perturbation at the sensor surface facilitated by Ti3C2Tx/ZnO interactions and the formation of a Schottky barrier at their interface, accelerating adsorption-desorption kinetics. The sensor also demonstrated excellent selectivity for NH3 and high long-term stability and repeatability, making it highly suitable for environmental monitoring, industrial safety, and medical diagnostics.
Collapse
Affiliation(s)
- Gowri Shonali Natarajamani
- Functional Nanomaterials & Devices Lab, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics Engineering, SASTRA Deemed to be University, Thanjavur, 613 401, India.
| | - Veera Prabu Kannan
- Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Sridharan Madanagurusamy
- Functional Nanomaterials & Devices Lab, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics Engineering, SASTRA Deemed to be University, Thanjavur, 613 401, India.
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed to be University, Thanjavur, 613 401, India
| |
Collapse
|
2
|
Xiong D, Luo M, He Q, Huang X, Cai S, Li S, Jia Z, Gao Z. Nb 2CT x/MoSe 2 composites for a highly sensitive NH 3 gas sensor at room temperature. Talanta 2025; 286:127446. [PMID: 39736204 DOI: 10.1016/j.talanta.2024.127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
The detection of ammonia (NH3)gas holds significant importance in both daily life and industrial production. In this study, the Nb2CTx/MoSe2 sensor was synthesized using a one-step hydrothermal method and applied for NH3 detection. The morphology and elemental composition of the composites were analyzed through a series of characterization techniques including XRD, TEM, SEM, and XPS, confirming the successful synthesis of Nb2CTx/MoSe2 composite with the optimal mass ratio. The sensing performance of the sensor for NH3 (0.1-100 ppm) was tested at room temperature (∼25 °C). The results showed that, compared to pure Nb2CTx, the sensor based on Nb2CTx/MoSe2 composite exhibited more stable baseline resistance, a 3.5-fold increase in response to 50 ppm NH3, and a reduction in response/recovery time by 56.4 s/32.1 s. Additionally, the sensor's response to NH3 (1 ppm, 50 ppm, 100 ppm) varied by less than 10 % over 90 days, demonstrating excellent stability. The sensing mechanism of NH3 by Nb2CTx/MoSe2 composite is attributed to the formation of a p-n heterojunction and surface charge transfer at the interface between p-type Nb2CTx and n-type MoSe2. Finally, the superior selectivity mechanism of the composite for NH3 was investigated using first-principles calculations. This work opens a new avenue for exploring the application potential of Nb2CTx MXene-based nanocomposites in NH3 detection.
Collapse
Affiliation(s)
- Deshou Xiong
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Manyu Luo
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Qing He
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Xingpeng Huang
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Sijin Cai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Zhenhong Jia
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| |
Collapse
|
3
|
Dutta T, Alam P, Mishra SK. MXenes and MXene-based composites for biomedical applications. J Mater Chem B 2025; 13:4279-4312. [PMID: 40079066 DOI: 10.1039/d4tb02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
MXenes, a novel class of two-dimensional materials, have recently emerged as promising candidates for biomedical applications due to their specific structural features and exceptional physicochemical and biological properties. These materials, characterized by unique structural features and superior conductivity, have applications in tissue engineering, cancer detection and therapy, sensing, imaging, drug delivery, wound treatment, antimicrobial therapy, and medical implantation. Additionally, MXene-based composites, incorporating polymers, metals, carbon nanomaterials, and metal oxides, offer enhanced electroactive and mechanical properties, making them highly suitable for engineering electroactive organs such as the heart, skeletal muscle, and nerves. However, several challenges, including biocompatibility, functional stability, and scalable synthesis methods, remain critical for advancing their clinical use. This review comprehensively overviews MXenes and MXene-based composites, their synthesis, properties, and broad biomedical applications. Furthermore, it highlights the latest progress, ongoing challenges, and future perspectives, aiming to inspire innovative approaches to harnessing these versatile materials for next-generation medical solutions.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. - 711103, India
| | - Parvej Alam
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels, Spain.
| | - Satyendra Kumar Mishra
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China.
| |
Collapse
|
4
|
Babar ZUD, Iannotti V, Rosati G, Zaheer A, Velotta R, Della Ventura B, Álvarez-Diduk R, Merkoçi A. MXenes in healthcare: synthesis, fundamentals and applications. Chem Soc Rev 2025; 54:3387-3440. [PMID: 39981873 DOI: 10.1039/d3cs01024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Since their discovery over a decade ago, MXenes have transformed the field of "materials for healthcare", stimulating growing interest in their healthcare-related applications. These developments have also driven significant advancements in MXenes' synthesis. This review systematically examines the synthesis of MXenes and their applications in sensing and biomedical fields, underscoring their pivotal role in addressing critical challenges in modern healthcare. We describe the experimental synthesis of MXenes by combining appropriate laboratory modules with the mechanistic principles underlying each synthesis step. In addition, we provide extensive details on the experimental parameters, critical considerations, and essential instructions for successful laboratory synthesis. Various healthcare applications including sensing, biomedical imaging, synergistic therapies, regenerative medicine, and wearable devices have been explored. We further highlight the emerging trends of MXenes, viz., their role as nanovehicles for drug delivery, vectors for gene therapy, and tools for immune profiling. By identifying the important parameters that define the utility of MXenes in biomedical applications, this review outlines strategies to regulate their biomedical profile, thereby serving as a valuable guide to design MXenes with application-specific properties. The final section integrates experimental research with theoretical studies to provide a comprehensive understanding of the field. It examines the role of emerging technologies, such as artificial intelligence (AI) and machine learning (ML), in accelerating material discovery, structure-property optimization, and automation. Complemented by detailed supplementary information on synthesis, stability, biocompatibility, environmental impact, and theoretical insights, this review offers a profound knowledge base for understanding this diverse family of 2D materials. Finally, we compared the potential of MXenes with that of other 2D materials to underscore the existing challenges and prioritize interdisciplinary collaboration. By synthesizing key studies from its discovery to current trends (especially from 2018 onward), this review provides a cohesive assessment of MXene synthesis with theoretical foundations and their prospects in the healthcare sector.
Collapse
Affiliation(s)
- Zaheer Ud Din Babar
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Scuola Superiore Meridionale (SSM), University of Naples Federico II, Largo S. Marcellino, 10, 80138, Italy
| | - Vincenzo Iannotti
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
- Institute for Superconductors, Oxides and other Innovative Materials and Devices of the National Research Council (CNR-SPIN), Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Ayesha Zaheer
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
| | - Raffaele Velotta
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
| | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
| | - Ruslan Álvarez-Diduk
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
5
|
Magnuson M, Eklund P, Polley C. Fermiology and Band Structure of Oxygen-Terminated Ti_{3}C_{2}T_{x} MXene. PHYSICAL REVIEW LETTERS 2025; 134:106201. [PMID: 40153641 DOI: 10.1103/physrevlett.134.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/12/2025] [Indexed: 03/30/2025]
Abstract
The class of two-dimensional carbides and nitrides known as MXenes exhibit remarkable electronic properties. Tailoring these properties, however, requires an in-depth understanding of the band structure and Fermi-surface topology. Surface oxidation of MXenes has previously hampered the characterization of their Fermi surface, which is crucial for understanding the topology and anisotropy in the electronic structure and, ultimately, for tailoring electronic properties. Here, we reveal the Fermi surface topology and band structure of purely oxygen-terminated Ti_{3}C_{2}T_{x} MXene achieved through rigorous thin film sample preparation and ultrahigh vacuum annealing. Polarized synchrotron radiation-based angle-resolved photoemission spectroscopy reveals electron pockets, bulk band gaps, and a Dirac-like feature in the anisotropic electronic band structure. This paves the way for a fundamental understanding of band engineering of electronic transport properties, providing insights of importance for energy storage devices, transparent conductors, and catalysis.
Collapse
Affiliation(s)
- Martin Magnuson
- Linköping University, Department of Physics, Chemistry and Biology (IFM), SE-581 83 Linköping, Sweden
| | - Per Eklund
- Linköping University, Department of Physics, Chemistry and Biology (IFM), SE-581 83 Linköping, Sweden
- Uppsala University, Inorganic Chemistry, Department of Chemistry - Ångström, Box 538, SE-751 21 Uppsala, Sweden
| | - Craig Polley
- MAX IV Laboratory, Lund University, Fotongatan 2, SE-22484 Lund, Sweden
| |
Collapse
|
6
|
Liu Y, Wang F, Mei Z, Shen Q, Liao K, Zhang S, Wang H, Ma S, Wang L. Advances in cellulose-based self-powered ammonia sensors. Carbohydr Polym 2025; 351:123074. [PMID: 39779004 DOI: 10.1016/j.carbpol.2024.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Ammonia sensors are widely used across applications in food monitoring, environmental surveillance, and medical research, where high safety standards are essential. Cellulose-based materials are particularly well-suited to meet these stringent requirements, with significant potential for innovation due to their biodegradability and biocompatibility. Of the various cellulose-based ammonia sensors available, self-powered sensors, especially those based on triboelectric nanogenerators (TENGs), stand out for their unique advantages, including the absence of an external power supply, environmental sustainability, and ease of integration. This review offers a detailed overview of the integration of cellulose-based materials with ammonia-sensitive components, highlighting their ease of processing and modification. It further classifies and compares cellulose-based ammonia sensors based on their sensing mechanisms, emphasizing TENG-based sensors specifically. The review concludes with a summary of current applications and explores optimization strategies. Finally, it discusses future opportunities and challenges for cellulose-based self-powered ammonia sensors and provides valuable insights into ongoing innovation and potential.
