1
|
Xiang J, Liu M, Wang X, Yue M, Qin Z, Zhou J. Combined metabolic and enzymatic engineering for de novo biosynthesis of δ-tocotrienol in Yarrowia lipolytica. Synth Syst Biotechnol 2025; 10:719-727. [PMID: 40248488 PMCID: PMC12002712 DOI: 10.1016/j.synbio.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 04/19/2025] Open
Abstract
δ-Tocotrienol, an isomer of vitamin E with anti-inflammatory, neuroprotective and anti-coronary arteriosclerosis properties, is widely used in health care, medicine and other fields. Microbial synthesis of δ-tocotrienol offers significant advantages over plant extraction and chemical synthesis methods, including increased efficiency, cost-effectiveness and environmental sustainability. However, limited precursor availability and low catalytic efficiency of key enzymes remain major bottlenecks in the biosynthesis of δ-tocotrienol. In this study, we assembled the complete δ-tocotrienol biosynthetic pathway in Yarrowia lipolytica and enhanced the precursor supply, resulting in a titre of 102.8 mg/L. The catalytic efficiency of the rate-limiting steps in the pathway was then enhanced through various strategies, including fusion expression of key enzymes homogentisate phytyltransferaseand and tocopherol cyclase, semi-rational design of SyHPT and multi-copy integration of pathway genes. The final a δ-tocotrienol titre in a 5 L bioreactor was 466.8 mg/L following fed-batchfermentation. This study represents the first successful de novo biosynthesis of δ-tocotrienol in Y. lipolytica, providing valuable insights into the synthesis of vitamin E-related compounds.
Collapse
Affiliation(s)
- Jinbo Xiang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Qiu S, Blank LM. Long-Term Yeast Cultivation Coupled with In Situ Extraction for High Triterpenoid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7933-7943. [PMID: 40129278 DOI: 10.1021/acs.jafc.5c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ginsenosides are a class of triterpenoids from the ginseng genus, with many medicinal properties. Traditionally, ginsenosides are extracted from ginseng plants to satisfy market demand; however, this approach requires substantial plant biomass and a lengthy six-year growth period before harvest. The advancement of synthetic biology allows the production of ginsenosides by engineered yeast. In this study, we combined our previously reported cultivation method with in situ extraction to enhance the production and exportation of intracellular ginsenosides by the engineered Saccharomyces cerevisiae. Remarkably, ginsenoside production reached as high as 3.4 g/L in a single shake flask, with almost 100% of ginsenosides in the organic phase. The "empty yeasts" were successfully reused 10 times in sequential cultivations. These findings are discussed in the context of cultivation intensification for natural product synthesis. Increasing the level of triterpenoid synthesis facilitates rapid development and supports the industrialization of this intriguing group of natural products.
