1
|
Rojano-Nisimura AM, Simmons TR, Lukasiewicz AJ, Buchser R, Ruzek JS, Avila JL, Contreras LM. Concentration-Dependent CsrA Regulation of the uxuB Transcript Leads to Development of a Post-Transcriptional Bandpass Filter. ACS Synth Biol 2025; 14:1084-1098. [PMID: 40202123 DOI: 10.1021/acssynbio.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Post-transcriptional control systems offer new avenues for designing synthetic circuits that provide reduced burden and fewer synthetic regulatory components compared to transcriptionally based tools. Herein, we repurpose a newly identified post-transcriptional interaction between the uxuB mRNA transcript, specifically the 5' UTR + 100 nucleotides of coding sequence (100 nt CDS), and the E. coli Carbon Storage Regulatory A (CsrA) protein to design a biological post-transcriptional bandpass filter. In this work, we characterize the uxuB mRNA as a heterogeneous target of CsrA, where the protein can both activate and repress uxuB activity depending on its intracellular concentration. We leverage this interaction to implement a novel strategy of regulation within the 5' UTR of an mRNA. Specifically, we report a hierarchical binding strategy that may be leveraged by CsrA within uxuB to produce a dose-dependent response in regulatory outcomes. In our semisynthetic circuit, the uxuB 5' UTR + 100 nt CDS sequence is used as a scaffold that is fused to a gene of interest, which allows the circuit to transition between ON/OFF states based on the concentration range of free natively expressed CsrA. Notably, this system exerts regulation comparable to previously developed transcriptional bandpass filters while reducing the number of synthetic circuit components and can be used in concert with additional post-transcriptionally controlled circuits to achieve complex multi-signal control. We anticipate that future characterization of native regulatory RNA-protein systems will enable the development of more complex RNP-based circuits for synthetic biology applications.
Collapse
Affiliation(s)
| | - Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| | - Alexandra J Lukasiewicz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| | - Josie S Ruzek
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| | - Jacqueline L Avila
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| | - Lydia M Contreras
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Lay CG, Burks GR, Li Z, Barrick JE, Schroeder CM, Karim AS, Jewett MC. Cell-Free Expression of Soluble Leafhopper Proteins from Brochosomes. ACS Synth Biol 2025; 14:987-994. [PMID: 40052868 DOI: 10.1021/acssynbio.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Brochosomes are proteinaceous nanostructures produced by leafhopper insects with superhydrophobic and antireflective properties. Unfortunately, the production and study of brochosome-based materials has been limited by poor understanding of their major constituent subunit proteins, known as brochosomins, as well as their sensitivity to redox conditions due to essential disulfide bonds. Here, we used cell-free gene expression (CFE) to achieve recombinant production and analysis of brochosomin proteins. Through the optimization of redox environment, reaction temperature, and disulfide bond isomerase concentration, we achieved soluble brochosomin yields of up to 341 ± 30 μg/mL. Analysis using dynamic light scattering and transmission electron microscopy revealed distinct aggregation patterns among cell-free mixtures with different expressed brochosomins. We anticipate that the CFE methods developed here will accelerate the ability to change the geometries and properties of natural and modified brochosomes, as well as facilitate the expression and structural analysis of other poorly understood protein complexes.
Collapse
Affiliation(s)
- Caleb G Lay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Gabriel R Burks
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zheng Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Charles M Schroeder
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Liu Y, Zhou Z, Wu Y, Wang L, Cheng J, Zhu L, Dong Y, Zheng J, Xu W. Engineered transcription factor-binding diversed functional nucleic acid-based synthetic biosensor. Biotechnol Adv 2024; 77:108463. [PMID: 39374798 DOI: 10.1016/j.biotechadv.2024.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Engineered transcription factors (eTFs) binding diversed functional nucleic acids (dFNAs), as innovative biorecognition systems, have gradually become indispensable core elements for building synthetic biosensors. They not only circumvent the limitations of the original TF-based biosensing technologies, but also inject new vitality into the field of synthetic biosensing. This review aims to provide the first comprehensive and systematic dissection of the eTF-dFNA synthetic biosensor concept. Firstly, the core principles and interaction mechanisms of eTF-dFNA biosensors are clarified. Next, we elaborate on the construction strategies of eTF-dFNA synthetic biosensors, detailing methods for the personalized customization of eTFs (irrational design, rational design, and semi-rational design) and dFNAs (SELEX, modifying and predicting), along with the exploration of strategies for the flexible selection of signal amplification and output modes. Furthermore, we discuss the exceptional performance and substantial advantages of eTF-dFNA synthetic biosensors, analyzing them from four perspectives: recognition domain, detection speed, sensitivity, and construction methodology. Building upon this analysis, we present their outstanding applications in point-of-care diagnostics, food-safety detection, environmental monitoring, and production control. Finally, we address the current limitations of eTF-dFNA synthetic biosensors candidly and envision the future direction of this technology, aiming to provide valuable insights for further research and applications in this burgeoning field.
