1
|
Di L, Chen M, Han Y, Guo S, Gong X, Ye S, Zhu C. Rational design of terminal deoxynucleotidyl transferase for RNA primer elongation. Int J Biol Macromol 2025; 309:142712. [PMID: 40174852 DOI: 10.1016/j.ijbiomac.2025.142712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
The short synthetic oligonucleotides have laid foundations for modern digital biology, biomaterial, and new therapeutics. However, our abilities to synthesize arbitrary sequences of oligonucleotides were stifled by the decades old phosphoramidite chemistry. The template-independent polymerase, Terminal Deoxynucleotidyl Transferase (TdT), is central to de novo enzymatic DNA synthesis through extensive engineering at the substrate binding site, yet the engineered TdT remained inaccessible to the majority of RNA primers. Here we rationally engineered the primer recognition site of TdT for RNA-primed polymerization. We demonstrated the elevation of RNA elongation activity from 20 % to >90 % on a diverse set of primers and evaluated the reaction dynamics. Pairing with the natural nucleotide substrates, the designed R-TdTs could simplify the analytical procedure for RNA sequences. We developed two proof-of-principle methods for feasible detection of trace amount of microRNAs. Combined with the versatile mutations at substrate binding pocket to accommodate nucleotide building blocks, our designed RNA-editing enzymes would become easily adaptable for a wide range of future applications in de novo synthesis of nucleic acid and synthetic biology.
Collapse
Affiliation(s)
- Linyan Di
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Moyan Chen
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yuqi Han
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Guo
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoqun Gong
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Sheng Ye
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Cheng Zhu
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Forget SM, Krawczyk MJ, Knight AM, Ching C, Copeland RA, Mahmoodi N, Mayo MA, Nguyen J, Tan A, Miller M, Vroom J, Lutz S. Evolving a terminal deoxynucleotidyl transferase for commercial enzymatic DNA synthesis. Nucleic Acids Res 2025; 53:gkaf115. [PMID: 39988321 PMCID: PMC11840559 DOI: 10.1093/nar/gkaf115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Enzymatic DNA synthesis, using stepwise nucleotide addition catalyzed by template-independent polymerases, promises higher efficiency, quality, and sustainability than today's industry-standard phosphoramidite-based processes. We report the directed evolution of a terminal deoxynucleotidyl transferase that uses 3'-phosphate-blocked 2'-deoxynucleoside triphosphates (dNTPs) to control the polymerization reaction. Over 32 iterative rounds of laboratory evolution, 80 amino acid substitutions-constituting ∼20% of the coding protein sequence-were introduced. The engineered polymerase exhibits uniformly high catalytic activity, raising incorporation efficiency by 200-fold to >99% for dNTPs with a 3'-reversible terminator while reducing extension times by >600-fold to 90 s. The same enzyme variant displays improved enzyme robustness, as reflected in the 20°C increase in thermostability. Based on these performance characteristics, the engineered polymerase represents an operational prototype for biocatalytic DNA synthesis at a commercial scale.
Collapse
Affiliation(s)
- Stephanie M Forget
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - Mikayla J Krawczyk
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - Anders M Knight
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - Charlene Ching
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | | | - Niusha Mahmoodi
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - Melissa A Mayo
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - James Nguyen
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - Amanda Tan
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - Mathew Miller
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - Jonathan Vroom
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| | - Stefan Lutz
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, United States
| |
Collapse
|
3
|
Sun L, Xiang Y, Du Y, Wang Y, Ma J, Wang Y, Wang X, Wang G, Chen T. Template-independent synthesis and 3'-end labelling of 2'-modified oligonucleotides with terminal deoxynucleotidyl transferases. Nucleic Acids Res 2024; 52:10085-10101. [PMID: 39149896 PMCID: PMC11417362 DOI: 10.1093/nar/gkae691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates. However, the activities of TdTs for the synthesis and labelling of commonly used XNAs with 2' modifications have not been systematically explored. In this work, we explored and demonstrated the varied activities of three TdTs (bovine TdT, MTdT-evo and murine TdT) for the template-independent incorporation of 2'-methoxy NTPs, 2'-fluoro NTPs and 2'-fluoroarabino NTPs into the 3' ends of single- and double-stranded DNAs and the extension of 2'-modified XNAs with (d)NTPs containing a natural or unnatural nucleobase. Taking advantages of these activities, we established a strategy for protecting single-stranded DNAs from exonuclease I degradation by TdT-synthesized 2'-modified XNA tails and methods for 3'-end labelling of 2'-modified XNAs by TdT-mediated synthesis of G-quadruplex-containing tails or incorporation of nucleotides with a functionalized nucleobase. A DNA-2'-fluoroarabino nucleic acid (FANA) chimeric hydrogel was also successfully constructed based on the extraordinary activity of MTdT-evo for template-independent FANA synthesis.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuming Xiang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yangming Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yaxin Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Xueting Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
4
|
Yang H, Zhu L, Wang X, Song Y, Dong Y, Xu W. Extension characteristics of TdT and its application in biosensors. Crit Rev Biotechnol 2024; 44:981-995. [PMID: 37880088 DOI: 10.1080/07388551.2023.2270772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023]
Abstract
The advantages of rapid amplification of nucleic acid without a template based on terminal deoxyribonucleotidyl transferase (TdT) have been widely used in the field of biosensors. However, the catalytic efficiency of TdT is affected by extension conditions. The sensitivity of TdT- mediated biosensors can be improved only under appropriate conditions. Therefore, in this review, we provide a comprehensive overview of TdT extension characteristics and its applications in biosensors. We focus on the relationship between TdT extension conditions and extension efficiency. Furthermore, the construction strategy of TdT-mediated biosensors according to five different recognition types and their applications in targets are discussed and, finally, several current challenges and prospects in the field are taken into consideration.
