1
|
Wang H, Dong Z, Shi J, Chen L, Sun T, Zhang W. Genome-Wide A → G and C → T Mutations Induced by Functional TadA Variants in Escherichia coli. ACS Synth Biol 2025; 14:431-440. [PMID: 39787000 DOI: 10.1021/acssynbio.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in Escherichia coli, which is capable of rapidly introducing A → G mutations into the E. coli genome, resulting in a 664-fold increase in terms of mutation rate. Additionally, we tested a dual-functional TadA variant, TadAD, and then fused it with DnaG. This construct introduced both C → T and A → G mutations into the E. coli genome, with the mutation rate increased by 370-fold upon coexpression with a uracil glycosylase inhibitor (DnaG-TadAD-UGI). We applied DnaG-TadA and DnaG-TadAD-UGI systems to the adaptive laboratory evolution for Cd2+ and kanamycin resistance, achieving an 8.0 mM Cd2+ and 200 μg/mL kanamycin tolerance within just 17 days and 132 h, respectively. Compared to conventional evolution methods, the final tolerance levels were increased by 320 and 266%, respectively. Our work offers a novel strategy for random mutagenesis in E. coli and potentially other prokaryotic species.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
| | - Jingyi Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, P. R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Hu L, Han J, Wang HD, Cheng ZH, Lv CC, Liu DF, Yu HQ. A universal and wide-range cytosine base editor via domain-inlaid and fidelity-optimized CRISPR-FrCas9. Nat Commun 2025; 16:1260. [PMID: 39893181 PMCID: PMC11787337 DOI: 10.1038/s41467-025-56655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
CRISPR-based base editor (BE) offer diverse editing options for genetic engineering of microorganisms, but its application is limited by protospacer adjacent motif (PAM) sequences, context preference, editing window, and off-target effects. Here, a series of iteratively improved cytosine base editors (CBEs) are constructed using the FrCas9 nickase (FrCas9n) with the unique PAM palindromic structure (NNTA) to alleviate these challenges. The deaminase domain-inlaid FrCas9n exhibits an editing range covering 38 nucleotides upstream and downstream of the palindromic PAM, without context preference, which is 6.3 times larger than that of traditional CBEs. Additionally, lower off-target editing is achieved when incorporating high-fidelity mutations at R61A and Q964A in FrCas9n, while maintaining high editing efficiency. The final CBE, HF-ID824-evoCDA-FrCas9n demonstrates broad applicability across different microbes such as Escherichia coli MG1655, Shewanella oneidensis MR-1, and Pseudomonas aeruginosa PAO1. Collectively, this tool offers robust gene editing for facilitating mechanistic studies, functional exploration, and protein evolution in microbes.
Collapse
Affiliation(s)
- Lan Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Han
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao-Da Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhou-Hua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Chang-Ce Lv
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Han-Qing Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Wang Z, Qi X, Ren X, Lin Y, Zeng F, Wang Q. Synthetic evolution of Saccharomyces cerevisiae for biomanufacturing: Approaches and applications. MLIFE 2025; 4:1-16. [PMID: 40026576 PMCID: PMC11868838 DOI: 10.1002/mlf2.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 03/05/2025]
Abstract
The yeast Saccharomyces cerevisiae is a well-studied unicellular eukaryote with a significant role in the biomanufacturing of natural products, biofuels, and bulk and value-added chemicals, as well as the principal model eukaryotic organism utilized for fundamental research. Robust tools for building and optimizing yeast chassis cells were made possible by the quick development of synthetic biology, especially in engineering evolution. In this review, we focused on methods and tools from synthetic biology that are used to design and engineer S. cerevisiae's evolution. A detailed discussion was held regarding transcriptional regulation, template-dependent and template-free approaches. Furthermore, the applications of evolved S. cerevisiae were comprehensively summarized. These included improving environmental stress tolerance and raising cell metabolic performance in the production of biofuels and bulk and value-added chemicals. Finally, the future considerations were briefly discussed.