Collapse
Affiliation(s)
- Yuefan Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhixuan Mei
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Qianru Shen
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Kaixin Liao
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shenzhuo Zhang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Yan F, Wang Z, Cao Y, Cao H, Shi Z, Tang Y, Zhu Y, Zhu Z. Multifunctional Fiber Robotics with Low Mechanical Hysteresis for Magnetic Navigation and Inhaled Gas Sensing. ACS Sens 2025; 10:1206-1216. [PMID: 39918309 DOI: 10.1021/acssensors.4c03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Recently, increasing research attention has been directed toward detecting the distribution of hazardous gases in the respiratory system for potential diagnosis and treatment of lung injury. Among various technologies, magnetic fiber robots exhibit great potential for minimally invasive surgery and in situ disease diagnosis. However, integrating magnetic fibers with functionalized sensitive materials remains challenging while preserving the miniaturized fibers' mechanical properties. Herein, we report Ti3C2Tx/TPU/NdFeB fibers prepared by facile wet spinning, spray coating, and magnetization, obtaining fibers with decent strength (4.34 MPa) and low hysteresis while maintaining mechanical robustness and magnetoelectric properties. Such fiber robotics could be magnetically actuated for complex movement, while the surface-coated MXene endowed them with the specific response of 5.2% to 40 ppm of triethylamine gas. Fiber robotics realized magnetically driven omnidirectional steering and navigation for propulsion in tubular environments by combination with nitinol guide wires. Consequently, based on magnetic navigation and the chemiresistive gas response, the proposed fiber robotics could locate the position with the highest level of the triethylamine gas inside a bronchial model and provide information on its distribution. This provides a proof-of-concept demonstration for inhaled hazardous gas detection and minimally invasive robotic surgery by multifunctional fiber robotics.
Collapse
Affiliation(s)
- Feng Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuzhong Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Huina Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhuo Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yunyao Tang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuanshou Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
8
|
Li J, Li Y, Zeng W, Bai B, Ren S. Regulating surface terminals and interlayer structure of Ti 3C 2T x for superior NH 3 sensing. Talanta 2025; 283:127107. [PMID: 39481348 DOI: 10.1016/j.talanta.2024.127107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
MXene materials have exhibited potential in electrochemistry, particularly in gas sensing, due to their excellent conductivity, large specific surface area of layered materials, and unique functional groups. However, the gas sensing performance of intrinsic 2D MXene materials is often limited by their fluorine-containing terminals and interfacial structure. In this study, based on intrinsic Ti3C2Tx, we employed alkali treatment and annealing to prepare oxygen-rich Ti3C2(OH)x/Ti3C2Ox with expanded interlayer spacing, achieving enhanced gas sensing performance for NH3. The surface chemistry and structure of the sensing materials have been optimized through the synergistic regulation of MXene's unique surface terminations and the intercalation effect of layered materials. Compared to intrinsic Ti3C2Tx, the interlayer spacing of oxygen-rich Ti3C2(OH)x/Ti3C2Ox increased from 9.1 Å to 12.1 Å. The surface terminations of oxygen-rich Ti3C2(OH)x/Ti3C2Ox have been defluorinated and oxygenated. The maximum response value of oxygen-rich Ti3C2(OH)x/Ti3C2Ox to NH3 was 35.66, approximately twice that of the original Ti3C2Tx at an NH3 concentration of 200 ppm. DFT (Density functional theory) calculations and DRIFT (In situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy) tests explained the interaction between the surface terminals and NH3, indicating good selectivity and sensitivity of oxygen-rich Ti3C2(OH)x/Ti3C2Ox to NH3. The results demonstrated that the synergistic effects of surface chemistry and structural engineering are crucial for MXene to optimize the electrochemical performance, particularly the gas sensing performance. This provides a feasible approach for the performance optimization of intrinsic MXene materials.
Collapse
Affiliation(s)
- Jiazheng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China.
| | - Yanqiong Li
- School of Electronic Information & Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing, 400030, China.
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China.
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Shan Ren
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
9
|
Gooding JJ. Some of Our Favorite Papers from the First 10 Years of ACS Sensors. ACS Sens 2025; 10:1-3. [PMID: 39849956 DOI: 10.1021/acssensors.4c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- J Justin Gooding
- The University of New South Wales, Sydney, New South Wales 2033, Australia
| |
Collapse
|
10
|
Huzaifa M, Shafiq M, Ali N, Cocchi C, Nur-e-Alam M, Ul-Haq Z. Au-Decorated Ti 3C 2 MXene Sensor for Enhanced Detection of Gaseous Toxins (CO, COCl 2, H 2S, NH 3, NO 2): A DFT Study. ACS OMEGA 2025; 10:1562-1570. [PMID: 39829582 PMCID: PMC11740618 DOI: 10.1021/acsomega.4c09428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The rising level of toxic gases in the environment poses a high demand for efficient gas sensing materials. MXenes, an emerging class of two-dimensional (2D) materials, have gained significant interest in this area for having an active-site rich structure, tunable surface properties, and remarkable stability. Herein, an extensive density functional theory (DFT) study is conducted to investigate the sensing properties of pristine and Au-functionalized Ti3C2 MXene for five toxic gas molecules: CO, COCl2, H2S, NH3, and NO2. Pristine Ti3C2 displays high affinity for CO, H2S, and NH3, as assessed by density of states and a large binding energy, resulting in the chemisorption of these gas molecules providing a relatively large recovery time. In contrast, Au-functionalized Ti3C2 is able to sense all five toxins which are physisorbed on it, as indicated by lower adsorption energy and faster recovery time. As an example, the adsorption energy computed for CO is -0.14 eV and the resulting recovery time 0.21 ns. These results reveal that Au-functionalized Ti3C2 can serve as a highly efficient material for toxic gas sensing, particularly CO.
Collapse
Affiliation(s)
- Muhammad Huzaifa
- H.E.J.
Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Shafiq
- H.E.J.
Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nida Ali
- H.E.J.
Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Caterina Cocchi
- Carl
von Ossietzky Universität Oldenburg, Institute of Physics, D-26129 Oldenburg, Germany
| | - Mohammad Nur-e-Alam
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, P.O. Box. 2457, Riyadh 11451, Kingdom of Saudi Arabia
| | - Zaheer Ul-Haq
- H.E.J.
Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
11
|
Qi X, Khattak BN, Alam A, Liu W, Gui Y. The Gas-Sensing Properties of Ag-/Au-Modified Ti 3C 2T x (T=O, F, OH) Monolayers for HCHO and C 6H 6 Gases. Molecules 2025; 30:219. [PMID: 39860089 PMCID: PMC11767953 DOI: 10.3390/molecules30020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Based on density functional theory calculations, this study analyzed the gas-sensing performance of Ti3C2Tx (T=O, F, OH) monolayers modified with precious metal atoms (Ag and Au) for HCHO and C6H6 gas molecules. Firstly, stable structures of Ag- and Au-single-atom doped Ti3C2Tx (T=O, F, OH) surfaces were constructed and then HCHO and C6H6 gas molecules were set to approach the modified structures at different initial positions. The most stable adsorption structure was selected for further analysis of the adsorption energy, adsorption distance, charge transfer, charge deformation density, total density of states, and partial density of states. The results show that the Ag and Au modifications improved the adsorption performance of Ti3C2O2 for HCHO and C6H6. In comparison, the effect of the Au modification was better than that of Ag. For Ti3C2F2, the Ag and Au doping modifications did not significantly change the adsorption effects for HCHO and C6H6. However, the Ag and Au doping modifications decreased the adsorption of Ti3C2(OH)2 for HCHO, while there was no significant change in the gas adsorption for C6H6. The above results serve as a theoretical foundation for the design of new sensors for HCHO and C6H6.
Collapse
Affiliation(s)
- Xinghua Qi
- College of Economics and Management, Huanghuai University, Zhumadian 463000, China
- Department of Development Studies, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | - Bahadar Nawab Khattak
- Department of Development Studies, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | - Arif Alam
- Department of Development Studies, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | - Wenfu Liu
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yingang Gui
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
13
|
Wu H, Li X, Fu G, Xu P, Fan C, Shen L, Yang G, Wen C, Liu W. Ultrasensitive Detection of Dimethylamine Gas for Early Diagnosis of Parkinson's Disease Using CeO 2-Coated Ti 3C 2T x MXene/Carbon Nanofibers. ACS Sens 2024; 9:6400-6410. [PMID: 39291403 DOI: 10.1021/acssensors.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parkinson's disease is a prevalent neurological disorder, with dimethylamine (DMA) recognized as a crucial breath biomarker, particularly at the parts per billion (ppb) level. Detecting DMA gas at this level, especially at room temperature and high humidity, remains a formidable challenge. This study presents an ultrasensitive chemiresistor DMA gas sensor, leveraging the CeO2-coated Ti3C2Tx MXene/carbon nanofiber (CeO2/MXene/C NFs) heterostructure to enhance dimethylamine sensing. The high conductivity of MXene, combined with C-Ti-O bonds and a sp2 hybridized hexagonal carbon structure, increases surface active sites. The presence of Ce3+ promotes the formation of surface-active oxygen species, while the MXene-CeO2 heterojunction broadens the electron depletion layer. Theoretical calculations reveal that the highest adsorption energy for DMA gas is at the Ce top site, explaining the sensor's satisfactory sensitivity, rapid response and recovery process, low detection limit (5 ppb), and high selectivity at room temperature. The Ce3+/Ce4+ dynamic self-refresh mechanism, involving surface hydroxyl elimination, enhances the sensor's performance under high-humid conditions. Clinical breath tests demonstrate the sensor's ability to distinguish between healthy individuals and Parkinson's disease patients, paving the way for developing next-generation sensors for early diagnosis of neurological disorders.
Collapse
Affiliation(s)
- Haibo Wu
- Department of Neurology, Nanyang Central Hospital, Nanyang 473000, China
| | - Xueguo Li
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Guohui Fu
- Department of Neurology, Nanyang Central Hospital, Nanyang 473000, China
| | - Pengfei Xu
- Department of Neurology, Nanyang Central Hospital, Nanyang 473000, China
| | - Chonggui Fan
- Department of Neurology, Nanyang Central Hospital, Nanyang 473000, China
| | - Lei Shen
- Department of Neurology, Nanyang Central Hospital, Nanyang 473000, China
| | - Gang Yang
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Changming Wen
- Department of Neurology, Nanyang Central Hospital, Nanyang 473000, China
| | - Wei Liu
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials, Ministry of Education, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Ding J, Wang Q, Liu X, Li S, Li H. Ultrasensitive detection of hazardous gas at room temperature enabled by MOF@MXene 0D-2D heterostructure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136261. [PMID: 39447231 DOI: 10.1016/j.jhazmat.2024.136261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Achieving high sensitivity in detecting trace concentrations of toxic gases, particularly under room temperature (RT) conditions, remains a significant challenge. Herein, a 0D-2D heterostructure that can detect ppb-level H2S at RT is proposed by self-assembling cobalt-based metal-organic framework (Co-MOF) on Ti3C2Tx MXene. Co-MOFs with high specific surface areas can capture and concentrate target gas molecules, enhancing host-guest interactions and thereby boosting the selectivity and sensitivity. MXene nanosheets with high conductivity enable rapid electron transport at heterointerface, hence efficiently accelerating the reaction kinetics. Thereby, the as-prepared chemiresistive gas sensor based on Co-MOF@MXene 0D-2D heterostructure possessed excellent sensitivity against interfering gases and delivered an excellent response value of 11.1 to 400 ppb H2S at RT. The judicious design of MOF@MXene heterostructure may spur advanced hybrid material systems for superior sensing applications.