Collapse
Affiliation(s)
- He Yang
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Longjiao Zhu
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Xinxin Wang
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Yuhan Song
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), China Agricultural University, Beijing, China
| | - Yulan Dong
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wentao Xu
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Li AN, Shi K, Zeng BB, Xu JH, Yu HL. Enhancing the expression of terminal deoxynucleotidyl transferases by N-terminal truncation. Biotechnol J 2024; 19:e2400226. [PMID: 39295567 DOI: 10.1002/biot.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT), a unique DNA polymerase that catalyzes the template-free incorporation of nucleotides into single-stranded DNA, has facilitated the development of various oligonucleotide-based tools and methods, especially in the field of template-free enzymatic DNA synthesis. However, expressing vertebrate-derived TdTs in Escherichia coli complicates purification and increases production costs. In this study, N-terminal truncation of TdTs was performed to improve their expression and stability. The results revealed that N-terminal truncation could enhance the expression level of six TdTs. Among the truncated mutants, N-140-ZaTdT and N-140-CpTdT, with 140 amino acids removed, exhibited an increase in protein expression, which was 9.5- and 23-fold higher than their wild-types, respectively. Importantly, the truncation preserves the catalytic function of TdT. Additionally, the Tm values of N-140-ZaTdT increased by 4.9°C. The improved expression of the truncated mutants makes them more suitable for reducing production costs and advancing enzyme engineering.
Collapse
Affiliation(s)
- An-Na Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Kun Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Bu-Bing Zeng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Milisavljevic M, Rodriguez TR, Carlson CK, Liu CC, Tyo KEJ. Engineering the Activity of a Template-Independent DNA Polymerase. ACS Synth Biol 2024; 13:2492-2504. [PMID: 39083642 DOI: 10.1021/acssynbio.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Enzymatic DNA writing technologies based on the template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) have the potential to advance DNA information storage. TdT is unique in its ability to synthesize single-stranded DNA de novo but has limitations, including catalytic inhibition by ribonucleotide presence and slower incorporation rates compared to replicative polymerases. We anticipate that protein engineering can improve, modulate, and tailor the enzyme's properties, but there is limited information on TdT sequence-structure-function relationships to facilitate rational approaches. Therefore, we developed an easily modifiable screening assay that can measure the TdT activity in high-throughput to evaluate large TdT mutant libraries. We demonstrated the assay's capabilities by engineering TdT mutants that exhibit both improved catalytic efficiency and improved activity in the presence of an inhibitor. We screened for and identified TdT variants with greater catalytic efficiency in both selectively incorporating deoxyribonucleotides and in the presence of deoxyribonucleotide/ribonucleotide mixes. Using this information from the screening assay, we rationally engineered other TdT homologues with the same properties. The emulsion-based assay we developed is, to the best of our knowledge, the first high-throughput screening assay that can measure TdT activity quantitatively and without the need for protein purification.
