1
|
Liang G, Gao C, Wu J, Hu G, Li X, Liu L. Enhancing electron transfer efficiency in microbial electrochemical systems for bioelectricity and chemical production. BIORESOURCE TECHNOLOGY 2025; 428:132445. [PMID: 40147568 DOI: 10.1016/j.biortech.2025.132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Microbial electrochemical systems have emerged as promising platforms for chemical production and bioelectricity generation by utilizing cost-effective substrates. However, their performance is limited by the efficiency of both intracellular and extracellular electron transfer. This review systematically summarizes strategies to enhance electron transfer from a microbial perspective, including improvements in extracellular electron transfer, intracellular electron regeneration, and the establishment of electroactive microbial consortia. In addition, the working mechanisms and limitations of these strategies are analyzed. Furthermore, the potential applications of microbial electrochemical systems in bioelectricity production, chemical synthesis, and industrial-scale applications are explored. Finally, the current challenges of microbial electrochemical systems are discussed, and potential solutions are proposed to advance their practical applications.
Collapse
Affiliation(s)
- Guangjie Liang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Jiang W, Guo Y, Liang X, Zhang Y, Kang J, Jin Z, Ning B. A dual light-controlled co-culture system enables the regulation of population composition. Synth Syst Biotechnol 2025; 10:574-582. [PMID: 40092159 PMCID: PMC11910626 DOI: 10.1016/j.synbio.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
With the development of metabolic engineering, increasing requirements for efficient microbial biosynthesis call for establishment of multi-strain co-culture system. Dynamic regulation of population ratios is crucial for optimizing bioproduction performance. Optogenetic systems with high universality and flexibility have the potential to realize dynamic control of population proportion. In this study, we utilized an optimized chromatic acclimation sensor/regulator (CcaS/R) system and a blue light-activated YF1-FixJ-PhlF system as induction modules. A pair of orthogonal quorum sensing systems and a toxin-antitoxin system were employed as communication module and effector module, respectively. By integrating these modules, we developed a dual light-controlled co-culture system that enables dynamic regulation of population ratios. This co-culture system provides a universal toolkit for applications in metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Wei Jiang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, PR China
- Medical Integration and Practice Center, Shandong University, Jinan, 250013, Shandong, PR China
| | - Yijian Guo
- Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, PR China
| | - Xuanshuo Liang
- West China Medical Center, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, PR China
| | - Jianning Kang
- Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, PR China
| | - Zhengxin Jin
- Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, PR China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, PR China
- Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, PR China
| |
Collapse
|
3
|
Yang X, Zhu YB, Zhao SP, Xi HL. Reconstruction of a microbial TNT deep degradation system and its mechanism for reshaping microecology. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137411. [PMID: 39879770 DOI: 10.1016/j.jhazmat.2025.137411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
This study is the first to use synthetic biological omics technology to analyze the molecular mechanism underlying deep degradation of TNT, to construct an artificial transformation system to create engineered Escherichia coli bacteria, and to use Bacillus subtilis as an expression host to explore the mechanism driving the reshaping of the deep degradation platform on microecology. Nitroreductase family protein, 2-oxoacid:acceptor oxidoreductase, NADPH-cytochrome P450 reductase, monooxygenase, ring-cleaving dioxygenase, and RraA family protein significantly participated in the reduction-hydroxylation-ring opening cleavage of TNT, achieving deep transformation of TNT to produce pyruvic acid and other products that entered the cellular metabolic cycle. The key toxic metabolic pathways of TNT, 2,4-diamino-6-nitrotoluene, 2,4,6-triaminotoluene, and 2,4,6-trihydroxytoluene are pantothenate and CoA biosynthesis. The engineered bacteria that impart TNT deep degradation ability regulate and optimize lipid, sugar, and amino acid metabolism to withstand stress. Engineered B. subtilis bacteria occupy ecological niches after repairing TNT-contaminated soil and water bodies while simultaneously recruiting a variety of microorganisms to reshape and positively regulate microecology. Key drivers for reshaping and optimization of microecological functions include ABC transporters and C/N/P/S functional cycles, together with a significant concomitant upregulation of the metabolic cycle of basic carbohydrates, nucleotides, and amino acids in the microecology.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yong-Bing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
4
|
