1
|
Bechu AM, Roy MA, Jacobs M, Tickner JA. Alternatives assessment: An analysis on progress and future needs for research and practice. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1337-1354. [PMID: 38124425 DOI: 10.1002/ieam.4882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Alternatives assessment is a science-policy approach to support the informed substitution of chemicals of concern in consumer products and industries, with the intent of avoiding regrettable substitution and facilitating the transition to safer, more sustainable chemicals and products. The field of alternatives assessment has grown steadily in recent decades, particularly after the publication of specific frameworks and the inclusion of substitution and alternatives assessment requirements in a number of policy contexts. Previously, 14 research and practice needs for the field were outlined across five critical areas: comparative hazard assessment, comparative exposure characterization, lifecycle considerations, decision-making and decision analysis, and professional practice. The aim of the current article is twofold: to highlight methodological advances in the growing field of alternatives assessment based on identified research and practice needs and to propose areas for future developments. We assess advances in the field based on the analysis of a broad literature review that captured 154 sources published from 2013 to 2022. The results indicate that research conducted advanced many of the needs identified, but several remain underaddressed. Although the field has clearly grown and taken root over the past decade, there are still research and practice gaps, most notably on the hazard assessment of mixtures or different forms of chemicals, the integration of lifecycle considerations, and the development of practical approaches to address trade-offs in decision-making. We propose modifications to four of the prior research and practice needs in addition to new needs, including the development of standardized hazard assessment approaches for chemical mixtures as well as better integration of equity and/or justice considerations into assessments. Integr Environ Assess Manag 2024;20:1337-1354. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Aude M Bechu
- Sustainable Chemistry Catalyst, Lowell Center for Sustainable Production, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Monika A Roy
- Sustainable Chemistry Catalyst, Lowell Center for Sustainable Production, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Molly Jacobs
- Sustainable Chemistry Catalyst, Lowell Center for Sustainable Production, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Joel A Tickner
- Sustainable Chemistry Catalyst, Lowell Center for Sustainable Production, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
2
|
Saleh HM, Hassan AI. Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis. FIRE 2023; 6:128. [DOI: 10.3390/fire6030128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Carbon capture and use may provide motivation for the global problem of mitigating global warming from substantial industrial emitters. Captured CO2 may be transformed into a range of products such as methanol as renewable energy sources. Polymers, cement, and heterogeneous catalysts for varying chemical synthesis are examples of commercial goods. Because some of these components may be converted into power, CO2 is a feedstock and excellent energy transporter. By employing collected CO2 from the atmosphere as the primary hydrocarbon source, a carbon-neutral fuel may be created. The fuel is subsequently burned, and CO2 is released into the atmosphere like a byproduct of the combustion process. There is no net carbon dioxide emitted or withdrawn from the environment during this process, hence the name carbon-neutral fuel. In a world with net-zero CO2 emissions, the anthroposphere will have attained its carbon hold-up capacity in response to a particular global average temperature increase, such as 1.5 °C. As a result, each carbon atom removed from the subsurface (lithosphere) must be returned to it, or it will be expelled into the atmosphere. CO2 removal technologies, such as biofuels with carbon sequestration and direct air capture, will be required to lower the high CO2 concentration in the atmosphere if the Paris Agreement’s ambitious climate targets are to be realized. In a carbon-neutral scenario, CO2 consumption with renewable energy is expected to contribute to the displacement of fossil fuels. This article includes a conceptual study and an evaluation of fuel technology that enables a carbon-neutral chemical industry in a net-zero-CO2-emissions environment. These are based on the use of collected CO2 as a feedstock in novel chemical processes, along with “green” hydrogen, or on the use of biomass. It will also shed light on innovative methods of green transformation and getting sustainable, environmentally friendly energy.
Collapse
Affiliation(s)
- Hosam M. Saleh
- Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Amal I. Hassan
- Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| |
Collapse
|
3
|
Flynn MT, Liu X, Dell'Acqua A, Rabeah J, Brückner A, Baráth E, Tin S, de Vries JG. Glycolaldehyde as a Bio-Based C 1 Building Block for Selective N-Formylation of Secondary Amines. CHEMSUSCHEM 2022; 15:e202201264. [PMID: 35947792 PMCID: PMC9826180 DOI: 10.1002/cssc.202201264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Biomass derived glycolaldehyde was employed as C1 building block for the N-formylation of secondary amines using air as oxidant. The reaction is atom economic, highly selective and proceeds under catalyst free conditions. This strategy can be used for the synthesis of cyclic and acyclic formylamines, including DMF. Mechanistic studies suggest a radical oxidation pathway.