Collapse
Affiliation(s)
- Jiabao Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Wang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xue Liu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Siqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Hongpeng Li
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
15
|
Yin L, Liu Y, Song Z, Wang Y, Chen Y, Li J, Li L, Yao J. Porous and Homogeneous Nanoheterojunction-Accumulating PdO@ZnO Structure for Exhaled Breath Ammonia Sensing. Inorg Chem 2024; 63:22583-22593. [PMID: 39536716 DOI: 10.1021/acs.inorgchem.4c04094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The functional gas sensor device plays a pivotal role in intelligent medical treatment, among which metal oxide semiconductors are widely studied because of their inexpensiveness and ease of fabrication. However, the metal oxide sensors present a significant challenge in detecting NH3 at ppm levels within complex exhaled gases. Herein, the ZnO/PdO-x series were prepared by in situ loading palladium particles and calcining using nano-ZIF-8 as a precursor, which not only provided more transport path for ammonia adsorption but also achieved homogeneous nanoheterojunction accumulation structure. The tailor-made ZnO/PdO-2 sensor exhibits the optimum gas sensitivity, with a response value of 5.56 for 100 ppm of NH3 at 160 °C and a lower detection limit of 0.75 ppm. Particularly, it has a clear quantitative response to the actual exhaled gas of liver and kidney patients. By elucidating the intrinsic link between the in situ loading of MOF templates and the sensing mechanism, it is expected to broaden the rational design of metal-oxide sensors and thus provide an effective method for clinical detection.
Collapse
Affiliation(s)
- Lifei Yin
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yutao Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhengxuan Song
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuxin Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yang Chen
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jia Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
16
|
Han Y, Cao Y, Zhuang H, Yao Y, Cao H, Li Z, Wang Z, Zhu Z. Highly Elastic, Fatigue-Resistant, and Antifreezing MXene Functionalized Organohydrogels as Flexible Pressure Sensors for Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64002-64011. [PMID: 39506450 DOI: 10.1021/acsami.4c12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Conductive organohydrogels-based flexible pressure sensors have gained considerable attention in health monitoring, artificial skin, and human-computer interaction due to their excellent biocompatibility, wearability, and versatility. However, hydrogels' unsatisfactory mechanical and unstable electrical properties hinder their comprehensive application. Herein, an elastic, fatigue-resistant, and antifreezing poly(vinyl alcohol) (PVA)/lipoic acid (LA) organohydrogel with a double-network structure and reversible cross-linking interactions has been designed, and MXene as a conductive filler is functionalized into organohydrogel to further enhance the diverse sensing performance of flexible pressure sensors. The as-fabricated MXene-based PVA/LA organohydrogels (PLBM) exhibit stable fatigue resistance for over 450 cycles under 40% compressive strain, excellent elasticity, antifreezing properties (<-20 °C), and degradability. Furthermore, the pressure sensors based on the PLBM organohydrogels show a fast response time (62 ms), high sensitivity (S = 0.0402 kPa-1), and excellent stability (over 1000 cycles). The exceptional performance enables the sensors to monitor human movements, such as joint flexion and throat swallowing. Moreover, the sensors integrating with the one-dimensional convolutional neural networks and the long-short-term memory networks deep learning algorithms have been developed to recognize letters with a 93.75% accuracy, representing enormous potential in monitoring human motion and human-computer interaction.
Collapse
Affiliation(s)
- Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuzhong Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Haozhe Zhuang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yu Yao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Huina Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
17
|
Wu H, Li D, Liu J, Gong X, Wang T, Zhao L, Wang T, Yan X, Liu F, Sun P, Lu G. Portable and Hand-Held Ammonia Gas Sensor Enables Noninvasive Prediagnosis of Helicobacter pylori Infection. ACS Sens 2024; 9:5384-5393. [PMID: 39321551 DOI: 10.1021/acssensors.4c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Disease diagnosis of Helicobacter pylori (Hp) through human exhaled breath analysis has attracted considerable attention. However, conventional methods, such as carbon 13 (13C) breath test and infrared spectrometers, are facing the challenge of achieving portability and reliability synchronously. Herein, we report a portable and hand-held Hp analyzer using a bimetallic PtRu@SnO2-based gas sensor for the prediagnosis of Hp infection, which is based on detecting ammonia (NH3) as a potential biomarker in exhaled breath. Owing to the surface functionalization through highly catalytically active bimetallic PtRu nanoparticles (NPs) prepared by a photochemical reduction strategy, the PtRu@SnO2-based sensor exhibits high sensitivity and selectivity toward trace-level (200 ppb) NH3 even at high-humidity surroundings (80% RH). Consequently, the designed portable and hand-held Hp analyzer makes the accurate determination of NH3 at 800 ppb in exhaled breath. The tuning of energy band structure and electrical characteristics and the catalytic modulation of NH3 oxidation by PtRu NPs are proposed to be the reasons behind the enhanced NH3 gas-sensing performance, as confirmed by in situ analysis using an online MKS MultiGas 2030 FTIR gas analyzer. This work paves the way for the prediagnosis of Hp infection using a metal oxide gas sensor.
Collapse
Affiliation(s)
- Hanlin Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Dan Li
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Ji Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Xueqin Gong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Tong Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Liupeng Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Tianshuang Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| |
Collapse
|
18
|
Rehman WU, Khan Z, Zahra F, Laaskri A, Khan H, Farooq U, Bajaj M, Zaitsev I. Preparation of interconnected tin oxide nanoparticles on multi-layered MXene for lithium storage anodes. Sci Rep 2024; 14:25107. [PMID: 39443637 PMCID: PMC11500183 DOI: 10.1038/s41598-024-76364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
MXenes, a novel class of two-dimensional (2D) materials known for their excellent electronic conductivity and hydrophilicity, have emerged as promising candidates for lithium-ion battery anodes. This study presents a simple wet-chemical method for depositing interconnected SnO2 nanoparticles (NPs) onto MXene sheets. The SnO2 NPs act as both a high-capacity energy source and a spacer to prevent MXene sheets from restacking. The highly conductive MXene facilitates rapid electron and lithium-ion transport and mitigates the volume changes of SnO₂ during the lithiation/delithiation process by confining the SnO₂ NPs between the MXene layers. This composite anode, SnO2@MXene, leverages the high capacity of SnO2 and the structural and mechanical stability MXene provides. The SnO2@MXene anode exhibits superior electrochemical performance, with a high specific capacity of 678 mAh g- 1 at a current rate of 2.0 A g- 1 over 500 cycles, outperforming pristine MXenes and SnO2 nanoparticles.
Collapse
Affiliation(s)
- Wasif Ur Rehman
- Hubei Key Laboratory of Energy Storage and Power Battery School of Mathematics, Physics and Opto-electronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Zahoor Khan
- Hubei Key Laboratory of Energy Storage and Power Battery School of Mathematics, Physics and Opto-electronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Fatima Zahra
- Hubei Key Laboratory of Energy Storage and Power Battery School of Mathematics, Physics and Opto-electronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Ait Laaskri
- Hubei Key Laboratory of Energy Storage and Power Battery School of Mathematics, Physics and Opto-electronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Habib Khan
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Umar Farooq
- School of Physics and Electronics, Linyi University, Shandong, 276000, People's Republic of China
| | - Mohit Bajaj
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.
- Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun, 248002, India.
- College of Engineering, University of Business and Technology, Jeddah, 21448, Saudi Arabia.
| | - Ievgen Zaitsev
- Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.
- Center for Information-Analytical and Technical Support of Nuclear Power Facilities Monitoring, National Academy of Sciences of Ukraine, Akademika Palladina Avenue, 34-A, Kyiv, Ukraine.
| |
Collapse
|
19
|
Zhao Z, Su Z, Lv Z, Shi P, Jin G, Wu L. Room temperature gas sensors for NH 3 detection based on the heterojunction of 2D Ti 3C 2T x MXenes and Bi 2S 3. Mikrochim Acta 2024; 191:687. [PMID: 39433554 DOI: 10.1007/s00604-024-06750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Bi2S3/Ti3C2Tx nanomaterials were successfully prepared through a simple hydrothermal method. Various methods were used for their characterization, including XRD, XPS, SEM, EDS, and BET, along with testing their gas-sensing properties. The results showed that the response value to 100 ppm ammonia at room temperature reached 107%, which was 14.1 times higher than that of pure few-layer MXene. After undergoing anti-humidity interference testing, we observed that Bi2S3/Ti3C2Tx exhibited a higher response value in real-time monitoring of ammonia as humidity increased. Specifically, under 90% humidity conditions, its response value reached 1.32 times that of normal humidity conditions. This exceptional moisture resistance ensures that the sensor can maintain stability, and even exhibit superior performance, in harsh environments. Therefore, it possesses excellent selectivity, high-moisture-resistance, and long-term stability, making it significant in the field of medical and health monitoring.