Collapse
Affiliation(s)
- Zhen Wang
- College of Science & TechnologyHebei Agricultural UniversityCangzhouChina
| | - Xianni Qi
- Key Laboratory of Engineering Biology for Low‐carbon Manufacturing, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Center of Technology Innovation for Synthetic BiologyTianjinChina
| | - Xinru Ren
- College of Science & TechnologyHebei Agricultural UniversityCangzhouChina
| | - Yuping Lin
- Key Laboratory of Engineering Biology for Low‐carbon Manufacturing, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Fanli Zeng
- College of Life SciencesHebei Agricultural UniversityBaodingChina
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low‐carbon Manufacturing, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Center of Technology Innovation for Synthetic BiologyTianjinChina
| |
Collapse
|
4
|
Dong Y, Chen Z. Accelerated Metabolic Engineering for Industrial Strain Development via the Construction of a Large-Scale Genome Library. ACS Synth Biol 2025; 14:41-56. [PMID: 39680725 DOI: 10.1021/acssynbio.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Production of chemicals via metabolic engineering of microbes is becoming highly important for sustainable bioeconomy. Conventional metabolic engineering methodologies typically involve labor-intensive and time-consuming processes of iterative genetic modifications, which are inefficient in identifying new genetic targets for the construction of robust industrial strains on a large scale. To accelerate the creation of efficient microbial cell factories and enhance our insights into cellular metabolism, diverse large-scale genome libraries are emerging as powerful tools, which can be established through multiplex or parallel genome editing, gene expression regulation, and incorporation of evolutionary strategies. In this review, we discuss the latest advancements in the construction of genome-scale libraries as well as their applications within the domain of metabolic engineering. We also address the limitations of various techniques and provide insights into future prospects for the field.
Collapse
Affiliation(s)
- Yufei Dong
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Shao D, Sheng K, Chao B, Tong Y, Jiang R, Zhang J. The Functional Identification of the CYP2E1 Gene in the Kidney of Lepus yarkandensis. Int J Mol Sci 2025; 26:453. [PMID: 39859169 PMCID: PMC11764603 DOI: 10.3390/ijms26020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
This study aims to identify the function of the cytochrome P450 2E1 (CYP2E1) gene in the kidneys of Lepus yarkandensis. CYP2E1 is a significant metabolic enzyme involved in the metabolism of various endogenous and exogenous compounds and is associated with the occurrence and progression of multiple diseases. Given L. yarkandensis's ability to survive in the extremely arid L. yarkandensis, we hypothesize that CYP2E1 in its kidneys plays a crucial role in adaptability. Through molecular cloning and sequence analysis, we discovered that the CYP2E1 gene of Lepus yarkandensis encodes a protein of 493 amino acids. The 493-amino acid protein encoded by the Lepus yarkandensis CYP2E1 gene shows 13 amino acid variation sites compared to the homologous protein in Oryctolagus cuniculus. The protein is primarily localized to the endoplasmic reticulum membrane and lacks transmembrane structures. In the yeast expression system, the heterologous expression of the CYP2E1 gene enhanced the yeast's tolerance to drought, salinity, and high temperatures, achieved by increasing antioxidant enzyme activity and reducing levels of oxidative stress markers. Additionally, this study identified a "Yeast Oxidative Stress Lethal Threshold (Yeast OSLT)" under specific stress conditions. Once this threshold is exceeded, the cell's antioxidant defense system can no longer maintain cellular homeostasis, leading to massive cell death. Although CYP2E1 did not change this threshold, it contributed to cell survival to some extent. These findings not only reveal the function of L. yarkandensis CYP2E1 in stress adaptation but also provide valuable molecular insights into its survival strategy in extreme environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianping Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China; (D.S.); (K.S.); (B.C.); (Y.T.); (R.J.)