Collapse
Affiliation(s)
- Matthew T. Flynn
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Xin Liu
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Andrea Dell'Acqua
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Eszter Baráth
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Sergey Tin
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Johannes G. de Vries
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
4
|
Meyer CC, Stafford NP, Cheng MJ, Krische MJ. Ethanol: Unlocking an Abundant Renewable C 2 -Feedstock for Catalytic Enantioselective C-C Coupling. Angew Chem Int Ed Engl 2021; 60:10542-10546. [PMID: 33689214 PMCID: PMC8085048 DOI: 10.1002/anie.202102694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/13/2022]
Abstract
With annual production at >85 million tons/year, ethanol is the world's largest-volume renewable small molecule carbon source, yet its use as a C2 -feedstock in enantioselective C-C coupling is unknown. Here, the first catalytic enantioselective C-C couplings of ethanol are demonstrated in reactions with structurally complex, nitrogen-rich allylic acetates incorporating the top 10 N-heterocycles found in FDA-approved drugs.
Collapse
Affiliation(s)
- Cole C. Meyer
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Nicholas P. Stafford
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Melinda J. Cheng
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
5
|
Meyer CC, Stafford NP, Cheng MJ, Krische MJ. Ethanol: Unlocking an Abundant Renewable C
2
‐Feedstock for Catalytic Enantioselective C−C Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cole C. Meyer
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Nicholas P. Stafford
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Melinda J. Cheng
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
6
|
Qiao G, Chen G, Wen Q, Liu W, Gao J, Yu Z, Wang Q. Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application. J Colloid Interface Sci 2020; 580:88-98. [PMID: 32682119 DOI: 10.1016/j.jcis.2020.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
The commercial production of carbon dots will be concerned with the simplicity and energy consumption. Herein, maleic acid and m-phenylenediamine form elegantly simple sources for carbon dots. The two precursors are dissolved in formamid (abbreviated as FA) or N,N-dimethylformamide (abbreviated as DMF) and the dehydration-condensation processes have been performed at 30 min or 120 min under room temperature. No external energy/irradiations, reactants or high temperature will be required and the afforded carbon dots (abbreviated as CDs) are collected by extraction, centrifugation, dialysis and column chromatography. It has been found for the first time the choice of organic solvents has been correlated with emission color. The blue-emitting CDs (abbreviated as B-CDs) and green-emitting CDs (abbreviated as G-CDs) are yielded in FA and DMF respectively. Facts support that the increase of -CONH- units causes red-shift in emissions. The optical sensing of tetracycline has been explored and the detection limit of blue-emitting CDs is as low as 25 nM. Live cells exposed to B-CDs and G-CDs (0.5 mg/ml) show no apparent changes via both Cell Counting Kit-8 and Annexin V/7-AAD analysis. The blue and green fluorescent signals can be easily tracked in cells. It has been demonstrated that the two carbon dots can be fabricated as multiple-color light-emitting diodes (abbreviated as LEDs).