Collapse
Affiliation(s)
- Zhihua Zhao
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China.
| | - Zijie Su
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Zhenli Lv
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Pu Shi
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Guixin Jin
- Hanwei Electronics Group Corporation, Zhengzhou, 450052, China
| | - Lan Wu
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China.
| |
Collapse
|
20
|
As'ari AH, Aflaha R, Katriani L, Kusumaatmaja A, Santoso I, Yudianti R, Triyana K. An ultra-sensitive ammonia sensor based on a quartz crystal microbalance using nanofibers overlaid with carboxylic group-functionalized MWCNTs. Analyst 2024; 149:5191-5205. [PMID: 39258485 DOI: 10.1039/d4an01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Detecting ammonia at low concentrations is crucial in various fields, including environmental monitoring, industrial processes, and healthcare. This study explores the development and performance of an ultra-sensitive ammonia sensor using carboxylic group-functionalized multi-walled carbon nanotubes (f-MWCNTs) overlaid on polyvinyl acetate nanofibers coated on a quartz crystal microbalance (QCM). The sensor demonstrates high responsiveness, with a frequency shift response of over 120 Hz when exposed to 1.5 ppm ammonia, a sensitivity of 23.3 Hz ppm-1 over a concentration range of 1.5-7.5 ppm, and a detection limit of 50 ppb. Additionally, the sensor exhibits a rapid response time of only 14 s, excellent selectivity against other gases, such as acetic acid, formaldehyde, methanol, ethanol, propanol, benzene, toluene, and xylene, and good stability in daily use. These characteristics make the sensor a promising tool for real-time ammonia detection in diverse applications.
Collapse
Affiliation(s)
- Ahmad Hasan As'ari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
- Research Center for Nanotechnology Systems, National Research and Innovation Agency, Building 440-442, KST B.J. Habibie, Tangerang Selatan 15314, Indonesia.
| | - Rizky Aflaha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
| | - Laila Katriani
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
- Department of Physics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Karangmalang, Yogyakarta 55281, Indonesia
| | - Ahmad Kusumaatmaja
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
| | - Iman Santoso
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
| | - Rike Yudianti
- Research Center for Nanotechnology Systems, National Research and Innovation Agency, Building 440-442, KST B.J. Habibie, Tangerang Selatan 15314, Indonesia.
| | - Kuwat Triyana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
| |
Collapse
|
21
|
Zhou B, Zhao Z, Lv Z, Chen Z, Kang S. High Sensitivity Bi 2O 3/Ti 3C 2T x Ammonia Sensor Based on Improved Synthetic MXene Method at Room Temperature. SENSORS (BASEL, SWITZERLAND) 2024; 24:6514. [PMID: 39459996 PMCID: PMC11510815 DOI: 10.3390/s24206514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The MXene Ti3C2Tx was synthesized using hydrofluoric acid and an improved multilayer method in this study. Subsequently, a Bi2O3/Ti3C2Tx composite material was produced through hydrothermal synthesis. This composite boasts a unique layered structure, offering a large surface area that provides numerous contact and reaction sites, facilitating the adsorption of ammonia on its surface. The prepared Bi2O3/Ti3C2Tx-based sensor exhibits excellent sensing performance for ammonia gas, including high responsiveness, good repeatability, and rapid response-recovery time. The sensor's response to 100 ppm ammonia gas is 61%, which is 11.3 times and 1.6 times the response values of the Ti3C2Tx gas sensor and Bi2O3 gas sensor, with response/recovery times of 61 s/164 s at room temperature, respectively. Additionally, the gas sensitivity mechanism of the Bi2O3/Ti3C2Tx-based sensor was analyzed, and the gas sensing response mechanism was proposed. This study shows that the sensor can effectively enhance the accuracy and precision of ammonia detection at room temperature and has a wide range of application scenarios.
Collapse
Affiliation(s)
| | - Zhihua Zhao
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450052, China; (B.Z.); (Z.L.); (Z.C.); (S.K.)
| | | | | | | |
Collapse
|
22
|
Loes MJ, Bagheri S, Sinitskii A. Layer-Dependent Gas Sensing Mechanism of 2D Titanium Carbide (Ti 3C 2T x) MXene. ACS NANO 2024. [PMID: 39269815 DOI: 10.1021/acsnano.4c08225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Monolayers of Ti3C2Tx MXene and bilayer structures formed by partially overlapping monolayer flakes exhibit opposite sensing responses to a large scope of molecular analytes. When exposed to reducing analytes, monolayer MXene flakes show increased electrical conductivity, i.e., an n-type behavior, while bilayer structures become less conductive, exhibiting a p-type behavior. On the contrary, both monolayers and bilayers show unidirectional sensing responses with increased resistivity when exposed to oxidizing analytes. The sensing responses of Ti3C2Tx monolayers and bilayers are dominated by entirely different mechanisms. The sensing behavior of MXene monolayers is dictated by the charge transfer from adsorbed molecules and the response direction is consistent with the donor/acceptor properties of the analyte and the intrinsic n-type character of Ti3C2Tx. In contrast, the bilayer MXene structures always show the same response regardless of the donor/acceptor character of the analyte, and the resistivity always increases because of the intercalation of molecules between the Ti3C2Tx layers. This study explains the sensing behavior of bulk MXene sensors based on multiflake assemblies, in which this intercalation mechanism results in universal increase in resistance that for many analytes is seemingly inconsistent with the n-type character of the material. By scaling MXene sensors down from multiflake to single-flake level, we disentangled the charge transfer and intercalation effects and unraveled their contributions. In particular, we show that the charge transfer has a much faster kinetics than the intercalation process. Finally, we demonstrate that the layer-dependent gas sensing properties of MXenes can be employed for the design of sensor devices with enhanced molecular recognition.
Collapse
Affiliation(s)
- Michael J Loes
- Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Saman Bagheri
- Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexander Sinitskii
- Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
23
|
Wang Z, Liu S, Shi Z, Lu D, Li Z, Zhu Z. Electrochemical biosensor based on RNA aptamer and ferrocenecarboxylic acid signal probe for C-reactive protein detection. Talanta 2024; 277:126318. [PMID: 38810381 DOI: 10.1016/j.talanta.2024.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monitoring health-related biomarkers using fast and facile detection techniques provides key physicochemical information for disease diagnosis or reflects body health status. Among them, electrochemical detection of various bio-macromolecules, e.g., the C-reactive protein (CRP), is of great interest in offering potential diagnosis for acute inflammation caused by infections, heart diseases, etc. Herein, a novel electrochemical aptamer biosensor was constructed from Ti3C2Tx MXene and in-situ reduced Au NPs for thiolated-RNA aptamer immobilization and CRP protein detection using Fc(COOH) as the signal probe. The sensory performances for CRP detection were optimized based on working conditions, including the incubation times and the pH. The large surface area offered by Ti3C2Tx MXene and high electrical conductivity originating from Au NPs endowed the as-fabricated aptamer biosensor with a decent sensitivity for CRP in a wide linear range of 0.05-80.0 ng/mL, good selectivity over interfering substances, and a low detection limit of 0.026 ng/mL. Such aptamer biosensors also detected CRP in serum samples using the spike & recovery method with reasonable recovery rates. The results demonstrated the potential of the as-fabricated electrochemical aptamer biosensor for fast and facile CRP detection in practical applications.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shuyuan Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhuo Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Dingxi Lu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
24
|
Zhang Z, Chu J, Hu H, Sun H, Zhao X, Du H, Yang M. Enhanced Room-Temperature NO 2 Sensing through Deep Functional Group Hybridization in Nitrogen-Doped Monolayer Ti 3C 2T x. ACS Sens 2024; 9:4134-4142. [PMID: 39096509 DOI: 10.1021/acssensors.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Nitrogen dioxide (NO2) is a significant environmental and human health hazard. Current NO2 sensors often lack sensitivity and selectivity under ambient conditions. This study investigates ammonia pyrolysis modification of monolayer Ti3C2Tx MXene to enhance NO2 detection at room temperature. Nitrogen-doped Ti3C2Tx demonstrates a substantial improvement in sensitivity, with a response of 8.87% to 50 ppm of NO2 compared to 0.65% for the original sensor, representing a 13.8-fold increase. The nitrogen-doped sensor also exhibits superior selectivity and linearity for NO2 under ambient conditions. Theoretical analysis shows that nitrogen incorporation promotes enhanced interaction between Ti3C2Tx and its surface oxygen-containing functional groups through electronic hybridization, resulting in improved adsorption energy (1.80 |eV|) and electron transfer efficiency (0.67 |e|) for NO2, thereby enhancing its gas-sensing performance. This study highlights the potential of ammonia pyrolysis-treated Ti3C2Tx MXene for advancing NO2 sensor technologies with heightened performance at room temperature.
Collapse
Affiliation(s)
- Zhaorui Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
- Ningbo Research Institute of Dalian University of Technology, Ningbo 315032, China
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jinkui Chu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
- Ningbo Research Institute of Dalian University of Technology, Ningbo 315032, China
| | - Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haoming Sun
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Zhao
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiying Du
- College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian 116600, China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Ding C, Lu Q, Shao D, Zhang Z, Han Y, Wang J, Sun J. Two-Dimensional M-Chalcogene Family with Tunable Superconducting, Topological, and Magnetic Properties. NANO LETTERS 2024; 24:9953-9960. [PMID: 39102284 DOI: 10.1021/acs.nanolett.4c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
An interesting question is whether chalcogen atoms can emulate the role of carbon or boron elements stabilized between two transition metal layers, as observed in MXenes or MBenes. Here, we predict a new family of two-dimensional ternary compounds M4XY2 (where M = Pd, Y, Zr, etc.; X = S, Se, Te; and Y = Cl, Br, I), named M-chalcogene. Through first-principles calculations, we reveal diverse physical properties in these compounds, including superconducting, topological, and magnetic characteristics, where the bilayer transition metals play crucial roles. Moreover, the expected helical edge states and superconducting transition temperatures in Pd4SCl2 can be finely tuned by strains. Additionally, the Ti4SCl2 is predicted to be a topological insulator and shows promise as a gas sensor candidate for certain exotic gases. Our findings expand two-dimensional material families and provide promising platforms for diverse physical phenomena with efficient tunability by external stimuli for various applications.
