1
|
Till NA, Ramanathan M, Bertozzi CR. Induced proximity at the cell surface. Nat Biotechnol 2025; 43:702-711. [PMID: 40140559 DOI: 10.1038/s41587-025-02592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Molecular proximity is a governing principle of biology that is essential to normal and disease-related biochemical pathways. At the cell surface, protein-protein proximity regulates receptor activation, inhibition and protein recycling and degradation. Induced proximity is a molecular engineering principle in which bifunctional molecules are designed to bring two protein targets into close contact, inducing a desired biological outcome. Researchers use this engineering principle for therapeutic purposes and to interrogate fundamental biological mechanisms. This Review focuses on the use of induced proximity at the cell surface for diverse applications, such as targeted protein degradation, receptor inhibition and activating intracellular signaling cascades. We see a rich future for proximity-based modulation of cell surface protein activity both in basic and translational science.
Collapse
Affiliation(s)
- Nicholas A Till
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Muthukumar Ramanathan
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Moroi AJ, Newman PJ. Relieving platelet inhibition using a novel bi-specific antibody: A novel approach for circumventing the platelet storage lesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644378. [PMID: 40166144 PMCID: PMC11957111 DOI: 10.1101/2025.03.20.644378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Human platelets experience structural and functional deterioration during extracorporeal storage at either room temperature or in the cold, impairing their reactivity and diminishing their hemostatic effectiveness following transfusion. PECAM-1 is an inhibitory receptor on platelets that exerts its inhibitory effects via phosphorylation of tyrosine residues that lie within its cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The purpose of this investigation was to attempt to restore platelet reactivity by impairing the inhibitory activity of PECAM-1. Methods To counteract PECAM-1-mediated inhibition, we developed a novel bispecific tandem single-chain variable fragment (scFv) that ligates the protein-tyrosine phosphatase, CD148, with PECAM-1, promoting dephosphorylation of PECAM-1 ITIMs. We then analyzed the ability of this engineered tandem scFv (taFv 179) to improve adhesion and aggregation responses in vitro and under conditions of flow. Results Addition of taFv 179 enhanced secretion, aggregation, and activation responses of both freshly isolated and stored platelets, particularly in response to weak agonists. taFv 179 also improved thrombus formation on collagen-coated surfaces under conditions of arterial flow. Conclusions These findings demonstrate that enforced approximation of a phosphatase next to PECAM-1 ITIM tyrosines receptors is a novel strategy for enhancing the functionality of stored platelets, with potential implications for improving the effectiveness of platelet transfusions. Essentials Platelets lose reactivity upon extracorporeal platelet storage.Platelets lacking PECAM-1 are known to be hyperresponsive to platelet agonists.Addition of a bispecific antibody that phenocopies PECAM-1 deficiency partially restores the reactivity of stored platelets.
Collapse
|
3
|
Salehi Farid A, Rowley JE, Allen HH, Kruger IG, Tavakolpour S, Neeley K, Cong M, Shahbazian H, Dorafshani N, Berrada A, MacDonagh AC, Padera RF, Brugarolas P, Packard AB, Rosenbaum MW, Divakaran S, Di Carli MF, Rashidian M. CD45-PET is a robust, non-invasive tool for imaging inflammation. Nature 2025; 639:214-224. [PMID: 39843738 DOI: 10.1038/s41586-024-08441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
Imaging inflammation holds immense potential for advancing the diagnosis, treatment and prognosis of many conditions1-3. The lack of a specific and sensitive positron emission tomography (PET) probe to detect inflammation is a critical challenge. To bridge this gap, we present CD45-PET imaging, which detects inflammation with exceptional sensitivity and clarity in several preclinical models. Notably, the intensity of the CD45-PET signal correlates robustly with the severity of disease in models of inflammatory lung and bowel diseases, outperforming 18F-fluorodeoxyglucose PET, the most widely used imaging modality for inflammation globally. Longitudinal CD45-PET imaging further enables precise monitoring of dynamic changes in tissue-specific inflammatory profiles. Finally, we developed a human CD45-PET probe for clinical translation that effectively detects human immune cells in a humanized mouse model. CD45-PET imaging holds substantial clinical promise, offering a tool for guiding diagnostic and therapeutic decisions for inflammatory diseases through a precise, whole-body assessment of the inflammation profiles of individual patients.