M. Zand A, Anastassov S, Frei T, Khammash M. Multi-Layer Autocatalytic Feedback Enables Integral Control Amidst Resource Competition and Across Scales. ACS Synth Biol 2025; 14:1041-1061. [PMID: 40116396 PMCID: PMC12012887 DOI: 10.1021/acssynbio.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Integral feedback control strategies have proven effective in regulating protein expression in unpredictable cellular environments. These strategies, grounded in model-based designs and control theory, have advanced synthetic biology applications. Autocatalytic integral feedback controllers, utilizing positive autoregulation for integral action, are one class of simplest architectures to design integrators. This class of controllers offers unique features, such as robustness against dilution effects and cellular growth, as well as the potential for synthetic realizations across different biological scales, owing to their similarity to self-regenerative behaviors widely observed in nature. Despite this, their potential has not yet been fully exploited. One key reason, we discuss, is that their effectiveness is often hindered by resource competition and context-dependent couplings. This study addresses these challenges using a multilayer feedback strategy. Our designs enabled population-level integral feedback and multicellular integrators, where the control function emerges as a property of coordinated interactions distributed across different cell populations coexisting in a multicellular consortium. We provide a generalized mathematical framework for modeling resource competition in complex genetic networks, supporting the design of intracellular control circuits. The use of our proposed multilayer autocatalytic controllers is examined in two typical control tasks that pose significant relevance to synthetic biology applications: concentration regulation and ratiometric control. We define a ratiometric control task and solve it using a variant of our controller. The effectiveness of our controller motifs is demonstrated through a range of application examples, from precise regulation of gene expression and gene ratios in embedded designs to population growth and coculture composition control in multicellular designs within engineered microbial ecosystems. These findings offer a versatile approach to achieving robust adaptation and homeostasis from subcellular to multicellular scales.
Collapse
Affiliation(s)
- Armin M. Zand
- ETH Zurich, Department
of
Biosystems Science and Engineering, Schanzenstrasse 44, Basel 4056, Switzerland
| | - Stanislav Anastassov
- ETH Zurich, Department
of
Biosystems Science and Engineering, Schanzenstrasse 44, Basel 4056, Switzerland
| | - Timothy Frei
- ETH Zurich, Department
of
Biosystems Science and Engineering, Schanzenstrasse 44, Basel 4056, Switzerland
| | - Mustafa Khammash
- ETH Zurich, Department
of
Biosystems Science and Engineering, Schanzenstrasse 44, Basel 4056, Switzerland
| |
Collapse
|
5
|
Hamrick GS, Maddamsetti R, Son HI, Wilson ML, Davis HM, You L. Programming Dynamic Division of Labor Using Horizontal Gene Transfer. ACS Synth Biol 2024; 13:1142-1151. [PMID: 38568420 DOI: 10.1021/acssynbio.3c00615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The metabolic engineering of microbes has broad applications, including biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multistep pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is the division of labor (DOL) in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted interstrain population dynamics. Through modeling, we show that dynamic division of labor (DDOL), which we define as the DOL between indiscrete populations capable of dynamic and reversible interchange, can overcome these limitations and enable the robust maintenance of burdensome, multistep pathways. We propose that DDOL can be mediated by horizontal gene transfer (HGT) and use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.
Collapse
Affiliation(s)
- Grayson S Hamrick
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rohan Maddamsetti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Maggie L Wilson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Harris M Davis
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Liu P, Zheng Y, Yuan Y, Han Y, Su T, Qi Q. Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:51-59. [PMID: 37714010 DOI: 10.1016/j.wasman.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Polyethylene terephthalate (PET) is the most widely consumed polyester plastic and can be recycled by many chemical processes, of which glycolysis is most cost-effective and commercially viable. However, PET glycolysis produces oligomers due to incomplete depolymerization, which are undesirable by-products and require proper disposal. In this study, the PET oligomers from chemical recycling processes were completely bio-depolymerized into monomers and then used for the biosynthesis of biodegradable plastics polyhydroxyalkanoates (PHA) by co-cultivation of two engineered microorganisms Escherichia coli BL21 (DE3)-LCCICCG and Pseudomonas putida KT2440-ΔRDt-ΔZP46C-M. E. coli BL21 (DE3)-LCCICCG was used to secrete the PET hydrolase LCCICCG into the medium to directly depolymerize PET oligomers. P. putida KT2440-ΔRDt-ΔZP46C-M that mastered the metabolism of aromatic compounds was engineered to accelerate the hydrolysis of intermediate products mono-2-(hydroxyethyl) terephthalate (MHET) by expressing IsMHETase, and biosynthesize PHA using ultimate products terephthalate and ethylene glycol depolymerized from the PET oligomers. The population ratios of the two microorganisms during the co-cultivation were characterized by fluorescent reporter system, and revealed the collaboration of the two microorganisms to bio-depolymerize and bioconversion of PET oligomers in a single process. This study provides a biological strategy for the upcycling of PET oligomers and promotes the plastic circular economy.