Collapse
Affiliation(s)
- Shangkun Qiu
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Sun ML, Xu Y, Lin L, Gao J, Ledesma-Amaro R, Wang K, Ji XJ. Enhancing Precursor Supply and Engineering Efflux Systems to Improve Abscisic Acid Production and Secretion in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6050-6058. [PMID: 40011064 DOI: 10.1021/acs.jafc.4c10772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Abscisic acid is a sesquiterpene phytohormone with extensive applications in agriculture and human health. Currently, it is produced through fermentation of Botrytis cinerea, a plant pathogenic filamentous fungus. The process requires morphology controls, which complicates production and strain optimization. In this study, the abscisic acid production strain Yarrowia lipolytica SM309 was optimized by enhancing the precursor supply using a "push-pull-restrain" strategy focusing on acetyl-CoA, which increased abscisic acid production from 266.34 to 328.51 mg/L. Subsequently, in silico prediction and analysis were used to obtain the docking conformations and binding affinity of ABC transporters for abscisic acid. Overexpression of ABC transporter YlGcn20 further enhanced abscisic acid production by 10.88%, reaching 354.21 mg/L. Additionally, low temperature and dodecane addition were employed as auxiliary strategies to promote abscisic acid synthesis, resulting in a titer of 605.92 mg/L. Finally, the engineered strain achieved an abscisic acid titer of 2056.64 mg/L in a 5 L bioreactor, representing the highest titer reported for a yeast de novo synthesis system to date.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yun Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, U.K
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
4
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Yang J, Yu H, Ye L. Evolution of Vitamin E Production: From Chemical Synthesis and Plant Extraction to Microbial Cell Factories. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27701-27714. [PMID: 39644244 DOI: 10.1021/acs.jafc.4c08813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is an essential antioxidant known for its numerous health benefits. This review traces the evolution of vitamin E production, from traditional chemical synthesis and plant extraction methods to cutting-edge microbial cell factories. Chemical synthesis, while well-established, fails to produce specific stereoisomers, and its application is limited to animal feed due to concerns about chemical residues and limited bioactivity. Plant extraction, although yielding natural vitamin E, is constrained by resource availability and high cultivation costs. Recent advancements in metabolic engineering and synthetic biology have revolutionized vitamin E bioproduction, particularly through the use of engineered microbial cell factories. This review highlights the progress of vitamin E biosynthesis in plants and microorganisms and the key metabolic engineering strategies adopted. We also discuss the existing challenges and future perspectives. When these challenges are overcome, microbial cell factories present a sustainable and effective method to fulfill the increasing demand for high-quality vitamin E.
Collapse
Affiliation(s)
- Jingyi Yang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Ma W, Yuan S, Wang Z, Niu K, Li F, Liu L, Han L, Fang X. Key amino acid residues govern the substrate selectivity of the transporter Xltr1p from Trichoderma reesei for glucose, mannose, and galactose. ENGINEERING MICROBIOLOGY 2024; 4:100151. [PMID: 39628594 PMCID: PMC11611029 DOI: 10.1016/j.engmic.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 12/06/2024]
Abstract
This research identified four amino acid residues (Leu174, Asn297, Tyr301, and Gln291) that contribute to substrate recognition by the high-affinity glucose transporter Xltr1p from Trichoderma reesei. Potential hotspots affecting substrate specificity were selected through homology modeling, evolutionary conservation analyses, and substrate-docking modeling of Xltr1p. Variants carrying mutations at these hotspots were subsequently obtained via in silico screening. Replacement of Leu174 or Asn297 in Xltr1p with alanine resulted in loss of hexose transport activity, indicating that Leu174 and Asn297 play essential roles in hexose transport. The Y301W variant exhibited accelerated mannose transport, but lost galactose transport capacity, and mutation of Gln291 to alanine greatly accelerated mannose transport. These results suggest that amino acids located in transmembrane α-helix 7 (Asn297, Tyr301, and Gln291) play critical roles in substrate recognition by the hexose transporter Xltr1p. Our results will help expand the potential applications of this transporter and provide insights into the mechanisms underlying its function and specificity.
Collapse
Affiliation(s)
- Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shiyu Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zixian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fengyi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lulu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Rongcheng Huihai Chuangda Biotechnology Co., Ltd., Weihai 264300, China
| |
Collapse
|
7
|
Zuo Y, Zhao M, Gou Y, Huang L, Xu Z, Lian J. Transportation engineering for enhanced production of plant natural products in microbial cell factories. Synth Syst Biotechnol 2024; 9:742-751. [PMID: 38974023 PMCID: PMC11224930 DOI: 10.1016/j.synbio.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Plant natural products (PNPs) exhibit a wide range of biological activities and have essential applications in various fields such as medicine, agriculture, and flavors. Given their natural limitations, the production of high-value PNPs using microbial cell factories has become an effective alternative in recent years. However, host metabolic burden caused by its massive accumulation has become one of the main challenges for efficient PNP production. Therefore, it is necessary to strengthen the transmembrane transport process of PNPs. This review introduces the discovery and mining of PNP transporters to directly mediate PNP transmembrane transportation both intracellularly and extracellularly. In addition to transporter engineering, this review also summarizes several auxiliary strategies (such as small molecules, environmental changes, and vesicles assisted transport) for strengthening PNP transportation. Finally, this review is concluded with the applications and future perspectives of transportation engineering in the construction and optimization of PNP microbial cell factories.
