1
|
Bond CR, Katz HE, Frydrych DJ, Rose DBG, Miranda D. Polymeric Semiconductor in Field-Effect Transistors Utilizing Flexible and High-Surface Area Expanded Poly(tetrafluoroethylene) Membrane Gate Dielectrics. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38437591 DOI: 10.1021/acsami.3c18777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Organic field-effect transistors (OFETs) were fabricated using three high-surface area and flexible expanded-poly(tetrafluoroethylene) (ePTFE) membranes in gate dielectrics, along with the semiconducting polymer poly[2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl)-alt-(2,2':5',2″:5″,2‴-quaterthiophen-5,5‴-diyl)] (PDPP4T). The transistor behavior of these devices was investigated following annealing at 50, 100, 150, and 200 °C, all sustained for 1 h. For annealing temperatures above 50 °C, the OFETs displayed improved transistor behavior and a significant increase in output current while maintaining similar magnitudes of Vth shifts when subjected to static voltage compared to those kept at ambient temperature. We also tested the response to NO2 gas for further characterization and for possible applications. The ePTFE-PDPP4T interface of each membrane was characterized via scanning electron microscopy for all four annealing temperatures to derive a model for the hole mobility of the ePTFE-PDPP4T OFETs that accounts for the microporous structure of the ePTFE and consequently adjusts the channel width of the OFET. Using this model, a maximum hole mobility of 1.8 ± 1.0 cm2/V s was calculated for the polymer in an ePTFE-PDPP4T OFET annealed at 200 °C, whereas a PDPP4T OFET using only the native silicon wafer oxide as a gate dielectric exhibited a hole mobility of just 0.09 ± 0.03 cm2/V s at the same annealing condition. This work demonstrates that responsive semiconducting polymer films can be deposited on nominally nonwetting and extremely bendable membranes, and the charge carrier mobility can be significantly increased compared to their as-prepared state by using thermally durable polymer membranes with unique microstructures as gate dielectrics.
Collapse
Affiliation(s)
- Christopher R Bond
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - David B G Rose
- W. L. Gore and Associates, Elkton, Maryland 21922, United States
| | - Daniel Miranda
- W. L. Gore and Associates, Elkton, Maryland 21922, United States
| |
Collapse
|
2
|
Shen Z, Huang W, Li L, Li H, Huang J, Cheng J, Fu Y. Research Progress of Organic Field-Effect Transistor Based Chemical Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302406. [PMID: 37271887 DOI: 10.1002/smll.202302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Due to their high sensitivity and selectivity, chemical sensors have gained significant attention in various fields, including drug security, environmental testing, food safety, and biological medicine. Among them, organic field-effect transistor (OFET) based chemical sensors have emerged as a promising alternative to traditional sensors, exhibiting several advantages such as multi-parameter detection, room temperature operation, miniaturization, flexibility, and portability. This review paper presents recent research progress on OFET-based chemical sensors, highlighting the enhancement of sensor performance, including sensitivity, selectivity, stability, etc. The main improvement programs are improving the internal and external structures of the device, as well as the organic semiconductor layer and dielectric structure. Finally, an outlook on the prospects and challenges of OFET-based chemical sensors is presented.
Collapse
Affiliation(s)
- Zhengqi Shen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Li Li
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Huizi Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Huang
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Liu H, Liu D, Yang J, Gao H, Wu Y. Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206938. [PMID: 36642796 DOI: 10.1002/smll.202206938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Organic flexible electronic devices are at the forefront of the electronics as they possess the potential to bring about a major lifestyle revolution owing to outstanding properties of organic semiconductors, including solution processability, lightweight and flexibility. For the integration of organic flexible electronics, the precise patterning and ordered assembly of organic semiconductors have attracted wide attention and gained rapid developments, which not only reduces the charge crosstalk between adjacent devices, but also enhances device uniformity and reproducibility. This review focuses on recent advances in the design, patterned assembly of organic semiconductors, and flexible electronic devices, especially for flexible organic field-effect transistors (FOFETs) and their multifunctional applications. First, typical organic semiconductor materials and material design methods are introduced. Based on these organic materials with not only superior mechanical properties but also high carrier mobility, patterned assembly strategies on flexible substrates, including one-step and two-step approaches are discussed. Advanced applications of flexible electronic devices based on organic semiconductor patterns are then highlighted. Finally, future challenges and possible directions in the field to motivate the development of the next generation of flexible electronics are proposed.