Collapse
Affiliation(s)
- Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuanfei Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Kim J, de Lorenzo V, Goñi‐Moreno Á. Pressure-dependent growth controls 3D architecture of Pseudomonas putida microcolonies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:708-715. [PMID: 37231623 PMCID: PMC10667634 DOI: 10.1111/1758-2229.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Colony formation is key to many ecological and biotechnological processes. In its early stages, colony formation involves the concourse of a number of physical and biological parameters for generation of a distinct 3D structure-the specific influence of which remains unclear. We focused on a thus far neglected aspect of the process, specifically the consequences of the differential pressure experienced by cells in the middle of a colony versus that endured by bacteria located in the growing periphery. This feature was characterized experimentally in the soil bacterium Pseudomonas putida. Using an agent-based model we recreated the growth of microcolonies in a scenario in which pressure was the only parameter affecting proliferation of cells. Simulations exposed that, due to constant collisions with other growing bacteria, cells have virtually no free space to move sideways, thereby delaying growth and boosting chances of overlapping on top of each other. This scenario was tested experimentally on agar surfaces. Comparison between experiments and simulations suggested that the inside/outside differential pressure determines growth, both timewise and in terms of spatial directions, eventually moulding colony shape. We thus argue that-at least in the case studied-mere physical pressure of growing cells suffices to explain key dynamics of colony formation.
Collapse
Affiliation(s)
- Juhyun Kim
- School of Life ScienceBK21 FOUR KNU Creative BioResearch Group Kyungpook National UniversityDaeguRepublic of Korea
| | - Víctor de Lorenzo
- Systems Biology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)Cantoblanco‐MadridSpain
| | - Ángel Goñi‐Moreno
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC)MadridSpain
| |
Collapse
|
8
|
Wang S, Chen X, Jin X, Gu F, Jiang W, Qi Q, Liang Q. Creating Polyploid Escherichia Coli and Its Application in Efficient L-Threonine Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302417. [PMID: 37749873 PMCID: PMC10625114 DOI: 10.1002/advs.202302417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Prokaryotic genomes are generally organized in haploid. In synthetic biological research, efficient chassis cells must be constructed to produce bio-based products. Here, the essential division of the ftsZ gene to create functional polyploid E. coli is regulated. The artificial polyploid E. coli containing 2-4 chromosomes is confirmed through PCR amplification, terminator localization, and flow cytometry. The polyploid E. coli exhibits a larger cell size, and its low pH tolerance and acetate resistance are stronger than those of haploid E. coli. Transcriptome analysis shows that the genes of the cell's main functional pathways are significantly upregulated in the polyploid E. coli. These advantages of the polyploid E. coli results in the highest reported L-threonine yield (160.3 g L-1 ) in fed-batch fermentation to date. In summary, an easy and convenient method for constructing polyploid E. coli and demonstrated its application in L-threonine production is developed. This work provides a new approach for creating an excellent host strain for biochemical production and studying the evolution of prokaryotes and their chromosome functions.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Xuanmu Chen
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Xin Jin
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Fei Gu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Wei Jiang
- Research Center of Basic MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Quanfeng Liang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| |
Collapse
|
9
|
Hamrick GS, Maddamsetti R, Son HI, Wilson ML, Davis HM, You L. Programming dynamic division of labor using horizontal gene transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560696. [PMID: 37873187 PMCID: PMC10592921 DOI: 10.1101/2023.10.03.560696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The metabolic engineering of microbes has broad applications, including in biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multi-step pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is division of labor (DOL), in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted inter-strain population dynamics. Through modeling, we show that dynamic division of labor (DDOL) mediated by horizontal gene transfer (HGT) can overcome these limitations and enable the robust maintenance of burdensome, multi-step pathways. We also use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.