Collapse
Affiliation(s)
- Yanger Liu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ziying Zhou
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Yifan Wu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Lei Wang
- Key Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiageng Cheng
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing 100073, China.
| | - Yulan Dong
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing 100073, China.
| |
Collapse
|
5
|
Haynes KA, Andrews LB, Beisel CL, Chappell J, Cuba Samaniego CE, Dueber JE, Dunlop MJ, Franco E, Lucks JB, Noireaux V, Savage DF, Silver PA, Smanski M, Young E. Ten Years of the Synthetic Biology Summer Course at Cold Spring Harbor Laboratory. ACS Synth Biol 2024; 13:2635-2642. [PMID: 39300908 PMCID: PMC11421210 DOI: 10.1021/acssynbio.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 09/22/2024]
Abstract
The Cold Spring Harbor Laboratory (CSHL) Summer Course on Synthetic Biology, established in 2013, has emerged as a premier platform for immersive education and research in this dynamic field. Rooted in CSHL's rich legacy of biological discovery, the course offers a comprehensive exploration of synthetic biology's fundamentals and applications. Led by a consortium of faculty from diverse institutions, the course structure seamlessly integrates practical laboratory sessions, exploratory research rotations, and enriching seminars by leaders in the field. Over the years, the curriculum has evolved to cover essential topics such as cell-free transcription-translation, DNA construction, computational modeling of gene circuits, engineered gene regulation, and CRISPR technologies. In this review, we describe the history, development, and structure of the course, and discuss how elements of the course might inform the development of other short courses in synthetic biology. We also demonstrate the course's impact beyond the lab with a summary of alumni contributions to research, education, and entrepreneurship. Through these efforts, the CSHL Summer Course on Synthetic Biology remains at the forefront of shaping the next generation of synthetic biologists.
Collapse
Affiliation(s)
- Karmella A. Haynes
- Wallace H.
Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia 30345, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Chase L. Beisel
- Helmholtz
Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - James Chappell
- Biosciences
Department, Rice University, Houston, Texas 77005, United States
| | - Christian E. Cuba Samaniego
- Department
of Computational Biology, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - John E. Dueber
- Department
of Bioengineering, University of California
Berkeley, Berkeley, California 94720, United States
| | - Mary J. Dunlop
- Biomedical
Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Elisa Franco
- Mechanical
and Aerospace Engineering, Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Julius B. Lucks
- Department
of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Vincent Noireaux
- School
of Physics and Astronomy, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University
of California Berkeley, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California Berkeley, Berkeley, California 94720, United States
| | - Pamela A. Silver
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Smanski
- Department
of Biochemistry, Molecular Biology, and Biophysics and Biotechnology
Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eric Young
- Chemical
Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
6
|
Willi JA, Karim AS, Jewett MC. Cell-Free Translation Quantification via a Fluorescent Minihelix. ACS Synth Biol 2024; 13:2253-2259. [PMID: 38979618 DOI: 10.1021/acssynbio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell-free gene expression systems are used in numerous applications, including medicine making, diagnostics, and educational kits. Accurate quantification of nonfluorescent proteins in these systems remains a challenge. To address this challenge, we report the adaptation and use of an optimized tetra-cysteine minihelix both as a fusion protein and as a standalone reporter with the FlAsH dye. The fluorescent reporter helix is short enough to be encoded on a primer pair to tag any protein of interest via PCR. Both the tagged protein and the standalone reporter can be detected quantitatively in real time or at the end of cell-free expression reactions with standard 96/384-well plate readers, an RT-qPCR system, or gel electrophoresis without the need for staining. The fluorescent signal is stable and correlates linearly with the protein concentration, enabling product quantification. We modified the reporter to study cell-free expression dynamics and engineered ribosome activity. We anticipate that the fluorescent minihelix reporter will facilitate efforts in engineering in vitro transcription and translation systems.
Collapse
Affiliation(s)
- Jessica A Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Karim AS, Brown DM, Archuleta CM, Grannan S, Aristilde L, Goyal Y, Leonard JN, Mangan NM, Prindle A, Rocklin GJ, Tyo KJ, Zoloth L, Jewett MC, Calkins S, Kamat NP, Tullman-Ercek D, Lucks JB. Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists. Nat Commun 2024; 15:5425. [PMID: 38926339 PMCID: PMC11208543 DOI: 10.1038/s41467-024-49626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Synthetic biology allows us to reuse, repurpose, and reconfigure biological systems to address society's most pressing challenges. Developing biotechnologies in this way requires integrating concepts across disciplines, posing challenges to educating students with diverse expertise. We created a framework for synthetic biology training that deconstructs biotechnologies across scales-molecular, circuit/network, cell/cell-free systems, biological communities, and societal-giving students a holistic toolkit to integrate cross-disciplinary concepts towards responsible innovation of successful biotechnologies. We present this framework, lessons learned, and inclusive teaching materials to allow its adaption to train the next generation of synthetic biologists.