Collapse
Affiliation(s)
- Ali Salehi Farid
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jennifer E Rowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabella G Kruger
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kyle Neeley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haneyeh Shahbazian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Niki Dorafshani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Achraf Berrada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Robert F Padera
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Pedro Brugarolas
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alan B Packard
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Boston Children's Hospital, Boston, MA, USA
| | - Matthew W Rosenbaum
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sanjay Divakaran
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Program, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo F Di Carli
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Program, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Mazharian A, Senis YA. Defining and Harnessing the Megakaryocyte/Platelet Checkpoint. Mol Cell Biol 2025; 45:116-128. [PMID: 39991916 DOI: 10.1080/10985549.2025.2451279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 02/25/2025] Open
Abstract
Platelets, or thrombocytes are anucleate cell fragments of megakaryocytes (MKs) that are highly reactive to sites of vascular injury and implicated in many pathologies. However, the molecular mechanisms regulating the number and activity of platelets in the circulation remain undefined. The primary outstanding question remains what is the triggering mechanism of platelet production, or thrombopoiesis? Putative stimulatory factors and mechanical forces are thought to drive this process, but none induce physiological levels of thrombopoiesis. Intrinsic inhibitory mechanisms that maintain MKs in a refractory state in sites of thrombopoiesis are conspicuously overlooked, as well as extrinsic cues that release this brake system, allowing asymmetric platelet production to proceed toward the vascular lumen. Here we introduce the novel concept of a MK/platelet checkpoint, putative components and a working model of how it may be regulated. We postulate that the co-inhibitory receptor G6b-B and the non-transmembrane protein-tyrosine phosphatases (PTPs) Shp1 and Shp2 form an inhibitory complex that is the primary gatekeeper of this checkpoint, which is spatiotemporally regulated by the receptor-type PTP CD148 and vascular heparan sulfate proteoglycans. By advancing this alternative model of thrombopoiesis, we hope to stimulate discourse and a shift in how we conceptualize and address this fundamental question.
Collapse
Affiliation(s)
- Alexandra Mazharian
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 1255, Etablissement Français du Sang Grand Est, Université de Strasbourg, Strasbourg, France
| | - Yotis A Senis
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 1255, Etablissement Français du Sang Grand Est, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Ellerman DA. The Evolving Applications of Bispecific Antibodies: Reaping the Harvest of Early Sowing and Planting New Seeds. BioDrugs 2025; 39:75-102. [PMID: 39673023 DOI: 10.1007/s40259-024-00691-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
After decades of gradual progress from conceptualization to early clinical trials (1960-2000), the therapeutic potential of bispecific antibodies (bisp Abs) is now being fully realized. Insights gained from both successful and unsuccessful trials are helping to identify which mechanisms of action, antibody formats, and targets prove most effective, and which may benefit from further refinement. While T-cell engagers remain the most commonly used class of bisp Abs, current efforts aim to increase their effectiveness by co-engaging costimulatory molecules, reducing escape mechanisms, and countering immunosuppression. Strategies to minimize cytokine release syndrome (CRS) are also actively under development. In addition, novel antibody formats that are selectively activated within tumors are an exciting area of research, as is the precise targeting of specific T-cell subsets. Beyond T cells, the recruitment of macrophages and dendritic cells is attracting increasing interest, with researchers exploring various macrophage receptors to promote phagocytosis or to carry out specialized functions, such as the immunologically silent clearance of amyloid-beta plaques in the brain. While bisp Abs targeting B cells are relatively limited, they are primarily aimed at inhibiting B-cell activity in autoimmune diseases. Another evolving application involves the forced interaction between proteins. Beyond the successful development of Hemlibra for hemophilia, bispecific antibodies that mimic cytokine activity are being explored. Additionally, the recruitment of cell surface ubiquitin ligases and other enzymes represents a novel and promising therapeutic strategy. In regard to antibody formats, some applications such as the combination of T-cell engagers with costimulatory molecules are driving the development of trispecific antibodies, at least in preclinical settings. However, the increasing structural complexity of multispecific antibodies often leads to more challenging development paths, and the number of multispecific antibodies in clinical trials remains low. The clinical success of certain applications and well-established production methods position this therapeutic class to expand its benefits into other therapeutic areas.