Collapse
Affiliation(s)
- Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Minghui Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
8
|
Tang D, Zheng X, Zhao Y, Zhang C, Chen C, Chen Y, Du L, Liu K, Li S. Engineered Microbial Consortium for De Novo Production of Sclareolide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19977-19984. [PMID: 39213654 DOI: 10.1021/acs.jafc.4c05506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sclareolide, a natural product with bioactive and fragrant properties, is not only utilized in the food, healthcare, and cosmetics industries but also serves as a precursor for the production of ambroxide and some bioactive compounds. Currently, there are three primary methods for producing sclareolide: direct extraction from plants, chemical synthesis using sclareol as a precursor, and the biotransformation of sclareol. Here, we established a platform for producing sclareolide through a modular coculture system with Saccharomyces cerevisiae and Cryptococcus albidus ATCC 20918. S. cerevisiae was engineered for de novo sclareol biosynthesis from glucose, while C. albidus enabled the production of sclareolide via sclareol biotransformation. To enhance the supply of sclareol, a recombinant yeast strain was constructed through metabolic engineering to produce 536.2 mg/L of sclareol. Further improvement of the coculture system for sclareolide production was achieved by incorporating Triton X-100 facilitated intermediate permeability, inoculation proportion adjustment, and culture temperature optimization. These refinements culminated in a sclareolide yield of 626.3 mg/L. This study presents a novel streamlined and efficient approach for sclareolide preparation, showcasing the potential of the microbial consortium in sustainable bioproduction.
Collapse
Affiliation(s)
- Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Xianliang Zheng
- Angel Yeast Co., Ltd., Yichang, Hubei 443003, China
- National Key Laboratory of Agricultural Microbiology, Yichang, Hubei 443003, China
| | - Yushuo Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Chengsong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Cheng Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Yuexing Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Li Z, Sun L, Wang Y, Liu B, Xin F. Construction of a Novel Vanillin-Induced Autoregulating Bidirectional Transport System in a Vanillin-Producing E. coli Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14809-14820. [PMID: 38899780 DOI: 10.1021/acs.jafc.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Vanillin is one of the world's most extensively used flavoring agents with high application value. However, the yield of vanillin biosynthesis remains limited due to the low efficiency of substrate uptake and the inhibitory effect on cell growth caused by vanillin. Here, we screened high-efficiency ferulic acid importer TodX and vanillin exporters PP_0178 and PP_0179 by overexpressing genes encoding candidate transporters in a vanillin-producing engineered Escherichia coli strain VA and further constructed an autoregulatory bidirectional transport system by coexpressing TodX and PP_0178/PP_0179 with a vanillin self-inducible promoter ADH7. Compared with strain VA, strain VA-TodX-PP_0179 can efficiently transport ferulic acid across the cell membrane and convert it to vanillin, which significantly increases the substrate utilization rate efficiency (14.86%) and vanillin titer (51.07%). This study demonstrated that the autoregulatory bidirectional transport system significantly enhances the substrate uptake efficiency while alleviating the vanillin toxicity issue, providing a promising viable route for vanillin biosynthesis.