Collapse
Affiliation(s)
- Ashty S Karim
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Dylan M Brown
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chloé M Archuleta
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sharisse Grannan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Independent Evaluator, Lake Geneva, WI, 53147, USA
| | - Ludmilla Aristilde
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yogesh Goyal
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Josh N Leonard
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Niall M Mangan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, 60201, USA
| | - Arthur Prindle
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA
| | - Gabriel J Rocklin
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Keith J Tyo
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Laurie Zoloth
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- The Divinity School, University of Chicago, Chicago, IL, 60637, USA
| | - Michael C Jewett
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Susanna Calkins
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Searle Center for Advancing Learning and Teaching, Northwestern University, Evanston, IL, 60208, USA
- Nexus for Faculty Success, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Neha P Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Biomedical Engineering Northwestern University, Evanston, IL, 60208, USA
| | - Danielle Tullman-Ercek
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Julius B Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
8
|
Kofman C, Willi JA, Karim AS, Jewett MC. Ribosome Pool Engineering Increases Protein Biosynthesis Yields. ACS CENTRAL SCIENCE 2024; 10:871-881. [PMID: 38680563 PMCID: PMC11046459 DOI: 10.1021/acscentsci.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
The biosynthetic capability of the bacterial ribosome motivates efforts to understand and harness sequence-optimized versions for synthetic biology. However, functional differences between natively occurring ribosomal RNA (rRNA) operon sequences remain poorly characterized. Here, we use an in vitro ribosome synthesis and translation platform to measure protein production capabilities of ribosomes derived from all unique combinations of 16S and 23S rRNAs from seven distinct Escherichia coli rRNA operon sequences. We observe that polymorphisms that distinguish native E. coli rRNA operons lead to significant functional changes in the resulting ribosomes, ranging from negligible or low gene expression to matching the protein production activity of the standard rRNA operon B sequence. We go on to generate strains expressing single rRNA operons and show that not only do some purified in vivo expressed homogeneous ribosome pools outperform the wild-type, heterogeneous ribosome pool but also that a crude cell lysate made from the strain expressing only operon A ribosomes shows significant yield increases for a panel of medically and industrially relevant proteins. We anticipate that ribosome pool engineering can be applied as a tool to increase yields across many protein biomanufacturing systems, as well as improve basic understanding of ribosome heterogeneity and evolution.
Collapse
Affiliation(s)
- Camila Kofman
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jessica A. Willi
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Bioengineering, Stanford University, Stanford California 94305, United States
| |
Collapse
|
9
|
Kocalar S, Miller BM, Huang A, Gleason E, Martin K, Foley K, Copeland DS, Jewett MC, Saavedra EA, Kraves S. Validation of Cell-Free Protein Synthesis Aboard the International Space Station. ACS Synth Biol 2024; 13:942-950. [PMID: 38442491 PMCID: PMC10949350 DOI: 10.1021/acssynbio.3c00733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Cell-free protein synthesis (CFPS) is a rapidly maturing in vitro gene expression platform that can be used to transcribe and translate nucleic acids at the point of need, enabling on-demand synthesis of peptide-based vaccines and biotherapeutics as well as the development of diagnostic tests for environmental contaminants and infectious agents. Unlike traditional cell-based systems, CFPS platforms do not require the maintenance of living cells and can be deployed with minimal equipment; therefore, they hold promise for applications in low-resource contexts, including spaceflight. Here, we evaluate the performance of the cell-free platform BioBits aboard the International Space Station by expressing RNA-based aptamers and fluorescent proteins that can serve as biological indicators. We validate two classes of biological sensors that detect either the small-molecule DFHBI or a specific RNA sequence. Upon detection of their respective analytes, both biological sensors produce fluorescent readouts that are visually confirmed using a hand-held fluorescence viewer and imaged for quantitative analysis. Our findings provide insights into the kinetics of cell-free transcription and translation in a microgravity environment and reveal that both biosensors perform robustly in space. Our findings lay the groundwork for portable, low-cost applications ranging from point-of-care health monitoring to on-demand detection of environmental hazards in low-resource communities both on Earth and beyond.
Collapse
Affiliation(s)
- Selin Kocalar
- Leigh
High School, 5210 Leigh
Ave, San Jose, California 95124, United States
- Massachusetts
Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Bess M. Miller
- Division
of Genetics, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, Massachusetts 02115, United States
| | - Ally Huang
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Emily Gleason
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Kathryn Martin
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Kevin Foley
- Boeing
Defense, Space & Security, 6398 Upper Brandon Dr, Houston, Texas 77058, United States
| | - D. Scott Copeland
- Boeing
Defense, Space & Security, 6398 Upper Brandon Dr, Houston, Texas 77058, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | | | - Sebastian Kraves
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| |
Collapse
|