Collapse
Affiliation(s)
- Diego A Ellerman
- Antibody Engineering Department, Genentech Inc, South San Francisco, USA.
| |
Collapse
|
6
|
Strazza M, Song R, Hiner S, Mor A. Changing the location of proteins on the cell surface is a promising strategy for modulating T cell functions. Immunology 2024; 173:248-257. [PMID: 38952142 PMCID: PMC11987702 DOI: 10.1111/imm.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Targeting immune receptors on T cells is a common strategy to treat cancer and autoimmunity. Frequently, this is accomplished through monoclonal antibodies targeting the ligand binding sites of stimulatory or inhibitory co-receptors. Blocking ligand binding prevents downstream signalling and modulates specific T cell functions. Since 1985, the FDA has approved over 100 monoclonal antibodies against immune receptors. This therapeutic approach significantly improved the care of patients with numerous immune-related conditions; however, many patients are unresponsive, and some develop immune-related adverse events. One reason for that is the lack of consideration for the localization of these receptors on the cell surface of the immune cells in the context of the immune synapse. In addition to blocking ligand binding, changing the location of these receptors on the cell surface within the different compartments of the immunological synapse could serve as an alternative, efficient, and safer approach to treating these patients. This review discusses the potential therapeutic advantages of altering proteins' localization within the immune synapse and summarizes published work in this field. It also discusses the novel use of bispecific antibodies to induce the clustering of receptors on the cell surface. It presents the rationale for developing novel antibodies, targeting the organization of signalling receptor complexes on the cell surface. This approach offers an innovative and emerging technology to treat cancer patients resistant to current immunotherapies.
Collapse
Affiliation(s)
- Marianne Strazza
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Ruijiang Song
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Shannon Hiner
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Chen J, Liu Y, Zhan P, Gao T, Zuo J, Li X, Zhang F, Wang H, Fu S. Bayesian-based analysis of the causality between 731 immune cells and erectile dysfunction: a two-sample, bidirectional, and multivariable Mendelian randomization study. Sex Med 2024; 12:qfae062. [PMID: 39315306 PMCID: PMC11416910 DOI: 10.1093/sexmed/qfae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background The causal relationship between certain immune cells and erectile dysfunction (ED) is still uncertain. Aim The study sought to investigate the causal effect of 731 types of immune cells on ED through Mendelian randomization (MR) using genome-wide association studies (GWAS). Methods Genetic instruments for 731 immune cells were identified through GWAS, and ED data were obtained from the FinnGen database. Univariable and multivariable bidirectional MR studies were conducted to explore potential causal relationships between these immune cells and ED. The inverse-variance weighted method was primarily used, with Cochran's Q test and MR-Egger intercept test assessing pleiotropy and heterogeneity. Bayesian weighted Mendelian randomization (BWMR) was also employed. Outcomes Six immune cells were identified as related to ED. CD45 on Natural Killer (NK) cells, CD33dim HLA DR+ CD11b + Absolute Count, CD19 on IgD- CD38dim B cells, and CD3 on CD39+ resting CD4 regulatory T cells were identified as risk factors, whereas CD20 on IgD+ CD38dim B cells and Activated & resting CD4 regulatory T cell %CD4+ T cells were protective factors. Further multivariable MR analysis confirmed that 5 of these immune cells independently impacted ED, except for CD45 on NK cells. Reverse MR analysis indicated that ED occurrence decreases certain immune cell counts, but BWMR found no causal relationship for CD20 on IgD+ CD38dim B cells. Results Our MR analysis confirmed a potential bidirectional causal relationship between immune cells and ED, providing new insights into potential mechanisms and therapeutic strategies. Clinical Translation This study provides evidence for the impact of certain immune cells on the development of ED and suggests potential therapeutic targets. Strengths and Limitations We performed both univariable and multivariable MR to strengthen the causal relationship between exposures and outcomes. However, the population in this study was limited to European ancestry. Conclusion Our MR analysis confirmed a potential bidirectional causal relationship between immune cells and ED. This provides new insights into potential mechanisms of pathogenesis and subsequent therapeutic strategies.