| |
Collapse
|
6
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
7
|
Zimmermann A, Prieto-Vivas JE, Voordeckers K, Bi C, Verstrepen KJ. Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases. Trends Microbiol 2024; 32:884-901. [PMID: 38493013 DOI: 10.1016/j.tim.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
The natural process of evolutionary adaptation is often exploited as a powerful tool to obtain microbes with desirable traits. For industrial microbes, evolutionary engineering is often used to generate variants that show increased yields or resistance to stressful industrial environments, thus obtaining superior microbial cell factories. However, even in large populations, the natural supply of beneficial mutations is typically low, which implies that obtaining improved microbes is often time-consuming and inefficient. To overcome this limitation, different techniques have been developed that boost mutation rates. While some of these methods simply increase the overall mutation rate across a genome, others use recent developments in DNA synthesis, synthetic biology, and CRISPR-Cas techniques to control the type and location of mutations. This review summarizes the most important recent developments and methods in the field of evolutionary engineering in model microorganisms. It discusses how both in vitro and in vivo approaches can increase the genetic diversity of the host, with a special emphasis on in vivo techniques for the optimization of metabolic pathways for precision fermentation.
Collapse
Affiliation(s)
- Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Julian E Prieto-Vivas
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Karin Voordeckers
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; College of Life Science, Tianjin Normal University, Tianjin, China
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium; VIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
8
|
Cazier A, Irvin OM, Chávez LS, Dalvi S, Abraham H, Wickramanayake N, Yellayi S, Blazeck J. A Rapid Antibody Enhancement Platform in Saccharomyces cerevisiae Using an Improved, Diversifying CRISPR Base Editor. ACS Synth Biol 2023; 12:3287-3300. [PMID: 37873982 PMCID: PMC10661033 DOI: 10.1021/acssynbio.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
The yeast Saccharomyces cerevisiae is commonly used to interrogate and screen protein variants and to perform directed evolution studies to develop proteins with enhanced features. While several techniques have been described that help enable the use of yeast for directed evolution, there remains a need to increase their speed and ease of use. Here we present yDBE, a yeast diversifying base editor that functions in vivo and employs a CRISPR-dCas9-directed cytidine deaminase base editor to diversify DNA in a targeted, rapid, and high-breadth manner. To develop yDBE, we enhanced the mutation rate of an initial base editor by employing improved deaminase variants and characterizing several scaffolded guide constructs. We then demonstrate the ability of the yDBE platform to improve the affinity of a displayed antibody scFv, rapidly generating diversified libraries and isolating improved binders via cell sorting. By performing high-throughput sequencing analysis of the high-activity yDBE, we show that it enables a mutation rate of 2.13 × 10-4 substitutions/bp/generation over a window of 100 bp. As yDBE functions entirely in vivo and can be easily programmed to diversify nearly any such window of DNA, we posit that it can be a powerful tool for facilitating a variety of directed evolution experiments.
Collapse
Affiliation(s)
- Andrew
P. Cazier
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Olivia M. Irvin
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lizmarie S. Chávez
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Saachi Dalvi
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hannah Abraham
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nevinka Wickramanayake
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sreenivas Yellayi
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John Blazeck
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Topaloğlu A, Esen Ö, Turanlı-Yıldız B, Arslan M, Çakar ZP. From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications. J Fungi (Basel) 2023; 9:984. [PMID: 37888240 PMCID: PMC10607480 DOI: 10.3390/jof9100984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Increased human population and the rapid decline of fossil fuels resulted in a global tendency to look for alternative fuel sources. Environmental concerns about fossil fuel combustion led to a sharp move towards renewable and environmentally friendly biofuels. Ethanol has been the primary fossil fuel alternative due to its low carbon emission rates, high octane content and comparatively facile microbial production processes. In parallel to the increased use of bioethanol in