Collapse
Affiliation(s)
- Chi Ding
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qing Lu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dexi Shao
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhongwei Zhang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu Han
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Junjie Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Li X, Zeng W, Zhuo S, Qian B, Chen Q, Luo Q, Qian R. Highly Sensitive Room-Temperature Detection of Ammonia in the Breath of Kidney Disease Patients Using Fe 2Mo 3O 8/MoO 2@MoS 2 Nanocomposite Gas Sensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405942. [PMID: 38958529 PMCID: PMC11347992 DOI: 10.1002/advs.202405942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Indexed: 07/04/2024]
Abstract
A novel Fe2Mo3O8/MoO2@MoS2 nanocomposite is synthesized for extremely sensitive detection of NH3 in the breath of kidney disease patients at room temperature. Compared to MoS2, α-Fe2O3/MoS2, and MoO2@MoS2, it shows the optimal gas-sensing performance by optimizing the formation of Fe2Mo3O8 at 900 °C. The annealed Fe2Mo3O8/MoO2@MoS2 nanocomposite (Fe2Mo3O8/MoO2@MoS2-900 °C) sensor demonstrates a remarkably high selectivity of NH3 with a response of 875% to 30 ppm NH3 and an ultralow detection limit of 3.7 ppb. This sensor demonstrates excellent linearity, repeatability, and long-term stability. Furthermore, it effectively differentiates between patients at varying stages of kidney disease through quantitative NH3 measurements. The sensing mechanism is elucidated through the analysis of alterations in X-ray photoelectron spectroscopy (XPS) signals, which is supported by density functional theory (DFT) calculations illustrating the NH3 adsorption and oxidation pathways and their effects on charge transfer, resulting in the conductivity change as the sensing signal. The excellent performance is mainly attributed to the heterojunction among MoS2, MoO2, and Fe2Mo3O8 and the exceptional adsorption and catalytic activity of Fe2Mo3O8/MoO2@MoS2-900 °C for NH3. This research presents a promising new material optimized for detecting NH3 in exhaled breath and a new strategy for the early diagnosis and management of kidney disease.
Collapse
Affiliation(s)
- Xian Li
- National Centre for Inorganic Mass Spectrometry in ShanghaiShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Centre of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100864P. R. China
- School of Material Science and EngineeringShanghai UniversityShanghai200444P. R. China
| | - Wang Zeng
- National Centre for Inorganic Mass Spectrometry in ShanghaiShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Centre of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100864P. R. China
| | - Shangjun Zhuo
- National Centre for Inorganic Mass Spectrometry in ShanghaiShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Centre of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100864P. R. China
| | - Bangwei Qian
- Shanghai Pudong New Area People's HospitalShanghai201299P. R. China
| | - Qiao Chen
- Department of ChemistrySchool of Life SciencesUniversity of SussexBrightonBN1 9QJUK
| | - Qun Luo
- School of Material Science and EngineeringShanghai UniversityShanghai200444P. R. China
| | - Rong Qian
- National Centre for Inorganic Mass Spectrometry in ShanghaiShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Centre of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100864P. R. China
| |
Collapse
|
27
|
Ou Y, Wang B, Xu N, Song Q, Liu T, Xu H, Wang F, Wang Y. Crystal Face-Dependent Behavior of Single-Atom Pt: Construct of SA-FLP Dual Active Sites for Efficient NO 2 Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402038. [PMID: 38810152 PMCID: PMC11304280 DOI: 10.1002/advs.202402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Indexed: 05/31/2024]
Abstract
The strong potential of platinum single atom (PtSA) in gas sensor technology is primarily attributed to its high atomic economy. Nevertheless, it is imperative to conduct further exploration to understand the impact of PtSA on the active sites. In this study, the evolution of PtSA on (100)CeO2 and (111)CeO2 is examined, revealing notable disparities in the position and activity of surface PtSA on different crystal planes. The PtSA in (100)CeO2 surface can enhance the stability of Ce3+ and construct a frustrated Lewis pair (FLP) to form a double active site by combining the steric hindrance effect of oxygen vacancies, which increases the response value from 1.8 to 27 and reduce the response-recovery time from 140-192 s to 25-26 s toward five ppm NO2 at room temperature. Conversely, PtSA tends to bind to terminal oxygen on the surface of (111)CeO2 and become an independent reaction site. The response value of PtSA-(111)CeO2 surface only increased from 1.6 to 3.8. This research underscores the correlation between single atoms and crystal plane effects, laying the groundwork for designing and synthesizing ultra-stable and efficient gas sensors.
Collapse
Affiliation(s)
- Yucheng Ou
- Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryCollege of Aerospace Science and EngineeringNational University of Defense TechnologyChangsha410073China
| | - Bing Wang
- Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryCollege of Aerospace Science and EngineeringNational University of Defense TechnologyChangsha410073China
| | - Nana Xu
- Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryCollege of Aerospace Science and EngineeringNational University of Defense TechnologyChangsha410073China
| | - Quzhi Song
- Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryCollege of Aerospace Science and EngineeringNational University of Defense TechnologyChangsha410073China
| | - Tao Liu
- Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryCollege of Aerospace Science and EngineeringNational University of Defense TechnologyChangsha410073China
| | - Hui Xu
- Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryCollege of Aerospace Science and EngineeringNational University of Defense TechnologyChangsha410073China
| | - Fuwen Wang
- Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryCollege of Aerospace Science and EngineeringNational University of Defense TechnologyChangsha410073China
| | - Yingde Wang
- Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryCollege of Aerospace Science and EngineeringNational University of Defense TechnologyChangsha410073China
| |
Collapse
|
28
|
Li H, Yang K, Hu H, Qin C, Yu B, Zhou S, Jiang T, Ho D. MXene Supported Surface Plasmon Polaritons for Optical Microfiber Ammonia Sensing. Anal Chem 2024; 96:11823-11831. [PMID: 38994642 DOI: 10.1021/acs.analchem.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The properties of surface plasmons are notoriously dependent on the supporting materials system. However, new capabilities cannot be obtained until the technique of surface plasmon enabled by advanced two-dimensional materials is well understood. Herein, we present the experimental demonstration of surface plasmon polaritons (SPPs) supported by single-layered MXene flakes (Ti3C2Tx) coating on an optical microfiber and its application as an ammonia gas sensor. Enabled by its high controllability of chemical composition, unique atomistically thin layered structure, and metallic-level conductivity, MXene is capable of supporting not only plasmon resonances across a wide range of wavelengths but also a selective sensing mechanism through frequency modulation. Theoretical modeling and optics experiments reveal that, upon adsorbing ammonia molecules, the free electron motion at the interface between the SiO2 microfiber and the MXene coating is modulated (i.e., the modulation of the SPPs under applied light), thus inducing a variation in the evanescent field. Consequently, a wavelength shift is produced, effectively realizing a selective and highly sensitive ammonia sensor with a 100 ppm detection limit. The MXene supported SPPs open a promising path for the application of advanced optical techniques toward gas and chemical analysis.
Collapse
Affiliation(s)
- Hui Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Anhui 230601, China
- Key Laboratory of OptoElectronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Anhui 230601, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Kai Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Benli Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Anhui 230601, China
- Key Laboratory of OptoElectronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Anhui 230601, China
| | - Sheng Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Anhui 230601, China
- Key Laboratory of OptoElectronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Anhui 230601, China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong 999077, China
| |
Collapse
|
29
|
Cheng K, Tian X, Yuan S, Feng Q, Wang Y. Research Progress on Ammonia Sensors Based on Ti 3C 2T x MXene at Room Temperature: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4465. [PMID: 39065863 PMCID: PMC11280721 DOI: 10.3390/s24144465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Ammonia (NH3) potentially harms human health, the ecosystem, industrial and agricultural production, and other fields. Therefore, the detection of NH3 has broad prospects and important significance. Ti3C2Tx is a common MXene material that is great for detecting NH3 at room temperature because it has a two-dimensional layered structure, a large specific surface area, is easy to functionalize on the surface, is sensitive to gases at room temperature, and is very selective for NH3. This review provides a detailed description of the preparation process as well as recent advances in the development of gas-sensing materials based on Ti3C2Tx MXene for room-temperature NH3 detection. It also analyzes the advantages and disadvantages of various preparation and synthesis methods for Ti3C2Tx MXene's performance. Since the gas-sensitive performance of pure Ti3C2Tx MXene regarding NH3 can be further improved, this review discusses additional composite materials, including metal oxides, conductive polymers, and two-dimensional materials that can be used to improve the sensitivity of pure Ti3C2Tx MXene to NH3. Furthermore, the present state of research on the NH3 sensitivity mechanism of Ti3C2Tx MXene-based sensors is summarized in this study. Finally, this paper analyzes the challenges and future prospects of Ti3C2Tx MXene-based gas-sensitive materials for room-temperature NH3 detection.
Collapse
Affiliation(s)
- Kaixin Cheng
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
| | - Xu Tian
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
| | - Shaorui Yuan
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
| | - Qiuyue Feng
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650091, China
| |
Collapse
|
30
|
Han K, Ji Y, Hu Q, Wu Q, Li D, Zhou A. Phase transition and electrochemical properties of S-functionalized MXene anodes for Li-ion batteries: a first-principles investigation. Phys Chem Chem Phys 2024; 26:18030-18040. [PMID: 38894700 DOI: 10.1039/d4cp01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The advancement of anode materials for achieving high energy storage is a crucial topic for high-performance Li-ion batteries (LIBs). Here, first-principles calculations were used to conduct a thorough and systematic investigation into lithium storage properties of MXenes with new S functional groups as LIB anode materials. Density of states, diffusion energy barriers, open circuit voltages and storage capacities were calculated to comprehensively evaluate the lithium storage properties of S-functionalized MXenes. Based on the computational results, Ti2CS2 and V2CS2 were selected as excellent candidates from ten M2CS2 MXenes. The diffusion energy barriers of M2CS2 within the range of 0.26-0.32 eV are lower than those of M2CO2 and M2CF2, indicating that M2CS2 anodes exhibit faster charge/discharge rates. By examining the stable crystal structures and comparing atomic positions before and after Li adsorptions, structural phase transitions during Li-ion adsorptions could happen for nearly all M2CS2 MXenes. The phase transitions predicted were directly observed using ab initio molecular dynamic simulations. The cycle stability, storage capacity and other lithium storage properties were enhanced by the reversible structural phase transition.