Collapse
Affiliation(s)
- Marija Milisavljevic
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Teresa Rojas Rodriguez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Courtney K Carlson
- Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
- Center for Synthetic Biology, University of California, Irvine, California 92697, United States
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
- Center for Synthetic Biology, University of California, Irvine, California 92697, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Pichon M, Hollenstein M. Controlled enzymatic synthesis of oligonucleotides. Commun Chem 2024; 7:138. [PMID: 38890393 PMCID: PMC11189433 DOI: 10.1038/s42004-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Oligonucleotides are advancing as essential materials for the development of new therapeutics, artificial genes, or in storage of information applications. Hitherto, our capacity to write (i.e., synthesize) oligonucleotides is not as efficient as that to read (i.e., sequencing) DNA/RNA. Alternative, biocatalytic methods for the de novo synthesis of natural or modified oligonucleotides are in dire need to circumvent the limitations of traditional synthetic approaches. This Perspective article summarizes recent progress made in controlled enzymatic synthesis, where temporary blocked nucleotides are incorporated into immobilized primers by polymerases. While robust protocols have been established for DNA, RNA or XNA synthesis is more challenging. Nevertheless, using a suitable combination of protected nucleotides and polymerase has shown promises to produce RNA oligonucleotides even though the production of long DNA/RNA/XNA sequences (>1000 nt) remains challenging. We surmise that merging ligase- and polymerase-based synthesis would help to circumvent the current shortcomings of controlled enzymatic synthesis.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
8
|
Hwang HG, Ye DY, Jung GY. Biosensor-guided discovery and engineering of metabolic enzymes. Biotechnol Adv 2023; 69:108251. [PMID: 37690614 DOI: 10.1016/j.biotechadv.2023.108251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
A variety of chemicals have been produced through metabolic engineering approaches, and enhancing biosynthesis performance can be achieved by using enzymes with high catalytic efficiency. Accordingly, a number of efforts have been made to discover enzymes in nature for various applications. In addition, enzyme engineering approaches have been attempted to suit specific industrial purposes. However, a significant challenge in enzyme discovery and engineering is the efficient screening of enzymes with the desired phenotype from extensive enzyme libraries. To overcome this bottleneck, genetically encoded biosensors have been developed to specifically detect target molecules produced by enzyme activity at the intracellular level. Especially, the biosensors facilitate high-throughput screening (HTS) of targeted enzymes, expanding enzyme discovery and engineering strategies with advances in systems and synthetic biology. This review examines biosensor-guided HTS systems and highlights studies that have utilized these tools to discover enzymes in diverse areas and engineer enzymes to enhance their properties, such as catalytic efficiency, specificity, and stability.
Collapse
Affiliation(s)
- Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
9
|
Schneider L, Sauter B, Dagher K, Gillingham D. Recording Binding Information Directly into DNA-Encoded Libraries Using Terminal Deoxynucleotidyl Transferase. J Am Chem Soc 2023; 145:20874-20882. [PMID: 37704585 PMCID: PMC10540198 DOI: 10.1021/jacs.3c05961] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 09/15/2023]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is an unusual DNA polymerase that adds untemplated dNTPs to 3'-ends of DNA. If a target protein is expressed as a TdT fusion and incubated with a DNA-encoded library (DEL) in the presence of dATP, the binders of the target induce proximity between TdT and the DNA, promoting the synthesis of a poly-adenine (polyA) tail. The polyA tail length is proportional to the binding affinity, effectively serving as a stable molecular record of binding events. The polyA tail is also a convenient handle to enrich binders with magnetic poly(dT)25 beads before sequencing. In a benchmarking system, we show that ligands spanning nanomolar to double-digit micromolar binding can be cleanly identified by TdT extension, whereas only the tightest binding ligands are identified by classical affinity selection. The method is simple to implement and can function on any DEL that bears a free 3'-end.
Collapse
Affiliation(s)
| | - Basilius Sauter
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| | - Koder Dagher
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Verardo D, Adelizzi B, Rodriguez-Pinzon DA, Moghaddam N, Thomée E, Loman T, Godron X, Horgan A. Multiplex enzymatic synthesis of DNA with single-base resolution. SCIENCE ADVANCES 2023; 9:eadi0263. [PMID: 37418522 PMCID: PMC10328407 DOI: 10.1126/sciadv.adi0263] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Enzymatic DNA synthesis (EDS) is a promising benchtop and user-friendly method of nucleic acid synthesis that, instead of solvents and phosphoramidites, uses mild aqueous conditions and enzymes. For applications such as protein engineering and spatial transcriptomics that require either oligo pools or arrays with high sequence diversity, the EDS method needs to be adapted and certain steps in the synthesis process spatially decoupled. Here, we have used a synthesis cycle comprising a first step of site-specific silicon microelectromechanical system inkjet dispensing of terminal deoxynucleotidyl transferase enzyme and 3' blocked nucleotide, and a second step of bulk slide washing to remove the 3' blocking group. By repeating the cycle on a substrate with an immobilized DNA primer, we show that microscale spatial control of nucleic acid sequence and length is possible, which, here, are assayed by hybridization and gel electrophoresis. This work is distinctive for enzymatically synthesizing DNA in a highly parallel manner with single base control.