various fields such as transportation, heating and power generation, improvements in ethanol production processes turned out to be a global hot topic. Ethanol is by far the leading yeast output amongst a broad spectrum of bio-based industries. Thus, as a well-known platform microorganism and native ethanol producer, baker's yeast Saccharomyces cerevisiae has been the primary subject of interest for both academic and industrial perspectives in terms of enhanced ethanol production processes. Metabolic engineering strategies have been primarily adopted for direct manipulation of genes of interest responsible in mainstreams of ethanol metabolism. To overcome limitations of rational metabolic engineering, an alternative bottom-up strategy called inverse metabolic engineering has been widely used. In this context, evolutionary engineering, also known as adaptive laboratory evolution (ALE), which is based on random mutagenesis and systematic selection, is a powerful strategy to improve bioethanol production of S. cerevisiae. In this review, we focus on key examples of metabolic and evolutionary engineering for improved first- and second-generation S. cerevisiae bioethanol production processes. We delve into the current state of the field and show that metabolic and evolutionary engineering strategies are intertwined and many metabolically engineered strains for bioethanol production can be further improved by powerful evolutionary engineering strategies. We also discuss potential future directions that involve recent advancements in directed genome evolution, including CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Ömer Esen
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Burcu Turanlı-Yıldız
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Mevlüt Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, Van 65000, Türkiye;
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| |
Collapse
|
10
|
Li K, Qin LY, Zhang ZX, Yan CX, Gu Y, Sun XM, Huang H. Powerful Microbial Base-Editing Toolbox: From Optimization Strategies to Versatile Applications. ACS Synth Biol 2023; 12:1586-1598. [PMID: 37224027 DOI: 10.1021/acssynbio.3c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Base editors (BE) based on CRISPR systems are practical gene-editing tools which continue to drive frontier advances of life sciences. BEs are able to efficiently induce point mutations at target sites without double-stranded DNA cleavage. Hence, they are widely employed in the fields of microbial genome engineering. As applications of BEs continue to expand, the demands for base-editing efficiency, fidelity, and versatility are also on the rise. In recent years, a series of optimization strategies for BEs have been developed. By engineering the core components of BEs or adopting different assembly methods, the performance of BEs has been well optimized. Moreover, series of newly established BEs have significantly expanded the base-editing toolsets. In this Review, we will summarize the current efforts for BE optimization, introduce several novel BEs with versatility, and look forward to the broadened applications for industrial microorganisms.
Collapse
Affiliation(s)
- Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Ling-Yun Qin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
11
|
Zhang Y, Chen S, Yang L, Zhang Q. Application progress of CRISPR/Cas9 genome-editing technology in edible fungi. Front Microbiol 2023; 14:1169884. [PMID: 37303782 PMCID: PMC10248459 DOI: 10.3389/fmicb.2023.1169884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023] Open
Abstract
Edible fungi are not only delicious but are also rich in nutritional and medicinal value, which is highly sought after by consumers. As the edible fungi industry continues to rapidly advance worldwide, particularly in China, the cultivation of superior and innovative edible fungi strains has become increasingly pivotal. Nevertheless, conventional breeding techniques for edible fungi can be arduous and time-consuming. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) is a powerful tool for molecular breeding due to its ability to mediate high-efficiency and high-precision genome modification, which has been successfully applied to many kinds of edible fungi. In this review, we briefly summarized the working mechanism of the CRISPR/Cas9 system and highlighted the application progress of CRISPR/Cas9-mediated genome-editing technology in edible fungi, including Agaricus bisporus, Ganoderma lucidum, Flammulina filiformis, Ustilago maydis, Pleurotus eryngii, Pleurotus ostreatus, Coprinopsis cinerea, Schizophyllum commune, Cordyceps militaris, and Shiraia bambusicola. Additionally, we discussed the limitations and challenges encountered using CRISPR/Cas9 technology in edible fungi and provided potential solutions. Finally, the applications of CRISPR/Cas9 system for molecular breeding of edible fungi in the future are explored.