Collapse
Affiliation(s)
- Junhao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Yidao Liu
- Department of Urology, Dehong People's Hospital, Mangshi City, Dehong, Yunnan Province, 678499, China
| | - Peiqin Zhan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Tianci Gao
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
- College of Clinical Medicine, Jiamusi University, Xiangyang District, Jiamusi City, Heilongjiang Province
| | - Jieming Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Xiangyun Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Fangfei Zhang
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226United States
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| |
Collapse
|
8
|
Karlsson F, Kallas T, Thiagarajan D, Karlsson M, Schweitzer M, Navarro JF, Leijonancker L, Geny S, Pettersson E, Rhomberg-Kauert J, Larsson L, van Ooijen H, Petkov S, González-Granillo M, Bunz J, Dahlberg J, Simonetti M, Sathe P, Brodin P, Barrio AM, Fredriksson S. Molecular pixelation: spatial proteomics of single cells by sequencing. Nat Methods 2024; 21:1044-1052. [PMID: 38720062 PMCID: PMC11166577 DOI: 10.1038/s41592-024-02268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/02/2024] [Indexed: 06/13/2024]
Abstract
The spatial distribution of cell surface proteins governs vital processes of the immune system such as intercellular communication and mobility. However, fluorescence microscopy has limited scalability in the multiplexing and throughput needed to drive spatial proteomics discoveries at subcellular level. We present Molecular Pixelation (MPX), an optics-free, DNA sequence-based method for spatial proteomics of single cells using antibody-oligonucleotide conjugates (AOCs) and DNA-based, nanometer-sized molecular pixels. The relative locations of AOCs are inferred by sequentially associating them into local neighborhoods using the sequence-unique DNA pixels, forming >1,000 spatially connected zones per cell in 3D. For each single cell, DNA-sequencing reads are computationally arranged into spatial proteomics networks for 76 proteins. By studying immune cell dynamics using spatial statistics on graph representations of the data, we identify known and new patterns of spatial organization of proteins on chemokine-stimulated T cells, highlighting the potential of MPX in defining cell states by the spatial arrangement of proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Medical Research Council London Institute of Medical Sciences (LMS), Imperial College Hammersmith Campus, London, UK
| | | | - Simon Fredriksson
- Pixelgen Technologies AB, Stockholm, Sweden.
- Royal Institute of Technology, Department of Protein Science, Stockholm, Sweden.
| |
Collapse
|
9
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
10
|
Rhee K, Zhou X. Two in one: the emerging concept of bifunctional antibodies. Curr Opin Biotechnol 2024; 85:103050. [PMID: 38142645 PMCID: PMC10922881 DOI: 10.1016/j.copbio.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic antibodies have become indispensable for treating a wide range of diseases, and their significance in drug discovery has expanded considerably over the past few decades. Bifunctional antibodies are now emerging as a promising new drug modality to address previously unmet needs in antibody therapeutics. Distinct from traditional antibodies that operate through an 'occupancy-based' inhibition mechanism, these innovative molecules recruit the protein of interest to a 'biological effector,' initiating specific downstream consequences such as targeted protein degradation or posttranslational modifications. In this review, we emphasize the potential of bifunctional antibodies to tackle diverse biomedical challenges.
Collapse
Affiliation(s)
- Kaitlin Rhee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|