Collapse
Affiliation(s)
- Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Lina Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Bolin Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| |
Collapse
|
10
|
Zhao Y, Yao Z, Desai V, Chen D, Shao Z. Building Synthetic Yeast Factories to Produce Fat-soluble Antioxidants. Curr Opin Biotechnol 2024; 87:103129. [PMID: 38703526 DOI: 10.1016/j.copbio.2024.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/06/2024]
Abstract
Fat-soluble antioxidants play a vital role in protecting the body against oxidative stress and damage. The rapid advancements in metabolic engineering and synthetic biology have offered a promising avenue for economically producing fat-soluble antioxidants by engineering microbial chassis. This review provides an overview of the recent progress in engineering yeast microbial factories to produce three main groups of lipophilic antioxidants: carotenoids, vitamin E, and stilbenoids. In addition to discussing the classic strategies employed to improve precursor availability and alleviate carbon flux competition, this review delves deeper into the innovative approaches focusing on enzyme engineering, product sequestration, subcellular compartmentalization, multistage fermentation, and morphology engineering. We conclude the review by highlighting the prospects of microbial engineering for lipophilic antioxidant production.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Vedika Desai
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, IA, USA
| | - Dan Chen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, IA, USA; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA; Bioeconomy Institute, Iowa State University, Ames, IA, USA; The Ames Laboratory, Ames, IA, USA.
| |
Collapse
|
11
|
Cheng X, Pang Y, Ban Y, Cui S, Shu T, Lv B, Li C. Application of multiple strategies to enhance oleanolic acid biosynthesis by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2024; 401:130716. [PMID: 38641301 DOI: 10.1016/j.biortech.2024.130716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Oleanolic acid and its derivatives are widely used in the pharmaceutical, agricultural, cosmetic and food industries. Previous studies have shown that oleanolic acid production levels in engineered cell factories are low, which is why oleanolic acid is still widely extracted from traditional medicinal plants. To construct a highly efficient oleanolic acid production strain, rate-limiting steps were regulated by inducible promoters and the expression of key genes in the oleanolic acid synthetic pathway was enhanced. Subsequently, precursor pool expansion, pathway refactoring and diploid construction were considered to harmonize cell growth and oleanolic acid production. The multi-strategy combination promoted oleanolic acid production of up to 4.07 g/L in a 100 L bioreactor, which was the highest level reported.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yaru Pang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yali Ban
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Cui
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Shu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Chen MK, Zhang TL, Sun MZ, Yu HW, Ye LD. Transcription Factor Pdr3p Promotes Carotenoid Biosynthesis by Activating GAL Promoters in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:590-597. [PMID: 38324606 DOI: 10.1021/acssynbio.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pleiotropic drug resistance (PDR) family proteins have been extensively studied for their roles in transporting hydrophobic substances, including carotenoids. Overexpression of the PDR family regulator Pdr3p was recently found to boost the biosynthesis of carotenoids, which could not be explained by enhanced product secretion due to the meager extracellular proportions. To provide insights into the possible mechanism, comparative transcriptomics, reverse metabolic engineering, and electrophoretic mobility shift assay (EMSA) were conducted. Transcriptomic data suggested an unexpected correlation between Pdr3p overexpression and the transcriptional levels of GAL promoter-driven genes. This assumption was verified using mCherry and the lycopene synthetic pathway as the reporters. qRT-PCR and EMSA provided further evidence for the activation of GAL promoters by Pdr3p binding to their upstream activation sequences (UASs). This work gives insight into the mechanism of Pdr3p-promoted carotenoid production and highlights the complicated metabolic networking between transcriptional factors and promoters in yeast.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ming-Ze Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hong-Wei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Li-Dan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
14
|
Zeng W, Jiang Y, Shan X, Zhou J. Engineering Saccharomyces cerevisiae for synthesis of β-myrcene and (E)-β-ocimene. 3 Biotech 2023; 13:384. [PMID: 37928439 PMCID: PMC10620350 DOI: 10.1007/s13205-023-03818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023] Open
Abstract
Monoterpenes are among the important natural plant terpenes. Monoterpenes usually have the characteristics of volatility and strong aroma. β-Myrcene and its isomer (E)-β-ocimene are typical acyclic monoterpenes. They are high-value monoterpenes that have been widely applied in foods, cosmetics, and medicines. However, large-scale commercial production of β-myrcene and (E)-β-ocimene is restricted by their production method that mainly involves extraction from plant essential oils. Currently, an alternative synthetic route utilizing an engineered microbial platform was proposed for effective production. This study used a Saccharomyces cerevisiae strain previously constructed for squalene production as the starting strain. Farnesyl diphosphate synthase (Erg20) expression was weakened by promoter replacement and screened for optimal myrcene synthase (MS) and ocimene synthase (OS) activities. In the resulting S. cerevisiae engineered for β-myrcene and (E)-β-ocimene synthesis, titers of β-myrcene and (E)-β-ocimene were enhanced by a fusion expressing a mutant Erg20* with the obtained monoterpene synthase and optimizing the added solvent in a two-phase fermentation system. Finally, by scaling up in a 5-L fermenter, 8.12 mg/L of β-myrcene was obtained, which was first reported in yeast, and 34.56 mg/L of (E)-β-ocimene was obtained, which is the highest reported to date. This study provides a new synthesis route for β-myrcene and (E)-β-ocimene. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03818-2.