Collapse
Affiliation(s)
- Haoran Liu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Junchuan Yang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hanfei Gao
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Yuchen Wu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Shin W, Jeong Y, Kim M, Lee J, Koo RH, Hong S, Jung G, Kim JJ, Lee JH. Recovery of off-state stress-induced damage in FET-type gas sensor using self-curing method. NANOSCALE RESEARCH LETTERS 2023; 18:24. [PMID: 36829069 DOI: 10.1186/s11671-023-03801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/11/2023] [Indexed: 05/24/2023]
Abstract
The need for high-performance gas sensors is driven by concerns over indoor and outdoor air quality, and industrial gas leaks. Due to their structural diversity, vast surface area, and geometric tunability, metal oxides show significant potential for the development of gas sensing systems. Despite the fact that several previous reports have successfully acquired a suitable response to various types of target gases, it remains difficult to maintain the reliability of metal oxide-based gas sensors. In particular, the degradation of the sensor platform under repetitive operation, such as off-state stress (OSS) causes significant reliability issues. We investigate the impact of OSS on the gas sensing performances, including response, low-frequency noise, and signal-to-noise ratio of horizontal floating-gate field-effect-transistor (FET)-type gas sensors. The 1/f noise is increased after the OSS is applied to the sensor because the gate oxide is damaged by hot holes. Therefore, the SNR of the sensor is degraded by the OSS. We applied a self-curing method based on a PN-junction forward current at the body-drain junction to repair the damaged gate oxide and improve the reliability of the sensor. It has been demonstrated that the SNR degradation caused by the OSS can be successfully recovered by the self-curing method.
Collapse
Affiliation(s)
- Wonjun Shin
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Yujeong Jeong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Mingyu Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jungsoo Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ryun-Han Koo
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Seongbin Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Gyuweon Jung
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Joon Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jong-Ho Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
5
|
Sun L, Li T, Zhou J, Li W, Wu Z, Niu R, Cheng J, Asare‐Yeboah K, He Z. A Green Binary Solvent Method to Control Organic Semiconductor Crystallization. ChemistrySelect 2023. [DOI: 10.1002/slct.202203927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Li Sun
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Tianyu Li
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Jiajian Zhou
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Wenhao Li
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Zhongming Wu
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Ruikun Niu
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Jinxiang Cheng
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Kyeiwaa Asare‐Yeboah
- Department of Electrical and Computer Engineering Penn State Behrend Erie PA 16563 USA
| | - Zhengran He
- Department of Electrical and Computer Engineering The University of Alabama Tuscaloosa AL 35487 USA
| |
Collapse
|
6
|
Nitrogen Dioxide Optical Sensor Based on Redox-Active Tetrazolium/Pluronic Nanoparticles Embedded in PDMS Membranes. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Anthropogenic toxic vapour and gases are a worldwide threat for human health and to the environment. Therefore, it is crucial to develop highly sensitive devices that guarantee their rapid detection. Here, we prepared redox-switchable colloids by the in-situ reduction of 2,3,5-triphenyl-2H-tetrazolium (TTC) into triphenyl formazan (TF) stabilised with Pluronic F127 in aqueous media. The colloids were readily embedded in polydimethylsiloxane (PDMS) to produce a selective colour-switchable membrane for nitrogen dioxide (NO2) detection. We found that the TTC reduction resulted in the production of red-coloured colloids with zeta potential between −1 to 3 mV and hydrodynamic diameters between 114 to 305 nm as hydrophobic dispersion in aqueous media stabilised by Pluronic at different molar concentrations. Moreover, the embedded colloids rendered highly homogenous red colour gas-permeable PDMS elastomeric membrane. Once exposed to NO2, the membrane began to bleach after 30 s due to the oxidation of the embedded TF and undergo a complete decolouration after 180 s. Such features allowed the membrane integration in a low-cost sensing device that showed a high sensitivity and low detection limit to NO2.