Collapse
|
12
|
Wang Y, Zhao D, Sun L, Wang J, Fan L, Cheng G, Zhang Z, Ni X, Feng J, Wang M, Zheng P, Bi C, Zhang X, Sun J. Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:3368-3378. [PMID: 36099191 DOI: 10.1021/acssynbio.2c00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Expanding the base conversion type is expected to largely broaden the application of base editing, whereas it requires decipherment of the machinery controlling the editing outcome. Here, we discovered that the DNA polymerase V-mediated translesion DNA synthesis (TLS) pathway controlled the C-to-A editing by a glycosylase base editor (GBE) in Escherichia coli. However, C-to-G conversion was surprisingly found to be the main product of the GBE in Corynebacterium glutamicum and subsequent gene inactivation identified the decisive TLS enzymes. Introduction of the E. coli TLS pathway into a TLS-deficient C. glutamicum mutant completely changed the GBE outcome from C-to-G to C-to-A. Combining the canonical C-to-T editor, a pioneering C-to-N base editing toolbox was established in C. glutamicum. The expanded base conversion capability produces greater genetic diversity and promotes the application of base editing in gene inactivation and protein evolution. This study demonstrates the possibility of engineering TLS systems to develop advanced genome editing tools.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Dongdong Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Letian Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Guimin Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
13
|
Zhang ZX, Nong FT, Wang YZ, Yan CX, Gu Y, Song P, Sun XM. Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact 2022; 21:191. [PMID: 36109777 PMCID: PMC9479345 DOI: 10.1186/s12934-022-01917-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli, one of the most efficient expression hosts for recombinant proteins (RPs), is widely used in chemical, medical, food and other industries. However, conventional expression strains are unable to effectively express proteins with complex structures or toxicity. The key to solving this problem is to alleviate the host burden associated with protein overproduction and to enhance the ability to accurately fold and modify RPs at high expression levels. Here, we summarize the recently developed optimization strategies for the high-level production of RPs from the two aspects of host burden and protein activity. The aim is to maximize the ability of researchers to quickly select an appropriate optimization strategy for improving the production of RPs.
Collapse
|
14
|
Gou ZC, Lu MJ, Cui XY, Wang XQ, Jiang MY, Wang YS, Wang ZQ, Yu XX, Tang SS, Chen G, Su YJ. Enhanced laccase production by mutagenized Myrothecium verrucaria using corn stover as a carbon source and its potential in the degradation of 2-chlorophen. Bioprocess Biosyst Eng 2022; 45:1581-1593. [PMID: 35932338 DOI: 10.1007/s00449-022-02767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/30/2022] [Indexed: 12/18/2022]
Abstract
Chlorophenols are widely used in industry and are known environmental pollutants. The degradation of chlorophenols is important for environmental remediation. In this study, we evaluated the biodegradation of 2-chlorophenol using crude laccase produced by Myrothecium verrucaria. Atmospheric and room temperature plasma technology was used to increase laccase production. The culture conditions of the M-6 mutant were optimized. Our results showed that corn stover could replace glucose as a carbon source and promote laccase production. The maximum laccase activity of 30.08 U/mL was achieved after optimization, which was a 19.04-fold increase. The biodegradation rate of 2-chlorophenol using crude laccase was 97.13%, a positive correlation was determined between laccase activity and degradation rate. The toxicity of 2-CP was substantially reduced after degradation by laccase solution. Our findings show the feasibility of the use of corn stover in laccase production by M. verrucaria mutant and the subsequent biodegradation of 2-chlorophenol using crude laccase.
Collapse
Affiliation(s)
- Ze-Chang Gou
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Min-Jie Lu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Xiao-Yu Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Xi-Qing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Mei-Yi Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Ya-Shuo Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Zi-Qi Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Xiao-Xiao Yu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Shan-Shan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Ying-Jie Su
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China. .,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China.
| |
Collapse
|
15
|
Yao Z, Wang Q, Dai Z. Recent Advances in Directed Yeast Genome Evolution. J Fungi (Basel) 2022; 8:635. [PMID: 35736118 PMCID: PMC9225242 DOI: 10.3390/jof8060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Saccharomyces cerevisiae, as a Generally Recognized as Safe (GRAS) fungus, has become one of the most widely used chassis cells for industrial applications and basic research. However, owing to its complex genetic background and intertwined metabolic networks, there are still many obstacles that need to be overcome in order to improve desired traits and to successfully link genotypes to phenotypes. In this context, genome editing and evolutionary technology have rapidly progressed over the last few decades to facilitate the rapid generation of tailor-made properties as well as for the precise determination of relevant gene targets that regulate physiological functions, including stress resistance, metabolic-pathway optimization and organismal adaptation. Directed genome evolution has emerged as a versatile tool to enable researchers to access desired traits and to study increasingly complicated phenomena. Here, the development of directed genome evolutions in S. cerevisiae is reviewed, with a focus on different techniques driving evolutionary engineering.