Collapse
Affiliation(s)
- Gongxi Qiao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Gui Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qin Wen
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Wanqiang Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Jinwei Gao
- Guangdong Provincial Engineering Technology Research Center For Transparent Conductive Materials, South China Normal University, Guangzhou 510006, China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Qianming Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Al-Enizi AM, Siddiqui TAJ, Shaikh SF, Ubaidullah M, Yousef A, Mane RS, Rana AUHS. Phase controlled synthesis of bifunctional TiO2 nanocrystallites viad-mannitol for dye-sensitized solar cells and heterogeneous catalysis. RSC Adv 2020; 10:14826-14836. [PMID: 35497129 PMCID: PMC9052067 DOI: 10.1039/d0ra01366h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 11/24/2022] Open
Abstract
The crystal architecture of TiO2 was successfully tailored via a low-temperature (≤200 °C) hydrothermal process in the presence of d-mannitol for feasible applications in dye-sensitized solar cells (DSSCs) and heterogeneous catalysis. In the development of anatase-TiO2 (A-TiO2), d-mannitol does not merely acts as a complexing agent to manage the zigzag chains of octahedral TiO62− with dominant edge sharing but also performs as a capping agent by influencing the hydrolysis process during nucleation, as confirmed by Fourier-transform infrared spectroscopy and dynamic light scattering studies. After physical measurements, the as-synthesized nanocrystallites (NCs) of A-TiO2 were used in DSSCs, where a fascinating power conversion efficiency (PCE) of 6.0% was obtained, which showed excellent performance compared with commercial anatase-TiO2 (CA-TiO2: 5.7%) and rutile-TiO2 (R-TiO2) obtained without d-mannitol (3.7%). Moreover, a smart approach was developed via the A-TiO2 catalyst to synthesize pharmaceutically important C-3 alkylated 4-hydroxycoumarins through different activated secondary alcohols under solvent-free, and heat/visible light conditions. In addition, the catalytic activity of the so-produced A-TiO2 catalyst under solvent-free conditions exhibited remarkable recyclability with up to five consecutive runs with negligible reduction, which is superior to existing reports, and clearly reveals the novelty, and green, sustainable nature of the as-synthesized A-TiO2 catalyst. A plausible reaction mechanism of both coupling partners was activated through the interaction with the A-TiO2 catalyst to produce valuable C-3 alkylated 4-hydroxycoumarins with 95% yield and high selectivity. The crystal architecture of TiO2 was successfully tailored via a low-temperature (≤200 °C) hydrothermal process in the presence of d-mannitol for feasible applications in dye-sensitized solar cells (DSSCs) and heterogeneous catalysis.![]()
Collapse
Affiliation(s)
- Abdullah M. Al-Enizi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | | | - Mohd Ubaidullah
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Ayman Yousef
- Department of Mathematics and Physics Engineering
- Faculty of Engineering at Mataria
- Helwan University
- Cairo 11718
- Egypt
| | - Rajaram S. Mane
- Swami Ramanand Teerth Marathwada University
- Nanded-431606
- India
| | | |
Collapse
|
8
|
Barrett WM, Takkellapati S, Tadele K, Martin TM, Gonzalez MA. Linking Molecular Structure via Functional Group to Chemical Literature for Establishing a Reaction Lineage for Application to Alternatives Assessment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:7630-7641. [PMID: 33123418 PMCID: PMC7592719 DOI: 10.1021/acssuschemeng.8b05983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The evaluation of potential alternatives for chemicals of concern (CoC) requires an understanding of their potential human health and environmental impacts during the manufacture, use, recycle and disposal life stages. During the manufacturing phase, the processes used to produce a desired chemical are defined based on the sequence of chemical reactions and unit operations required to produce the molecule and separate it from other materials used or produced during its manufacture. This paper introduces and demonstrates a tool that links a chemical's structure to information about its synthesis route and the manufacturing process for that chemical. The structure of the chemical is entered using either a SMILES string or the molecule MOL file, and the molecule is searched to identify functional groups present. Based on those functional groups present, the respective named reactions that can be used in its synthesis routes are identified. This information can be used to identify input and output materials for each named reaction, along with reaction conditions, solvents, and catalysts that participate in the reaction. Additionally, the reaction database contains links to internet references and appropriate reaction-specific keywords, further increasing its comprehensiveness. The tool is designed to facilitate the cataloging and use of the chemical literature in a way that allows user to identify and evaluate information about the reactions, such as alternative solvents, catalysts, reaction conditions and other reaction products which enable the comparison of various reaction pathways for the manufacture of the subject chemical. The chemical manufacturing processing steps can be linked to a chemical process ontology to estimate releases and exposures occurring during the manufacturing phase of a chemical.
Collapse
Affiliation(s)
- William M. Barrett
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory 26 W. Martin Luther King Dr., Cincinnati, OH 45268
| | - Sudhakar Takkellapati
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory 26 W. Martin Luther King Dr., Cincinnati, OH 45268
| | - Kidus Tadele
- Oak Ridge Institute for Science and Education (ORISE), 100 ORAU Way, Oak Ridge, TN 37830
| | - Todd M. Martin
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory 26 W. Martin Luther King Dr., Cincinnati, OH 45268
| | - Michael A. Gonzalez
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory 26 W. Martin Luther King Dr., Cincinnati, OH 45268
| |
Collapse
|