Collapse
|
7
|
Katz HE. Stabilization and Specification in Polymer Field-Effect Transistor Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15861-15870. [PMID: 35352553 DOI: 10.1021/acsami.2c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The strong and varied chemical interactions between polymer semiconductors and small molecules, and the electronic consequences of these interactions, make polymer organic field-effect transistors (OFETs) attractive as vapor sensing elements. Two hindrances to their wider acceptance and use are their environmental drift and the poor specificity of individual OFETs. Approaches to addressing these two present drawbacks are presented in this Spotlight on Applications. They include the use of semiconducting polymers with greater inherent stability, circuits that add further stability, and arrays that generate patterns that are much more specific to analyte vapors of interest than the individual responses.
Collapse
Affiliation(s)
- Howard E Katz
- Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Affiliation(s)
- Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou P. R. China
| |
Collapse
|
9
|
Hou S, Shao B, Yu X, Yu J. Gold nanorods doping induced performance improvement of room temperature OTFT NO 2sensors. NANOTECHNOLOGY 2021; 32:325503. [PMID: 33957611 DOI: 10.1088/1361-6528/abfe90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Solution-processed organic thin-film transistors (OTFTs) are regarded as the promising candidates for low-cost gas sensors due to their advantages of high throughput, large-area and sensitive to various gas analytes. Microstructure control of organic active layers in OTFTs is an effective route to improve the sensing performance. In this work, we report a simple method to modify the morphology of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) thin films via doping gold nanorods (Au NRs) for enhancing the performance of the corresponding OTFT sensors for nitrogen dioxide (NO2) detection. With the optimized doping ratio of Au nanorods, the TIPS-pentacene OTFT snesors not only exhibit a 3-fold increase in mobility, but also obtain a high sensitivity of 70% to 18 ppm NO2with a detection limit of 270 ppb. The microstructures and morphologies of the modified TIPS-pentacene thin film characterized by atomic force microscopy and field scanning electron microscope. The experimental results indicate that the proper addition of Au NRs could effectively regulate the grain size of TIPS-pentacene, and therein control the density of grain boundaries during the crystallization, which is essential for the high-performance gas sensors.
Collapse
Affiliation(s)
- Sihui Hou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Bingyao Shao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| |
Collapse
|
10
|
Yuvaraja S, Bhyranalyar VN, Bhat SA, Surya SG, Yelamaggad CV, Salama KN. A highly selective electron affinity facilitated H 2S sensor: the marriage of tris(keto-hydrazone) and an organic field-effect transistor. MATERIALS HORIZONS 2021; 8:525-537. [PMID: 34821268 DOI: 10.1039/d0mh01420f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conjugated polymers (CPs) are emerging as part of a promising future for gas-sensing applications. However, some of their limitations, such as poor specificity, humidity sensitivity and poor ambient stability, remain persistent. Herein, a novel combination of a polymer-monomer heterostructure, derived from a CP (PDVT-10) and a newly reported monomer [tris(keto-hydrazone)] has been integrated in an organic field-effect transistor (OFET) platform to sense H2S selectively. The hybrid heterostructure shows an unprecedented sensitivity (525% ppm-1) and high selectivity toward H2S gas. In addition, we demonstrated that the PDVT-10/tris(keto-hydrazone) OFET sensor has the lowest limit of detection (1 ppb), excellent ambient stability (∼5% current degradation after 150 days), good response-recovery behavior, and exceptional electrical behavior and gas response reproducibility. This work can help pave the way to incorporate futuristic gas sensors in a multitude of applications.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
11
|
Liang J, Song Z, Wang S, Zhao X, Tong Y, Ren H, Guo S, Tang Q, Liu Y. Cobweb-like, Ultrathin Porous Polymer Films for Ultrasensitive NO 2 Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52992-53002. [PMID: 33170620 DOI: 10.1021/acsami.0c09821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gas sensors based on polymer field-effect transistors (FETs) have drawn much attention owing to the inherent merits of specific selectivity, low cost, and room temperature operation. Ultrathin (<10 nm) and porous polymer semiconductor films offer a golden opportunity for achieving high-performance gas sensors. However, wafer-scale fabrication of such high-quality polymer films is of great challenge and has rarely been realized before. Herein, the first demonstration of 4 in. wafer-scale, cobweb-like, and ultrathin porous polymer films is reported via a one-step phase-inversion process. This approach is extremely simple and universal for constructing various ultrathin porous polymer semiconductor films. Thanks to the abundant pores, ultrathin size, and high charge-transfer efficiency of the prepared polymer films, our gas sensors exhibit many superior advantages, including ultrahigh response (2.46 × 106%), low limit of detection (LOD) (<1 ppm), and excellent selectivity. Thus, the proposed fabrication strategy is exceptionally promising for mass manufacturing of low-cost high-performance polymer FET-based gas sensors.