Collapse
Affiliation(s)
- Weizhu Zeng
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yinkun Jiang
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
15
|
Molina-Menor E, Vidal-Verdú À, Gomis-Olcina C, Peretó J, Porcar M. A 3D printed plastic frame deeply impacts yeast cell growth. Front Bioeng Biotechnol 2023; 11:1250667. [PMID: 37771573 PMCID: PMC10523559 DOI: 10.3389/fbioe.2023.1250667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023] Open
Abstract
Solid State Fermentation (SSF) processes have been explored for yeast growth and protein and metabolites production. However, most of these processes lack standardization. In this work, we present a polylactic acid (PLA) 3D printed matrix that dramatically enhances yeast growth when embedded in liquid media compared to equivalent static cultures, and changes yeast expression patterns at the proteome level (data are available via ProteomeXchange with identifier PXD043759). Moreover, differences in sugar assimilation and ethanol production, as the main product of alcoholic fermentation, are observed. Our results suggest that these matrixes may be useful for a vast range of biotechnological applications based on yeast fermentation.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Carlos Gomis-Olcina
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
- Darwin Bioprospecting Excellence SL, Parc Científic Universitat de València, Valencia, Spain
| |
Collapse
|
16
|
Jiao X, Bian Q, Feng T, Lyu X, Yu H, Ye L. Efficient Secretory Production of δ-Tocotrienol by Combining Pathway Modularization and Transportation Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37262183 DOI: 10.1021/acs.jafc.3c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The vitamin E component δ-tocotrienol has shown impressive activities in radioprotection, neuroprotection, and cholesterol reduction. Its production is limited by the low content in plants and difficulty in separation from other tocotrienols. Fermentative production using a microbial cell factory that exclusively produces and secretes δ-tocotrienol is a promising alternative approach. Assembly of the δ-tocotrienol synthetic pathway in Saccharomyces cerevisiae followed by comprehensive pathway engineering led to the production of 73.45 mg/L δ-tocotrienol. Subsequent addition of 2-hydroxypropyl-β-cyclodextrin (CD) and overexpression of the transcription factor PDR1 significantly elevated δ-tocotrienol titer to 241.7 mg/L (63.65 mg/g dry cell weight) in shake flasks, with 30.4% secreted. By properly adding CD and the in situ extractant olive oil, 181.12 mg/L of δ-tocotrienol was collected as an extracellular product, accounting for 85.6% of the total δ-tocotrienol production. This process provides not only a promising δ-tocotrienol cell factory but also insights into yeast engineering toward secretory production of other terpenoids.
