1
|
Cumming A, Khananisho D, Balka M, Liljestrand N, Daley DO. Biosensor that Detects Stress Caused by Periplasmic Proteins. ACS Synth Biol 2024; 13:1477-1491. [PMID: 38676700 PMCID: PMC11106774 DOI: 10.1021/acssynbio.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Escherichia coli is often used as a factory to produce recombinant proteins. In many cases, the recombinant protein needs disulfide bonds to fold and function correctly. These proteins are genetically fused to a signal peptide so that they are secreted to the oxidizing environment of the periplasm (where the enzymes required for disulfide bond formation exist). Currently, it is difficult to determine in vivo whether a recombinant protein is efficiently secreted from the cytoplasm and folded in the periplasm or if there is a bottleneck in one of these steps because cellular capacity has been exceeded. To address this problem, we have developed a biosensor that detects cellular stress caused by (1) inefficient secretion of proteins from the cytoplasm and (2) aggregation of proteins in the periplasm. We demonstrate how the fluorescence fingerprint obtained from the biosensor can be used to identify induction conditions that do not exceed the capacity of the cell and therefore do not cause cellular stress. These induction conditions result in more effective biomass and in some cases higher titers of soluble recombinant proteins.
Collapse
Affiliation(s)
- Alister
J. Cumming
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-19468, Sweden
| | - Diana Khananisho
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-19468, Sweden
| | - Mateusz Balka
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-19468, Sweden
| | - Nicklas Liljestrand
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-19468, Sweden
| | - Daniel O. Daley
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-19468, Sweden
| |
Collapse
|
2
|
Nafaee ZH, Egyed V, Jancsó A, Tóth A, Gerami AM, Dang TT, Heiniger‐Schell J, Hemmingsen L, Hunyadi‐Gulyás É, Peintler G, Gyurcsik B. Revisiting the hydrolysis of ampicillin catalyzed by Temoneira-1 β-lactamase, and the effect of Ni(II), Cd(II) and Hg(II). Protein Sci 2023; 32:e4809. [PMID: 37853808 PMCID: PMC10661098 DOI: 10.1002/pro.4809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
β-Lactamases grant resistance to bacteria against β-lactam antibiotics. The active center of TEM-1 β-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 β-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 β-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 β-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 μM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.
Collapse
Affiliation(s)
- Zeyad H. Nafaee
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
- College of PharmacyUniversity of BabylonBabelIraq
| | - Viktória Egyed
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Attila Jancsó
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Annamária Tóth
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Adeleh Mokhles Gerami
- School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
| | - Thanh Thien Dang
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Juliana Heiniger‐Schell
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
| | - Éva Hunyadi‐Gulyás
- Laboratory of Proteomics Research, Biological Research CentreHungarian Research Network (HUN‐REN)SzegedHungary
| | - Gábor Peintler
- Department of Physical Chemistry and Material SciencesUniversity of SzegedSzegedHungary
| | - Béla Gyurcsik
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| |
Collapse
|
3
|
Khananisho D, Cumming AJ, Kulakova D, Shilling PJ, Daley DO. Tips for efficiently maintaining pET expression plasmids. Curr Genet 2023; 69:277-287. [PMID: 37938343 PMCID: PMC10716060 DOI: 10.1007/s00294-023-01276-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
pET expression plasmids are widely used for producing recombinant proteins in Escherichia coli. Selection and maintenance of cells harboring a pET plasmid are possible using either a Tn3.1-type genetic fragment (which encodes a ß-lactamase and confers resistance to ß-lactam antibiotics) or a Tn903.1-type genetic fragment (which encodes an aminoglycoside-3'-phosphotransferase and confers resistance aminoglycoside antibiotics). Herein we have investigated how efficiently pET plasmids are maintained using these two fragments. The study reveals that pET plasmids are efficiently maintained with both Tn3.1 and Tn903.1 genetic fragments prior to the induction of recombinant protein production, and over short induction times (i.e., 2 h). However, over longer induction times (i.e., 20 h), the efficiency of plasmid maintenance depends on the host strain used, and the type of antibiotic selection cassette used. Based on our collective observations, we have 2 general tips for efficiently maintaining pET plasmids during recombinant production experiments. Tip #1: Use a strain with lowered levels of the T7 RNA polymerase, such as C41(DE3). pET plasmids will be efficiently maintained over long induction times with both the Tn3.1 and Tn903.1 genetic fragments, regardless of whether antibiotics are present during cultivation. Tip #2: If a strain with higher levels of T7 RNA polymerase strain is necessary, such as BL21(DE3)), keep induction times short or use a plasmid containing a Tn903.1-type fragment and select with kanamycin.
Collapse
Affiliation(s)
- Diana Khananisho
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alister J Cumming
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daria Kulakova
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Patrick J Shilling
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
4
|
Martínez-García E, Fraile S, Algar E, Aparicio T, Velázquez E, Calles B, Tas H, Blázquez B, Martín B, Prieto C, Sánchez-Sampedro L, Nørholm MH, Volke D, Wirth N, Dvořák P, Alejaldre L, Grozinger L, Crowther M, Goñi-Moreno A, Nikel P, Nogales J, de Lorenzo V. SEVA 4.0: an update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Res 2023; 51:D1558-D1567. [PMID: 36420904 PMCID: PMC9825617 DOI: 10.1093/nar/gkac1059] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Sofía Fraile
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Elena Algar
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Tomás Aparicio
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Elena Velázquez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Huseyin Tas
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Blas Blázquez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | | | | | | | - Morten H H Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500 Czech Republic
| | - Lorea Alejaldre
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
| | - Lewis Grozinger
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
- School of Computing, Newcastle University, NE4 5TG, UK
| | - Matthew Crowther
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
- School of Computing, Newcastle University, NE4 5TG, UK
| | - Angel Goñi-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Juan Nogales
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| |
Collapse
|
5
|
Shilling PJ, Khananisho D, Cumming J, Söderström B, Daley DO. Signal Amplification of araC pBAD Using a Standardised Translation Initiation Region. Synth Biol (Oxf) 2022; 7:ysac009. [PMID: 35903559 PMCID: PMC9316229 DOI: 10.1093/synbio/ysac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/11/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
araC pBAD is a genetic fragment that regulates the expression of the araBAD operon in bacteria, which is required for the metabolism of L-arabinose. It is widely used in bioengineering applications because it can drive regulatable and titratable expression of genes and genetic pathways in microbial cell factories. A notable limitation of araC pBAD is that it generates a low signal when induced with high concentrations of L-arabinose (the maximum ON state). Herein we have amplified the maximum ON state of araC pBAD by coupling it to a synthetically evolved translation initiation region (TIREVOL). The coupling maintains regulatable and titratable expression from araC pBAD and yet increases the maximal ON state by >5-fold. The general principle demonstrated in the study can be applied to amplify the signal from similar genetic modules.
Graphical Abstract
Collapse
Affiliation(s)
- Patrick J Shilling
- Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - Diana Khananisho
- Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - James Cumming
- Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney , Sydney, New South Wales, Australia
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| |
Collapse
|