Collapse
Affiliation(s)
- Kun Han
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Yuhuan Ji
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Qianku Hu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Qinghua Wu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Dandan Li
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Aiguo Zhou
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| |
Collapse
|
31
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
32
|
Wang Y, Wang Y, Jian M, Jiang Q, Li X. MXene Key Composites: A New Arena for Gas Sensors. NANO-MICRO LETTERS 2024; 16:209. [PMID: 38842597 PMCID: PMC11156835 DOI: 10.1007/s40820-024-01430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
With the development of science and technology, the scale of industrial production continues to grow, and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing. These gases include flammable and explosive gases, and even contain toxic gases. Therefore, it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately. In recent years, a new two-dimensional material called MXene has attracted widespread attention in various applications. Their abundant surface functional groups and sites, excellent current conductivity, tunable surface chemistry, and outstanding stability make them promising for gas sensor applications. Since the birth of MXene materials, researchers have utilized the efficient and convenient solution etching preparation, high flexibility, and easily functionalize MXene with other materials to prepare composites for gas sensing. This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research. However, previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing, without systematically explaining the gas sensing mechanisms generated by different gases, as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials. This article reviews the latest progress in the application of MXene-based composite materials in gas sensing. Firstly, a brief summary was given of the commonly used methods for preparing gas sensing device structures, followed by an introduction to the key attributes of MXene related to gas sensing performance. This article focuses on the performance of MXene-based composite materials used for gas sensing, such as MXene/graphene, MXene/Metal oxide, MXene/Transition metal sulfides (TMDs), MXene/Metal-organic framework (MOF), MXene/Polymer. It summarizes the advantages and disadvantages of MXene composite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases. Finally, future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.
Collapse
Affiliation(s)
- Yitong Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Min Jian
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Qinting Jiang
- Key Materials and Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Xifei Li
- Key Materials and Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| |
Collapse
|
33
|
Zhao Z, Yao L, Zhang S, Shi Q, Rahmatullah ABM, Wu L. Room temperature NH 3 gas sensor based on In(OH) 3/Ti 3C 2T x nanocomposites. Mikrochim Acta 2024; 191:371. [PMID: 38839652 DOI: 10.1007/s00604-024-06455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Industrialization and agricultural demand have both improved human life and led to environmental contamination. Especially the discharge of a lot of poisonous and harmful gases, including ammonia, ammonia pollution has become a pressing problem. High concentrations of ammonia can pose significant threats to both the environment and human health. Therefore, accurate monitoring and detection of ammonia gas are crucial. To address this challenge, we have developed an ammonia gas sensor using In(OH)3/Ti3C2Tx nanocomposites through an in-situ electrostatic self-assembly process. This sensor was thoroughly characterized using advanced techniques like XRD, XPS, BET, and TEM. In our tests, the I/M-2 sensor exhibited remarkable performance, achieving a 16.8% response to 100 ppm NH3 at room temperature, which is a 3.5-fold improvement over the pure Ti3C2Tx MXene sensor. Moreover, it provides swift response time (20 s), high response to low NH3 concentrations (≤ 10 ppm), and excellent long-term stability (30 days). These exceptional characteristics indicate the immense potential of our In(OH)3/Ti3C2Tx gas sensor in ammonia detection.
Collapse
Affiliation(s)
- Zhihua Zhao
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China.
| | - Longqi Yao
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Shuaiwen Zhang
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Qingsheng Shi
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Abu Bakker Md Rahmatullah
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Lan Wu
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China.
| |
Collapse
|
34
|
Rhyu H, Jang S, Shin JH, Kang MH, Song W, Lee SS, Lim J, Myung S. Multiarray Gas Sensors Using Ternary Combined Ti 3C 2T x MXene-Based Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28808-28817. [PMID: 38775279 DOI: 10.1021/acsami.4c02831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This paper reports chemiresistive multiarray gas sensors through the synthesized ternary nanocomposites, using a one-pot method to integrate two-dimensional MXene (Ti3C2Tx) with Ti-doped WO3 (Ti-WO3/Ti3C2Tx) and Ti3C2Tx with Pd-doped SnO2 (Pd-SnO2/Ti3C2Tx). The gas sensors based on Ti-WO3/Ti3C2Tx and Pd-SnO2/Ti3C2Tx exhibit exceptional sensitivity, particularly in detecting 70% at 1 ppm acetone and 91.1% at 1 ppm of H2S. Notably, our sensors demonstrate a remarkable sensing performance in the low-ppb range for acetone and H2S. Specifically, the Ti-WO3/Ti3C2Tx sensor demonstrates a detection limit of 0.035 ppb for acetone, and the Pd-SnO2/Ti3C2Tx sensor shows 0.116 ppb for H2S. Simultaneous measurements with Ti-WO3/Ti3C2Tx- and Pd-SnO2/Ti3C2Tx-based sensors enable the evaluation of both the concentration and type of unknown target gases, such as acetone or H2S. Furthermore, density functional theory calculations are performed to clarify the role of Ti and Pd doping in enhancing the performance of Ti-WO3/Ti3C2Tx and Pd-SnO2/Ti3C2Tx nanocomposites. Theoretical simulations contribute to a deeper understanding of the doping effects, providing essential insights into the mechanisms underlying the enhanced gas response of the gas sensors. Overall, this work provides valuable insights into the gas-sensing mechanisms and introduces a novel approach for high-performance multiarray gas sensing.
Collapse
Affiliation(s)
- Hyejin Rhyu
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - SeungHun Jang
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Jae Hyeok Shin
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Myung Hyun Kang
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Wooseok Song
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sun Sook Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Jongsun Lim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sung Myung
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| |
Collapse
|
35
|
Xu J, Yang X, Wang K, Jin Q, Wang X, Lu G. Confinement Enrichment Effect in HoMS-BaTiO 3 Microwave Gas Sensors for the Detection of 10 ppb-0.55 v/v% Ammonia at Room Temperature. ACS Sens 2024; 9:2057-2065. [PMID: 38552136 DOI: 10.1021/acssensors.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The construction of ammonia gas sensors with wide detection ranges is important for exhalation diagnosis and environmental pollution monitoring. To achieve a wide detection range, sensitive materials must possess excellent spatial confinement and large active surfaces to enhance gas adsorption. In this study, an ammonia microwave gas sensor with a wide detection range of 10 ppb-0.55 v/v% at room temperature was fabricated by incorporating hollow multishelled-structured BaTiO3 (HoMS-BaTiO3). The effect of the number of shells and the quantity of the sensitive material on the gas-sensing performance was investigated, and two-layered HoMS-BaTiO3 demonstrated the best response at high concentrations (0.15-0.55 v/v%). Conversely, single-layered HoMS-BaTiO3 displayed outstanding performance at low concentrations (10 ppb-0.15 v/v%). The lower the quantity of the sensitive material, the higher the response. This study offers a method for preparing room-temperature ammonia sensors with a wide detection range and reveals the link between the structure and quantity of sensitive materials and gas-sensing performance.
Collapse
Affiliation(s)
- Juhua Xu
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China
| | - Xianwang Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ke Wang
- The Second Norman Bethune Hospital of Jilin University, Jilin University, 4026 Yatai Street, Changchun 130041, P. R. China
| | - Quan Jin
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China
| | - Xiaolong Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
36
|
Tan Y, Xu J, Li Q, Zhang W, Lu C, Song X, Liu L, Chen Y. Sensitivity-Enhanced, Room-Temperature Detection of NH 3 with Alkalized Ti 3C 2T x MXene. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:680. [PMID: 38668174 PMCID: PMC11054236 DOI: 10.3390/nano14080680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
A layered Ti3C2Tx MXene structure was prepared by etching MAX-phase Ti3AlC2 with hydro-fluoric acid (HF), followed by alkalization in sodium hydroxide (NaOH) solutions of varying concentrations and for varying durations. Compared to sensors utilizing unalkalized Ti3C2Tx, those employing alkalized Ti3C2Tx MXene exhibited enhanced sensitivity for NH3 detection at room temperature and a relative humidity of 40%. Both the concentration of NaOH and duration of alkalization significantly influenced sensor performance. Among the tested conditions, Ti3C2Tx MXene alkalized with a 5 M NaOH solution for 12 h exhibited optimal performance, with high response values of 100.3% and a rapid response/recovery time of 73 s and 38 s, respectively. The improved sensitivity of NH3 detection can be attributed to the heightened NH3 adsorption capability of oxygen-rich terminals obtained through the alkalization treatment. This is consistent with the observed increase in the ratio of oxygen to fluorine atoms on the surface terminations of the alkalization-treated Ti3C2Tx. These findings suggest that the gas-sensing characteristics of Ti3C2Tx MXene can be finely tuned and optimized through a carefully tailored alkalization process, offering a viable approach to realizing high-performance Ti3C2Tx MXene gas sensors, particularly for NH3 sensing applications.
Collapse
Affiliation(s)
- Yi Tan
- School of Science, Hubei University of Technology, Wuhan 430068, China; (Y.T.); (W.Z.); (C.L.); (X.S.); (L.L.); (Y.C.)
| | - Jinxia Xu
- School of Science, Hubei University of Technology, Wuhan 430068, China; (Y.T.); (W.Z.); (C.L.); (X.S.); (L.L.); (Y.C.)
- Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China
| | - Qiliang Li
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, China
| | - Wanting Zhang
- School of Science, Hubei University of Technology, Wuhan 430068, China; (Y.T.); (W.Z.); (C.L.); (X.S.); (L.L.); (Y.C.)
| | - Chong Lu
- School of Science, Hubei University of Technology, Wuhan 430068, China; (Y.T.); (W.Z.); (C.L.); (X.S.); (L.L.); (Y.C.)
| | - Xingjuan Song
- School of Science, Hubei University of Technology, Wuhan 430068, China; (Y.T.); (W.Z.); (C.L.); (X.S.); (L.L.); (Y.C.)
| | - Lingyun Liu
- School of Science, Hubei University of Technology, Wuhan 430068, China; (Y.T.); (W.Z.); (C.L.); (X.S.); (L.L.); (Y.C.)
- Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China
| | - Ying Chen
- School of Science, Hubei University of Technology, Wuhan 430068, China; (Y.T.); (W.Z.); (C.L.); (X.S.); (L.L.); (Y.C.)
- Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
37
|
Zhuang Y, Wang X, Lai P, Li J, Chen L, Lin Y, Wang F. Wireless Flexible System for Highly Sensitive Ammonia Detection Based on Polyaniline/Carbon Nanotubes. BIOSENSORS 2024; 14:191. [PMID: 38667184 PMCID: PMC11048023 DOI: 10.3390/bios14040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Ammonia (NH3) is a harmful atmospheric pollutant and an important indicator of environment, health, and food safety conditions. Wearable devices with flexible gas sensors offer convenient real-time NH3 monitoring capabilities. A flexible ammonia gas sensing system to support the internet of things (IoT) is proposed. The flexible gas sensor in this system utilizes polyaniline (PANI) with multiwall carbon nanotubes (MWCNTs) decoration as a sensitive material, coated on a silver interdigital electrode on a polyethylene terephthalate (PET) substrate. Gas sensors are combined with other electronic components to form a flexible electronic system. The IoT functionality of the system comes from a microcontroller with Wi-Fi capability. The flexible gas sensor demonstrates commendable sensitivity, selectivity, humidity resistance, and long lifespan. The experimental data procured from the sensor reveal a remarkably low detection threshold of 0.3 ppm, aligning well with the required specifications for monitoring ammonia concentrations in exhaled breath gas, which typically range from 0.425 to 1.8 ppm. Furthermore, the sensor demonstrates a negligible reaction to the presence of interfering gases, such as ethanol, acetone, and methanol, thereby ensuring high selectivity for ammonia detection. In addition to these attributes, the sensor maintains consistent stability across a range of environmental conditions, including varying humidity levels, repeated bending cycles, and diverse angles of orientation. A portable, stable, and effective flexible IoT system solution for real-time ammonia sensing is demonstrated by collecting data at the edge end, processing the data in the cloud, and displaying the data at the user end.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanjing Lin
- The School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (X.W.); (P.L.); (J.L.); (L.C.)
| | - Fei Wang
- The School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (X.W.); (P.L.); (J.L.); (L.C.)
| |
Collapse
|
38
|
Lu B, Stolte M, Liu D, Zhang X, Zhao L, Tian L, Frisbie CD, Würthner F, Tao X, He T. High Sensitivity and Ultra-Broad-Range NH 3 Sensor Arrays by Precise Control of Step Defects on The Surface of Cl 2-Ndi Single Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308036. [PMID: 38308194 PMCID: PMC11005746 DOI: 10.1002/advs.202308036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Indexed: 02/04/2024]
Abstract
Vapor sensors with both high sensitivity and broad detection range are technically challenging yet highly desirable for widespread chemical sensing applications in diverse environments. Generally, an increased surface-to-volume ratio can effectively enhance the sensitivity to low concentrations, but often with the trade-off of a constrained sensing range. Here, an approach is demonstrated for NH3 sensor arrays with an unprecedentedly broad sensing range by introducing controllable steps on the surface of an n-type single crystal. Step edges, serving as adsorption sites with electron-deficient properties, are well-defined, discrete, and electronically active. NH3 molecules selectively adsorb at the step edges and nearly eliminate known trap-like character, which is demonstrated by surface potential imaging. Consequently, the strategy can significantly boost the sensitivity of two-terminal NH3 resistance sensors on thin crystals with a few steps while simultaneously enhancing the tolerance on thick crystals with dense steps. Incorporation of these crystals into parallel sensor arrays results in ppb-to-% level detection range and a convenient linear relation between sheet conductance and semi-log NH3 concentration, allowing for the precise localization of vapor leakage. In general, the results suggest new opportunities for defect engineering of organic semiconductor crystal surfaces for purposeful vapor or chemical sensing.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Matthias Stolte
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| | - Dong Liu
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Xiaojing Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Lihui Zhao
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Liehao Tian
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesota55455USA
| | - Frank Würthner
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| | - Xutang Tao
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Tao He
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
39
|
Han Y, Zhang W, Ding Y, Yao Y, Zhu Z. Rational design of NiO/Ti 3C 2T x nanocomposites with enhanced triethylamine sensing performance. Analyst 2024; 149:2016-2022. [PMID: 38451140 DOI: 10.1039/d3an02191b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
MXenes with excellent conductivity and abundant surface functional groups have displayed great advantages as platforms for sensing materials. NiO also has drawn much attention for gas detection due to its unique merits of excellent catalytic activity. Herein, NiO nanoparticles are incorporated with multilayer Ti3C2Tx-MXene to develop excellent triethylamine sensors. Due to the larger specific surface area and formed p-p heterojunctions, the response of the NiO/Ti3C2Tx gas sensor is endowed with a response value of 950% to 50 ppm triethylamine gas and is much higher than that of the pristine NiO sensor. Moreover, the NiO/Ti3C2Tx sensor displays a fast response time of 8 s (50 ppm triethylamine), excellent reproducibility, and reliable long-term stability. This study proves that NiO/Ti3C2Tx sensors have potential for the effective detection of triethylamine gas.
Collapse
Affiliation(s)
- Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| | - Wenyu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| | - Yuan Ding
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| | - Yu Yao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| |
Collapse
|
40
|
Wang Z, Yan F, Yu Z, Cao H, Ma Z, YeErKenTai Z, Li Z, Han Y, Zhu Z. Fully Transient 3D Origami Paper-Based Ammonia Gas Sensor Obtained by Facile MXene Spray Coating. ACS Sens 2024; 9:1447-1457. [PMID: 38412069 DOI: 10.1021/acssensors.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH3) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a Ti3C2Tx MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned Ti3C2Tx-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH3 sensing ability. As a result, the 2D kirigami-shaped NH3 sensor exhibited a good response of 7% to 50 ppm of NH3 with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH3. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/H2O2/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Feng Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhichao Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Huina Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhanying Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - ZuNa YeErKenTai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
41
|
Arkoti NK, Pal K. Selective Detection of NH 3 Gas by Ti 3C 2T x Sensors with the PVDF-ZIF-67 Overlayer at Room Temperature. ACS Sens 2024; 9:1465-1474. [PMID: 38411899 DOI: 10.1021/acssensors.3c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In the realm of NH3 gas-sensing applications, the electrically conductive nature of Ti3C2Tx MXene, adorned with surface terminations such as -O and -OH groups, renders it a compelling material. However, the inherent challenges of atmospheric instability and selectivity in the presence of gas mixtures have prompted the exploration of innovative solutions. This work introduces a strategic solution through the deposition of a mixed-matrix membrane (MMM) composed of poly(vinylidene fluoride) (PVDF) as the matrix and zeolitic imidazolate framework-67 (ZIF-67) as the filler. This composite membrane acts as a selective filter, permitting the passage of a specific gas, namely NH3. Leveraging the hydrophobic and chemically inert nature of PVDF, the MMM enhances the atmospheric stability of Ti3C2Tx by impeding water molecules from interacting with the MXene. Furthermore, ZIF-67 is selective to NH3 gas via acid-base interactions within the zeolite group and selective pore size. The Ti3C2Tx sensor embedded in the MMM filter exhibits a modest 1.3% change in the sensing response to 25 ppm of NH3 gas compared to the response without the filter. This result underscores the filter's effectiveness in conferring selectivity and diffusivity, particularly at 35% relative humidity (RH) and 25 °C. Crucially, the hydrophobic attributes of PVDF impart heightened stability to the Ti3C2Tx sensor even amidst varying RH conditions. These results not only demonstrate effective NH3 detection but also highlight the sensor's adaptability to diverse environmental conditions, offering promising prospects for practical applications.
Collapse
Affiliation(s)
- Naveen Kumar Arkoti
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kaushik Pal
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
42
|
Gao L, He C. Advances in MXene-based luminescence sensing strategies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1718-1735. [PMID: 38445303 DOI: 10.1039/d3ay02207b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
MXenes have attracted the attention of many researchers as one of the latest two-dimensional (2D) materials over the last decade. Their great potential for biosensing has also been fully exploited after the discovery of their unique properties such as superior optical properties, excellent hydrophilicity, good thermal stability, excellent mechanical property, high electrical conductivity, biocompatibility, large surface area, and ease of surface functionalization. In the MXene-based luminescence sensing strategy, MXenes typically appear in the form of nanosheets, quantum dots and modified MXene nanocomposites, and they are utilized as different sensing platforms or as a luminescence source. In this review, we focused on the MXene-based luminescence sensing strategies, including fluorescence, electrochemiluminescence and chemiluminescence sensors and the comparison of their performance. Finally, the perspectives of the MXene-based luminescence sensors are discussed.
Collapse
Affiliation(s)
- Lingfeng Gao
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan 430200, P. R. China.
| | - Chiyang He
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan 430200, P. R. China.
| |
Collapse
|
43
|
Pawar KK, Kumar A, Mirzaei A, Kumar M, Kim HW, Kim SS. 2D nanomaterials for realization of flexible and wearable gas sensors: A review. CHEMOSPHERE 2024; 352:141234. [PMID: 38278446 DOI: 10.1016/j.chemosphere.2024.141234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Gas sensors are extensively employed for monitoring and detection of hazardous gases and vapors. Many of them are produced on rigid substrates, but flexible and wearable gas sensors are needed for intriguing usage including the internet of things (IoT) and medical devices. The materials with the greatest potential for the fabrication of flexible and wearable gas sensing devices are two-dimensional (2D) semiconducting nanomaterials, which consist of graphene and its substitutes, transition metal dichalcogenides, and MXenes. These types of materials have good mechanical flexibility, high charge carrier mobility, a large area of surface, an abundance of defects and dangling bonds, and, in certain instances adequate transparency and ease of synthesis. In this review, we have addressed the different 2D nonmaterial properties for gas sensing in the context of fabrication of flexible/wearable gas sensors. We have discussed the sensing performance of flexible/wearable gas sensors in various forms such as pristine, composite and noble metal decorated. We believe that content of this review paper is greatly useful for the researchers working in the research area of fabrication of flexible/wearable gas sensors.
Collapse
Affiliation(s)
- Krishna Kiran Pawar
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea; The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, South Korea; School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, India
| | - Ashok Kumar
- Department of Electrical Engineering, Indian Institute of Technology, Jodhpur, 342030, India
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, 715557-13876, Iran
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology, Jodhpur, 342030, India; Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
44
|
Ahmad N, Rasheed S, Mohyuddin A, Fatima B, Nabeel MI, Riaz MT, Najam-Ul-Haq M, Hussain D. 2D MXenes and their composites; design, synthesis, and environmental sensing applications. CHEMOSPHERE 2024; 352:141280. [PMID: 38278447 DOI: 10.1016/j.chemosphere.2024.141280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Novel 2D layered MXene materials were first reported in 2011 at Drexel University. MXenes are widely used in multidisciplinary applications due to their anomalous electrical conductivity, high surface area, and chemical, mechanical, and physical properties. This review summarises MXene synthesis and applications in environmental sensing. The first section describes different methods for MXene synthesis, including fluorinated and non-fluorinated methods. MXene's layered structure, surface terminal groups, and the space between layers significantly impact its properties. Different methods to separate different MXene layers are also discussed using various intercalation reagents and commercially synthesized MXene without compromising the environment. This review also explains the effect of MXene's surface functionalization on its characteristics. The second section of the review describes gas and pesticide sensing applications of Mxenes and its composites. Its good conductivity, surface functionalization with negatively charged groups, intrinsic chemical nature, and good mechanical stability make it a prominent material for room temperature sensing of environmental samples, such as polar and nonpolar gases, volatile organic compounds, and pesticides. This review will enhance the young scientists' knowledge of MXene-based materials and stimulate their diversity and hybrid conformation in environmental sensing applications.