Collapse
Affiliation(s)
- Xue Jiao
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qi Bian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Taotao Feng
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
17
|
Liu J, Wang X, Jin K, Liu Y, Li J, Du G, Lv X, Liu L. In Silico Prediction and Mining of Exporters for Secretory Bioproduction of Terpenoids in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:863-876. [PMID: 36867848 DOI: 10.1021/acssynbio.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are the largest class of natural products, and their bioproduction by engineered cell factories receives high attention. However, excessive intracellular accumulation is one of the bottlenecks that limit the further improvement of the yield of terpenoid products. Therefore, it is important to mine exporters to achieve the secretory production of terpenoids. This study proposed a framework for the in silico prediction and mining of terpenoid exporters in Saccharomyces cerevisiae. Through the process of "mining-docking-construction-validation", we found that Pdr5 of ATP-binding cassette (ABC) transporters and Osh3 of oxysterol-binding homology (Osh) proteins can promote squalene efflux. Squalene secretion of the strain overexpressing Pdr5 and Osh3 increased to 141.1 times that of the control strain. Besides squalene, ABC exporters also can promote the secretion of β-carotene and retinal. Molecular dynamics simulation results revealed that before exporter conformations transitioned to the "outward-open" states, the substrates might have bound to the tunnels and prepared for rapid efflux. Overall, this study provides a terpenoid exporter prediction and mining framework that may be generally used to identify exporters of other terpenoids.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xinglong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
An T, Feng X, Li C. Prenylation: A Critical Step for Biomanufacturing of Prenylated Aromatic Natural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2211-2233. [PMID: 36716399 DOI: 10.1021/acs.jafc.2c07287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prenylated aromatic natural products (PANPs) have received much attention due to their biomedical benefits for human health. The prenylation of aromatic natural products (ANPs), which is mainly catalyzed by aromatic prenyltransferases (aPTs), contributes significantly to their structural and functional diversity by providing higher lipophilicity and enhanced bioactivity. aPTs are widely distributed in bacteria, fungi, animals, and plants and play a key role in the regiospecific prenylation of ANPs. Recent studies have greatly advanced our understanding of the characteristics and application of aPTs. In this review, we comment on research progress regarding sources, evolutionary relationships, structural features, reaction mechanism, engineering modification, and application of aPTs. Particular emphasis is also placed on recent advances, challenges, and prospects about applications of aPTs in microbial cell factories for producing PANPs. Generally, this review could provide guidance for using aPTs as robust biocatalytic tools to produce various PANPs with high efficiency.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemical Engineering, Key Lab for Industrial Biocatalysis, Ministry of Education, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Jiang Y, Xia L, Gao S, Li N, Yu S, Zhou J. Engineering Saccharomyces cerevisiae for enhanced (-)-α-bisabolol production. Synth Syst Biotechnol 2023; 8:187-195. [PMID: 36824492 PMCID: PMC9941373 DOI: 10.1016/j.synbio.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
(-)-α-Bisabolol is naturally occurring in many plants and has great potential in health products and pharmaceuticals. However, the current extraction method from natural plants is unsustainable and cannot fulfil the increasing requirement. This study aimed to develop a sustainable strategy to enhance the biosynthesis of (-)-α-bisabolol by metabolic engineering. By introducing the heterologous gene MrBBS and weakening the competitive pathway gene ERG9, a de novo (-)-α-bisabolol biosynthesis strain was constructed that could produce 221.96 mg/L (-)-α-bisabolol. Two key genes for (-)-α-bisabolol biosynthesis, ERG20 and MrBBS, were fused by a flexible linker (GGGS)3 under the GAL7 promoter control, and the titer was increased by 2.9-fold. Optimization of the mevalonic acid pathway and multi-copy integration further increased (-)-α-bisabolol production. To promote product efflux, overexpression of PDR15 led to an increase in extracellular production. Combined with the optimal strategy, (-)-α-bisabolol production in a 5 L bioreactor reached 7.02 g/L, which is the highest titer reported in yeast to date. This work provides a reference for the efficient production of (-)-α-bisabolol in yeast.
Collapse
Affiliation(s)
- Yinkun Jiang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Lu Xia
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ning Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China,Corresponding author. Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|