Collapse
Affiliation(s)
- Zhen Yao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
16
|
Zhao M, Gao M, Xiong L, Liu Y, Tao X, Gao B, Liu M, Wang FQ, Wei DZ. CRISPR-Cas Assisted Shotgun Mutagenesis Method for Evolutionary Genome Engineering. ACS Synth Biol 2022; 11:1958-1970. [PMID: 35500195 DOI: 10.1021/acssynbio.2c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome mutagenesis drives the evolution of organisms. Here, we developed a CRISPR-Cas assisted random mutation (CARM) technique for whole-genome mutagenesis. The method leverages an entirely random gRNA library and SpCas9-NG to randomly damage genomes in a controllable shotgunlike manner that then triggers diverse and abundant mutations via low-fidelity repair. As a proof of principle, CARM was applied to evolve the capacity of Saccharomyces cerevisiae BY4741 to produce β-carotene. After seven rounds of iterative evolution over two months, a β-carotene hyperproducing strain, C7-143, was isolated with a 10.5-fold increase in β-carotene production and 857 diverse genomic mutations that comprised indels, duplications, inversions, and chromosomal rearrangements. Transcriptomic analysis revealed that the expression of 2541 genes of strain C7-143 was significantly altered, suggesting that the metabolic landscape of the strain was deeply reconstructed. In addition, CARM was applied to evolve industrially relevant S. cerevisiae CEN.PK2-1C for S-adenosyl-L-methionine production, which was increased 2.28 times after just one round. Thus, CARM can contribute to increasing genetic diversity to identify new phenotypes that could further be investigated by reverse engineering.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Miaomiao Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liangbin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yongjun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Min Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
17
|
Li M, Huo YX, Guo S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. BIOLOGY 2022; 11:571. [PMID: 35453770 PMCID: PMC9024924 DOI: 10.3390/biology11040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
Nonmodel microbes with unique and diverse metabolisms have become rising stars in synthetic biology; however, the lack of efficient gene engineering techniques still hinders their development. Recently, the use of base editors has emerged as a versatile method for gene engineering in a wide range of organisms including nonmodel microbes. This method is a fusion of impaired CRISPR/Cas9 nuclease and base deaminase, enabling the precise point mutation at the target without inducing homologous recombination. This review updates the latest advancement of base editors in microbes, including the conclusion of all microbes that have been researched by base editors, the introduction of newly developed base editors, and their applications. We provide a list that comprehensively concludes specific applications of BEs in nonmodel microbes, which play important roles in industrial, agricultural, and clinical fields. We also present some microbes in which BEs have not been fully established, in the hope that they are explored further and so that other microbial species can achieve arbitrary base conversions. The current obstacles facing BEs and solutions are put forward. Lastly, the highly efficient BEs and other developed versions for genome-wide reprogramming of cells are discussed, showing great potential for future engineering of nonmodel microbes.
Collapse
Affiliation(s)
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| |
Collapse
|
18
|
Eom GE, Lee H, Kim S. Development of a genome-targeting mutator for the adaptive evolution of microbial cells. Nucleic Acids Res 2021; 50:e38. [PMID: 34928386 PMCID: PMC9023256 DOI: 10.1093/nar/gkab1244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Methods that can randomly introduce mutations in the microbial genome have been used for classical genetic screening and, more recently, the evolutionary engineering of microbial cells. However, most methods rely on either cell-damaging agents or disruptive mutations of genes that are involved in accurate DNA replication, of which the latter requires prior knowledge of gene functions, and thus, is not easily transferable to other species. In this study, we developed a new mutator for in vivo mutagenesis that can directly modify the genomic DNA. Mutator protein, MutaEco, in which a DNA-modifying enzyme is fused to the α-subunit of Escherichia coli RNA polymerase, increases the mutation rate without compromising the cell viability and accelerates the adaptive evolution of E. coli for stress tolerance and utilization of unconventional carbon sources. This fusion strategy is expected to accommodate diverse DNA-modifying enzymes and may be easily adapted to various bacterial species.
Collapse
Affiliation(s)
- Ga-Eul Eom
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyunbin Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|