Collapse
Affiliation(s)
- Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, 60000, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Tariq Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
45
|
Zhou M, Shen Y, Lv L, Zhang Y, Meng X, Yang X, He Q, Zhang B, Pang L, E P, Zhou Z. Lattice matching and halogen regulation for synergistically induced large Li and Na storage by halogenated MXene V 3C 2Cl 2. Phys Chem Chem Phys 2024; 26:7554-7562. [PMID: 38362637 DOI: 10.1039/d3cp05878f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Suffering from the formation of metal-ion dendrites and low storage capacity, MXene materials exhibit unsatisfactory performance in Li and Na storage. In this study, we demonstrate that the MXene V3C2Cl2 structure can induce uniform Li and Na deposition. This is achieved through coherent heterogeneous interface reconstruction and regulated ion tiling by halogen surface termination. The high lattice matching (91% and 99%) between MXenes and Li/Na, along with positive Cl terminal regulation, guides Li/Na ions to nucleate uniformly on the V3C2Cl2 MXene matrix and grow in a planar manner. Cl termination proves effective in regulating Li/Na ions due to its moderate adsorption and diffusion coefficients. Furthermore, upon adsorption onto the Cl-terminated V3C2Cl2 monolayer, Li4 and Na4 clusters undergo dissociation, favoring uniform adsorption over cluster adsorption. V3C2Cl2 MXenes exhibit impressive Li/Na storage capacities of 434.07 mA h g-1 for Li and 217.03 mA h g-1 for Na, surpassing the Li storage capacity of Ti3C2Cl2 by three-fold and the Na storage capacity of V2C by 1.4 times. This study highlights the regulatory role of Cl surface terminals in dendrite formation and Li/Na ion deposition, with potential applications to other metal-ion storage electrodes.
Collapse
Affiliation(s)
- Min Zhou
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yanqing Shen
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - LingLing Lv
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yu Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Xianghui Meng
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Xin Yang
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Qirui He
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Bing Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Long Pang
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Peng E
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhongxiang Zhou
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
46
|
Navitski I, Ramanaviciute A, Ramanavicius S, Pogorielov M, Ramanavicius A. MXene-Based Chemo-Sensors and Other Sensing Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:447. [PMID: 38470777 DOI: 10.3390/nano14050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, high electrical conductivity, and the ability to customize their properties, have led to the widespread development and exploration of their applications in energy storage, electronics, biomedicine, catalysis, and environmental technologies. The significant growth in publications related to MXenes over the past decade highlights the extensive research interest in this material. One area that has a great potential for improvement through the integration of MXenes is sensor design. Strain sensors, temperature sensors, pressure sensors, biosensors (both optical and electrochemical), gas sensors, and environmental pollution sensors targeted at volatile organic compounds (VOCs) could all gain numerous improvements from the inclusion of MXenes. This report delves into the current research landscape, exploring the advancements in MXene-based chemo-sensor technologies and examining potential future applications across diverse sensor types.
Collapse
Affiliation(s)
- Ilya Navitski
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, 2, Kharkivska Str., 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
47
|
Wu M, Rao L, Ji Z, Li Y, Wang P, Liu L, Ying G. 3D Lightweight Interconnected Melamine Foam Modified with Hollow CoFe 2O 4/MXene toward Efficient Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9169-9181. [PMID: 38328874 DOI: 10.1021/acsami.3c17790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Considering the increasing severity of electromagnetic wave pollution, the development of high-performance low-filler-content microwave absorbers possessing wide frequency bands and strong absorption for practical applications is a demanding research hotspot. In this study, from the perspectives of the electromagnetic component coordination and structural design, a three-dimensional (3D) interconnected CoFe2O4/MXene-melamine foam (MF) was constructed via simple impregnation and a single freeze-drying step. By changing the absorber (CoFe2O4/MXene) concentration, the pore opening and electromagnetic properties of the 3D foams can be effectively adjusted. When the absorber concentration is sufficiently high to clog the internal pores, the microwave absorption is hindered. When the filler (CoFe2O4/MXene-MF) content is just ∼5.8 wt % (at a density of ∼33.3 mg cm-3), a minimum reflection loss (RLmin) of -72.1 dB is achieved at a matching thickness of 3.32 mm, and an effective absorption bandwidth (4.54 GHz) covering the whole X band is achieved at a thickness of 3 mm. CoFe2O4/MXene-MF, which possesses a 3D porous electromagnetic network structure, optimizes impedance matching and enhances multiple polarization relaxations and reflections/scattering, resulting in superior absorption capabilities. In particular, the continuous network structure ensures the uniform distribution of electromagnetic fields in the microstructure, achieving high absorption at low filler contents. This work provides a reference for subsequent 3D absorber concentration studies and a novel engineering strategy for preparing a low-filler-content, lightweight, and efficient electromagnetic wave absorber, which could be applied in the fields of radar security and information communications.
Collapse
Affiliation(s)
- Meng Wu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Lei Rao
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Ziying Ji
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yuexia Li
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Peng Wang
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Lu Liu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Guobing Ying
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
48
|
Panigrahi PK, Chandu B, Puvvada N. Recent Advances in Nanostructured Materials for Application as Gas Sensors. ACS OMEGA 2024; 9:3092-3122. [PMID: 38284032 PMCID: PMC10809240 DOI: 10.1021/acsomega.3c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Many different industries, including the pharmaceutical, medical engineering, clinical diagnostic, public safety, and food monitoring industries, use gas sensors. The inherent qualities of nanomaterials, such as their capacity to chemically or physically adsorb gas, and their great ratio of surface to volume make them excellent candidates for use in gas sensing technology. Additionally, the nanomaterial-based gas sensors have excellent selectivity, reproducibility, durability, and cost-effectiveness. This Review article offers a summary of the research on gas sensor devices based on nanomaterials of various sizes. The numerous nanomaterial-based gas sensors, their manufacturing procedures and sensing mechanisms, and most recent advancements are all covered in detail. In addition, evaluations and comparisons of the key characteristics of gas sensing systems made from various dimensional nanomaterials were done.
Collapse
Affiliation(s)
- Pravas Kumar Panigrahi
- Department
of Basic Science, Government College of
Engineering, Kalahandi, Odisha 766003, India
| | - Basavaiah Chandu
- Department
of Nanotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India
| | - Nagaprasad Puvvada
- Department
of Chemistry, School of Advanced Sciences, VIT-AP University, Vijayawada, Andhra Pradesh522237, India
| |
Collapse
|
49
|
Wang Y, Wang Y, Kuai Y, Jian M. "Visualization" Gas-Gas Sensors Based on High Performance Novel MXenes Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305250. [PMID: 37661585 DOI: 10.1002/smll.202305250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
The detection of toxic, harmful, explosive, and volatile gases cannot be separated from gas sensors, and gas sensors are also used to monitor the greenhouse effect and air pollution. However, existing gas sensors remain with many drawbacks, such as lower sensitivity, lower selectivity, and unstable room temperature detection. Thus, there is an imperative need to find more suitable sensing materials. The emergence of a new 2D layered material MXenes has brought dawn to solve this problem. The multiple advantages of MXenes, namely high specific surface area, enriched terminal functionality groups, hydrophilicity, and good electrical conductivity, make them among the most prolific gas-sensing materials. Therefore, this review paper describes the current main synthesis methods of MXenes materials, and focuses on summarizing and organizing the latest research results of MXenes in gas sensing applications. It also introduces the possible gas sensing mechanisms of MXenes materials on NH3 , NO2 , CH3 , and volatile organic compounds (VOCs). In conclusion, it provides insight into the problems and upcoming challenges of MXenes materials for gas sensing.
Collapse
Affiliation(s)
- Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yanbing Kuai
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Min Jian
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
50
|
Lan K, Liu S, Wang Z, Long L, Qin G. High-performance pyramid-SiNWs biosensor for NH 3gas detection. NANOTECHNOLOGY 2023; 35:105501. [PMID: 38055986 DOI: 10.1088/1361-6528/ad12eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
NH3is widely existed in the environment and is closely associated with various health issues. Additionally, detecting the small amounts of NH3exhaled by patients with liver and kidney diseases offers potential opportunities for painless early disease diagnosis. Therefore, there is an urgent need for a convenient, rapid, and highly sensitive real-time NH3monitoring method. This work presents a high-performance NH3sensor based on olfactory receptor-derived peptides (ORPs) on a pyramid silicon nanowires (SiNWs) structure substrate. First, we successfully fabricated the pyramid-SiNWs structure on a silicon substrate using a chemical etching method. Subsequently, by dehydrative condensation reaction between the amino groups on APTES and the carboxyl groups of ORPs, ORPs were successfully immobilized onto the pyramid-SiNWs structure. This methodology allows the ORPs sensor on the pyramid-SiNWs substrate to detect NH3as low as 1 ppb, which was the reported lowest limit of detection, with a higher response rate compared to ORPs sensors on flat SiNWs substrates. The sensors also exhibit good sensitivity and stability for NH3gas detection. The results show the feasibility and potential applications of ORPs-pyramid-SiNWs structure sensors, in the fields of food safety, disease monitoring, and environmental protection, etc.
Collapse
Affiliation(s)
- Kuibo Lan
- School of Microelectronics, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin, 300072, People's Republic of China
| | - Shuaiyan Liu
- School of Microelectronics, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhi Wang
- School of Microelectronics, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin, 300072, People's Republic of China
| | - Lixia Long
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guoxuan Qin
- School of Microelectronics, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin, 300072, People's Republic of China
| |
Collapse
|