Collapse
Affiliation(s)
| | | | | | | | | | - Tessa Loman
- DNA Script, 67 Avenue de Fontainebleau, 94270 Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
11
|
Simmons BL, McDonald ND, Robinett NG. Assessment of enzymatically synthesized DNA for gene assembly. Front Bioeng Biotechnol 2023; 11:1208784. [PMID: 37476479 PMCID: PMC10354541 DOI: 10.3389/fbioe.2023.1208784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Phosphoramidite chemical DNA synthesis technology is utilized for creating de novo ssDNA building blocks and is widely used by commercial vendors. Recent advances in enzymatic DNA synthesis (EDS), including engineered enzymes and reversibly terminated nucleotides, bring EDS technology into competition with traditional chemical methods. In this short study, we evaluate oligos produced using a benchtop EDS instrument alongside chemically produced commercial oligonucleotides to assemble a synthetic gene encoding green fluorescent protein (GFP). While enzymatic synthesis produced lower concentrations of individual oligonucleotides, these were available in half the time of commercially produced oligonucleotides and were sufficient to assemble functional GFP sequences without producing hazardous organic chemical waste.
Collapse
Affiliation(s)
- Brooke L. Simmons
- U.S. Army Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Gunpowder, MD, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Nathan D. McDonald
- U.S. Army Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Gunpowder, MD, United States
| | - Natalie G. Robinett
- U.S. Army Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Gunpowder, MD, United States
- Excet, Inc., Springfield, VA, United States
| |
Collapse
|
12
|
Debon A, Siirola E, Snajdrova R. Enzymatic Bioconjugation: A Perspective from the Pharmaceutical Industry. JACS AU 2023; 3:1267-1283. [PMID: 37234110 PMCID: PMC10207132 DOI: 10.1021/jacsau.2c00617] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Enzymes have firmly established themselves as bespoke catalysts for small molecule transformations in the pharmaceutical industry, from early research and development stages to large-scale production. In principle, their exquisite selectivity and rate acceleration can also be leveraged for modifying macromolecules to form bioconjugates. However, available catalysts face stiff competition from other bioorthogonal chemistries. In this Perspective, we seek to illuminate applications of enzymatic bioconjugation in the face of an expanding palette of new drug modalities. With these applications, we wish to highlight some examples of current successes and pitfalls of using enzymes for bioconjugation along the pipeline and try to illustrate opportunities for further development.
Collapse
Affiliation(s)
- Aaron Debon
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Elina Siirola
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Radka Snajdrova
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| |
Collapse
|
13
|
Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 2023; 7:144-161. [PMID: 36714378 PMCID: PMC9869848 DOI: 10.1038/s41570-022-00456-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.
Collapse
Affiliation(s)
- Alex Hoose
- National Physical Laboratory, Teddington, Middlesex UK
| | | | - Marko Storch
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul S. Freemont
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
14
|
Directed Evolution Methods for Enzyme Engineering. Molecules 2021; 26:molecules26185599. [PMID: 34577070 PMCID: PMC8470892 DOI: 10.3390/molecules26185599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Enzymes underpin the processes required for most biotransformations. However, natural enzymes are often not optimal for biotechnological uses and must be engineered for improved activity, specificity and stability. A rich and growing variety of wet-lab methods have been developed by researchers over decades to accomplish this goal. In this review such methods and their specific attributes are examined.