Collapse
Affiliation(s)
- Jing Liang
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhiqi Song
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Shuya Wang
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoli Zhao
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanhong Tong
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hang Ren
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shanlei Guo
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingxin Tang
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yichun Liu
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
12
|
Baek S, Kwon J, Mano T, Tokito S, Jung S. A Flexible 3D Organic Preamplifier for a Lactate Sensor. Macromol Biosci 2020; 20:e2000144. [PMID: 32613734 DOI: 10.1002/mabi.202000144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Indexed: 11/06/2022]
Abstract
Organic transistors are promising platforms for wearable biosensors. However, the strategies to improve signal amplification have yet to be determined, particularly regarding biosensors that generate very weak signals. In this study, an organic voltage amplifier is presented for a lactate sensor on flexible plastic foil. The preamplifier is based on a 3D complementary inverter, which is achieved by vertically stacking complementary transistors with a shared gate between them. The shared gate is extended and functionalized with a lactate oxidase enzyme to detect lactate. The sensing device successfully detects the lactate concentration in the human sweat range (20-60 mm) with high sensitivity (6.82 mV mm-1 ) due to high gain of its amplification. The 3D integration process is cost-effective as it is solution-processable and doubles the number of transistors per unit area. The device presented in this study would pave the way for the development of high-gain noninvasive sweat lactate sensors that can be wearable.
Collapse
Affiliation(s)
- Sanghoon Baek
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jimin Kwon
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Taisei Mano
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sungjune Jung
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
13
|
Yuvaraja S, Surya SG, Chernikova V, Vijjapu MT, Shekhah O, Bhatt PM, Chandra S, Eddaoudi M, Salama KN. Realization of an Ultrasensitive and Highly Selective OFET NO 2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin-MOF. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18748-18760. [PMID: 32281789 DOI: 10.1002/pssr.202000086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 05/27/2023]
Abstract
Organic field-effect transistors (OFETs) are emerging as competitive candidates for gas sensing applications due to the ease of their fabrication process combined with the ability to readily fine-tune the properties of organic semiconductors. Nevertheless, some key challenges remain to be addressed, such as material degradation, low sensitivity, and poor selectivity toward toxic gases. Appropriately, a heterojunction combination of different sensing layers with multifunctional capabilities offers great potential to overcome these problems. Here, a novel and highly sensitive receptor layer is proposed encompassing a porous 3D metal-organic framework (MOF) based on isostructural-fluorinated MOFs acting as an NO2 specific preconcentrator, on the surface of a stable and ultrathin PDVT-10 organic semiconductor on an OFET platform. Here, with this proposed combination we have unveiled an unprecedented 700% increase in sensitivity toward NO2 analyte in contrast to the pristine PDVT-10. The resultant combination for this OFET device exhibits a remarkable lowest detection limit of 8.25 ppb, a sensitivity of 680 nA/ppb, and good stability over a period of 6 months under normal laboratory conditions. Further, a negligible response (4.232 nA/%RH) toward humidity in the range of 5%-90% relative humidity was demonstrated using this combination. Markedly, the obtained results support the use of the proposed novel strategy to achieve an excellent sensing performance with an OFET platform.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Valeriya Chernikova
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Suman Chandra
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Jeong MK, Lee K, Kang J, Jang J, Jung IH. Thiophene backbone-based polymers with electron-withdrawing pendant groups for application in organic thin-film transistors. NEW J CHEM 2020. [DOI: 10.1039/d0nj01080d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The suboptimal molecular ordering of by PF2-BDD quick freezing during hot-solution spin-coating hindered an efficient hole transport, whereas the more crystalline structure of PT2-BDD resulted in higher hole mobility in the corresponding OTFT.
Collapse
Affiliation(s)
- Moon-Ki Jeong
- Department of Chemistry
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Kyumin Lee
- Department of Energy Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| | - Jinhyeon Kang
- Department of Chemistry
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Jaeyoung Jang
- Department of Energy Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| | - In Hwan Jung
- Department of Chemistry
- Kookmin University
- Seoul 02707
- Republic of Korea
| |
Collapse
|