Collapse
|
10
|
Fu Y, Xu R, Yang B, Wu Y, Xia L, Tawfik A, Meng F. Mediation of Bacterial Interactions via a Novel Membrane-Based Segregator to Enhance Biological Nitrogen Removal. Appl Environ Microbiol 2023; 89:e0070923. [PMID: 37404187 PMCID: PMC10370321 DOI: 10.1128/aem.00709-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The regulation of microbial subpopulations in wastewater treatment plants (WWTPs) with desired functions can guarantee nutrient removal. In nature, "good fences make good neighbors," which can be applied to engineering microbial consortia. Herein, a membrane-based segregator (MBSR) was proposed, where porous membranes not only promote the diffusion of metabolic products but also isolate incompatible microbes. The MBSR was integrated with an anoxic/aerobic membrane bioreactor (i.e., an experimental MBR). The long-term operation showed that the experimental MBR exhibited higher nitrogen removal (10.45 ± 2.73 mg/L total nitrogen) than the control MBR (21.68 ± 4.23 mg/L) in the effluent. The MBSR resulted in much lower oxygen reduction potential in the anoxic tank of the experimental MBR (-82.00 mV) compared to that of the control MBR (83.25 mV). The lower oxygen reduction potential can inevitably aid in the occurrence of denitrification. The 16S rRNA sequencing showed that the MBSR significantly enriched acidogenic consortia, which yielded considerable volatile fatty acids by fermenting the added carbon sources and allowed efficient transfer of these small molecules to the denitrifying community. Moreover, the sludge communities of the experimental MBR harbored a higher abundance of denitrifying bacteria than those of the control MBR. Metagenomic analysis further corroborated these sequencing results. The spatially structured microbial communities in the experimental MBR system demonstrate the practicability of the MBSR, achieving nitrogen removal efficiency superior to that of mixed populations. Our study provides an engineering method for modulating the assembly and metabolic division of labor of subpopulations in WWTPs. IMPORTANCE This study provides an innovative and applicable method for regulating subpopulations (activated sludge and acidogenic consortia), which contributes to the precise control of the metabolic division of labor in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Boyi Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Yingxin Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Lichao Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Cairo, Egypt
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
11
|
Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, Huang H, Kang G. Synthetic bacterial therapies for intestinal diseases based on quorum-sensing circuits. Biotechnol Adv 2023; 65:108142. [PMID: 36977440 DOI: 10.1016/j.biotechadv.2023.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Bacterial therapy has become a key strategy against intestinal infectious diseases in recent years. Moreover, regulating the gut microbiota through traditional fecal microbiota transplantation and supplementation of probiotics faces controllability, efficacy, and safety challenges. The infiltration and emergence of synthetic biology and microbiome provide an operational and safe treatment platform for live bacterial biotherapies. Synthetic bacterial therapy can artificially manipulate bacteria to produce and deliver therapeutic drug molecules. This method has the advantages of solid controllability, low toxicity, strong therapeutic effects, and easy operation. As an essential tool for dynamic regulation in synthetic biology, quorum sensing (QS) has been widely used for designing complex genetic circuits to control the behavior of bacterial populations and achieve predefined goals. Therefore, QS-based synthetic bacterial therapy might become a new direction for the treatment of diseases. The pre-programmed QS genetic circuit can achieve a controllable production of therapeutic drugs on particular ecological niches by sensing specific signals released from the digestive system in pathological conditions, thereby realizing the integration of diagnosis and treatment. Based on this as well as the modular idea of synthetic biology, QS-based synthetic bacterial therapies are divided into an environmental signal sensing module (senses gut disease physiological signals), a therapeutic molecule producing module (plays a therapeutic role against diseases), and a population behavior regulating module (QS system). This review article summarized the structure and function of these three modules and discussed the rational design of QS gene circuits as a novel intervention strategy for intestinal diseases. Moreover, the application prospects of QS-based synthetic bacterial therapy were summarized. Finally, the challenges faced by these methods were analyzed to make the targeted recommendations for developing a successful therapeutic strategy for intestinal diseases.