Collapse
|
15
|
Schaudy E, Lietard J, Somoza MM. Sequence Preference and Initiator Promiscuity for De Novo DNA Synthesis by Terminal Deoxynucleotidyl Transferase. ACS Synth Biol 2021; 10:1750-1760. [PMID: 34156829 PMCID: PMC8291772 DOI: 10.1021/acssynbio.1c00142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The untemplated activity
of terminal deoxynucleotidyl transferase
(TdT) represents its most appealing feature. Its use is well established
in applications aiming for extension of a DNA initiator strand, but
a more recent focus points to its potential in enzymatic de
novo synthesis of DNA. Whereas its low substrate specificity
for nucleoside triphosphates has been studied extensively, here we
interrogate how the activity of TdT is modulated by the nature of
the initiating strands, in particular their length, chemistry, and
nucleotide composition. Investigation of full permutational libraries
of mono- to pentamers of d-DNA, l-DNA, and 2′O-methyl-RNA
of differing directionality immobilized to glass surfaces, and generated via photolithographic in situ synthesis,
shows that the efficiency of extension strongly depends on the nucleobase
sequence. We also show TdT being catalytically active on a non-nucleosidic
substrate, hexaethylene glycol. These results offer new perspectives
on constraints and strategies for de novo synthesis
of DNA using TdT regarding the requirements for initiation of enzymatic
generation of DNA.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
16
|
Towards the enzymatic synthesis of phosphorothioate containing LNA oligonucleotides. Bioorg Med Chem Lett 2021; 48:128242. [PMID: 34217829 DOI: 10.1016/j.bmcl.2021.128242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Therapeutic oligonucleotides require the addition of multiple chemical modifications to the nucleosidic scaffold in order to improve their drug delivery efficiency, cell penetration capacity, biological stability, and pharmacokinetic properties. This chemical modification pattern is often accompanied by a synthetic burden and by limitations in sequence length. Here, we have synthesized a nucleoside triphosphate analog bearing two simultaneous modifications at the level of the sugar (LNA) and the backbone (thiophosphate) and have tested its compatibility with enzymatic DNA synthesis which could abrogate some of these synthetic limitations. While this novel analog is not as well tolerated by polymerases compared to the corresponding α-thio-dTTP or LNA-TTP, α -thio-LNA-TTP can readily be used for enzymatic synthesis on universal templates for the introduction of phosphorothioated LNA nucleotides.
Collapse
|
17
|
Mao N, Aggarwal N, Poh CL, Cho BK, Kondo A, Liu C, Yew WS, Chang MW. Future trends in synthetic biology in Asia. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10038. [PMID: 36618442 PMCID: PMC9744534 DOI: 10.1002/ggn2.10038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 05/06/2023]
Abstract
Synthetic biology research and technology translation has garnered increasing interest from the governments and private investors in Asia, where the technology has great potential in driving a sustainable bio-based economy. This Perspective reviews the latest developments in the key enabling technologies of synthetic biology and its application in bio-manufacturing, medicine, food and agriculture in Asia. Asia-centric strengths in synthetic biology to grow the bio-based economy, such as advances in genome editing and the presence of biofoundries combined with the availability of natural resources and vast markets, are also highlighted. The potential barriers to the sustainable development of the field, including inadequate infrastructure and policies, with suggestions to overcome these by building public-private partnerships, more effective multi-lateral collaborations and well-developed governance framework, are presented. Finally, the roles of technology, education and regulation in mitigating potential biosecurity risks are examined. Through these discussions, stakeholders from different groups, including academia, industry and government, are expectantly better positioned to contribute towards the establishment of innovation and bio-economy hubs in Asia.
Collapse
Affiliation(s)
- Ning Mao
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
| | - Byung Kwan Cho
- Department of Biological Sciences, and KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, and Engineering Biology Research CenterKobe UniversityKobeJapan
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|
18
|
Lee H, Wiegand DJ, Griswold K, Punthambaker S, Chun H, Kohman RE, Church GM. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nat Commun 2020; 11:5246. [PMID: 33067441 PMCID: PMC7567835 DOI: 10.1038/s41467-020-18681-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
New storage technologies are needed to keep up with the global demands of data generation. DNA is an ideal storage medium due to its stability, information density and ease-of-readout with advanced sequencing techniques. However, progress in writing DNA is stifled by the continued reliance on chemical synthesis methods. The enzymatic synthesis of DNA is a promising alternative, but thus far has not been well demonstrated in a parallelized manner. Here, we report a multiplexed enzymatic DNA synthesis method using maskless photolithography. Rapid uncaging of Co2+ ions by patterned UV light activates Terminal deoxynucleotidyl Transferase (TdT) for spatially-selective synthesis on an array surface. Spontaneous quenching of reactions by the diffusion of excess caging molecules confines synthesis to light patterns and controls the extension length. We show that our multiplexed synthesis method can be used to store digital data by encoding 12 unique DNA oligonucleotide sequences with video game music, which is equivalent to 84 trits or 110 bits of data.
Collapse
Affiliation(s)
- Howon Lee
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Daniel J Wiegand
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kettner Griswold
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Charles Stark Draper Laboratory, Cambridge, MA, 02139, USA
| | - Sukanya Punthambaker
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, 145 Anamro, Seongbukgu, 02841, Seoul, South Korea
| | - Richie E Kohman
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA.
| |
Collapse
|