Collapse
Affiliation(s)
- Zhuoce Dang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Lina Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiahao Wu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yufei Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zhixin Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China.
| |
Collapse
|
12
|
Su T, Zhang T, Liu P, Bian J, Zheng Y, Yuan Y, Li Q, Liang Q, Qi Q. Biodegradation of polyurethane by the microbial consortia enriched from landfill. Appl Microbiol Biotechnol 2023; 107:1983-1995. [PMID: 36763115 PMCID: PMC9911954 DOI: 10.1007/s00253-023-12418-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Polyurethanes (PU) are one of the most used categories of plastics and have become a significant source of environmental pollutants. Degrading the refractory PU wastes using environmentally friendly strategies is in high demand. In this study, three microbial consortia from the landfill leachate were enriched using PU powder as the sole carbon source. The consortia efficiently degraded polyester PU film and accumulated high biomass within 1 week. Scanning electron microscopy, Fourier transform infrared spectroscopy, and contact angle analyses showed significant physical and chemical changes to the PU film after incubating with the consortia for 48 h. In addition, the degradation products adipic acid and butanediol were detected by high-performance liquid chromatography in the supernatant of the consortia. Microbial composition and extracellular enzyme analyses revealed that the consortia can secrete esterase and urease, which were potentially involved in the degradation of PU. The dominant microbes in the consortia changed when continuously passaged for 50 generations of growth on the PU films. This work demonstrates the potential use of microbial consortia in the biodegradation of PU wastes. KEY POINTS: • Microbial consortia enriched from landfill leachate degraded polyurethane film. • Consortia reached high biomass within 1 week using polyurethane film as the sole carbon source. • The consortia secreted potential polyurethane-degrading enzymes.
Collapse
Affiliation(s)
- Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Tong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Junling Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
13
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Wang Y, Liu Y, Li J, Chen Y, Liu S, Zhong C. Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation. Curr Opin Chem Biol 2022; 70:102188. [PMID: 35970133 DOI: 10.1016/j.cbpa.2022.102188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Natural materials possess many distinctive "living" attributes, such as self-growth, self-healing, environmental responsiveness, and evolvability, that are beyond the reach of many existing synthetic materials. The emerging field of engineered living materials (ELMs) takes inspiration from nature and harnesses engineered living systems to produce dynamic and responsive materials with genetically programmable functionalities. Here, we identify and review two main directions for the rational design of ELMs: first, engineering of living materials with enhanced performances by incorporating functional material modules, including engineered biological building blocks (proteins, polysaccharides, and nucleic acids) or well-defined artificial materials; second, engineering of smart ELMs that can sense and respond to their surroundings by programming dynamic cellular behaviors regulated via cell-cell or cell-environment interactions. We next discuss the strengths and challenges of current ELMs and conclude by providing a perspective of future directions in this promising area.
Collapse
Affiliation(s)
- Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Li
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Chen
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Sizhe Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Atkinson E, Tuza Z, Perrino G, Stan GB, Ledesma-Amaro R. Resource-aware whole-cell model of division of labour in a microbial consortium for complex-substrate degradation. Microb Cell Fact 2022; 21:115. [PMID: 35698129 PMCID: PMC9195437 DOI: 10.1186/s12934-022-01842-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-cost sustainable feedstocks are essential for commercially viable biotechnologies. These feedstocks, often derived from plant or food waste, contain a multitude of different complex biomolecules which require multiple enzymes to hydrolyse and metabolise. Current standard biotechnology uses monocultures in which a single host expresses all the proteins required for the consolidated bioprocess. However, these hosts have limited capacity for expressing proteins before growth is impacted. This limitation may be overcome by utilising division of labour (DOL) in a consortium, where each member expresses a single protein of a longer degradation pathway. RESULTS Here, we model a two-strain consortium, with one strain expressing an endohydrolase and a second strain expressing an exohydrolase, for cooperative degradation of a complex substrate. Our results suggest that there is a balance between increasing expression to enhance degradation versus the burden that higher expression causes. Once a threshold of burden is reached, the consortium will consistently perform better than an equivalent single-cell monoculture. CONCLUSIONS We demonstrate that resource-aware whole-cell models can be used to predict the benefits and limitations of using consortia systems to overcome burden. Our model predicts the region of expression where DOL would be beneficial for growth on starch, which will assist in making informed design choices for this, and other, complex-substrate degradation pathways.
Collapse
Affiliation(s)
- Eliza Atkinson
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Zoltan Tuza
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Giansimone Perrino
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Guy-Bart Stan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| |
Collapse
|