1
|
Gelli HP, Vazquez-Uribe R, Buckley ST, Andersen JT, Alexander Sommer MO. Advanced microbiome therapeutics for oral delivery of peptides and proteins: Advances, challenges, and opportunities. Adv Drug Deliv Rev 2025; 222:115603. [PMID: 40349728 DOI: 10.1016/j.addr.2025.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Peptide and protein medicines have changed the therapeutic landscape for many diseases, yet oral delivery remains a significant challenge due to enzymatic degradation, instability, and poor permeability in the gastrointestinal tract. Advanced Microbiome Therapeutics (AMTs) could overcome some of these barriers by producing and releasing therapeutic peptides directly in the gastrointestinal tract. AMTs can localize peptide production at the site of absorption, providing either sustained or controlled release while potentially reducing side effects associated with systemic administration. Here, this review assesses the status of AMTs for oral peptide delivery and discusses the potential integration of permeation enhancers, mucoadhesive systems, and receptor-mediated transport strategies to improve oral bioavailability further. Combining these approaches could pave the way for more widespread oral delivery strategies for peptide and protein medicines.
Collapse
Affiliation(s)
- Hitesh P Gelli
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Jan Terje Andersen
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | | |
Collapse
|
2
|
Parker W, Taylor A, Razdan A, Escarce J, Crook N. Enabling technologies for in situ biomanufacturing using probiotic yeast. Adv Drug Deliv Rev 2025; 223:115605. [PMID: 40383233 DOI: 10.1016/j.addr.2025.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Saccharomyces boulardii (Sb) is a Generally Regarded As Safe (GRAS) probiotic yeast currently used to alleviate symptoms from various gastrointestinal diseases. Sb is a promising platform for probiotic and biotherapeutic engineering as it is the only probiotic eukaryote and carries with it a unique set of advantages compared to bacterial strains, including resistance to phage, high protein secretion abilities, and intrinsic resistance to antibiotics. While engineered Sb has not been studied as extensively as its close relative Saccharomyces cerevisiae (Sc), many genetic engineering tools developed for Sc have also shown promise in Sb. In this review, we address recent research to develop tools for genetic engineering, colonization modulation, biomarker sensing, and drug production in Sb. Ongoing efforts, especially those that overcome gut-specific challenges to engineered performance, are highlighted as they advance this chassis as a scalable platform for treating gastrointestinal diseases.
Collapse
Affiliation(s)
- William Parker
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Amanda Taylor
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aryan Razdan
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose Escarce
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Nathan Crook
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Gelli HP, Hedin KA, Laursen MF, Uribe RV, Sommer MOA. Enhancing intestinal absorption of a macromolecule through engineered probiotic yeast in the murine gastrointestinal tract. Trends Biotechnol 2025; 43:715-731. [PMID: 39658447 DOI: 10.1016/j.tibtech.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024]
Abstract
Oral administration of therapeutic peptides is limited by poor intestinal absorption. Use of engineered microorganisms as drug delivery vehicles can overcome the challenges faced by conventional delivery methods. The potential of engineered microorganisms to act synergistically with the therapeutics they deliver opens new horizons for noninvasive treatment modalities. This study engineered a probiotic yeast, Saccharomyces boulardii, to produce cell-penetrating peptides (CPPs) in situ for enhanced intestinal permeability. Four CPPs were integrated into the yeast chromosome: RRL helix, Shuffle, Penetramax, and PN159. In vitro tests on a Caco-2 cell model showed that three CPP-producing strains increased permeability without causing permanent damage. In vivo experiments on mice revealed that Sb PN159 administration over 10 days significantly increased FITC-dextran translocation into the bloodstream without causing inflammation. This study demonstrates, for the first time, the ability of an engineered microorganism to modulate host permeability for improved intestinal absorption of a macromolecule.
Collapse
Affiliation(s)
- Hitesh P Gelli
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin F Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ruben-Vazquez Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; Center for Microbiology, VIB, Leuven, Belgium
| | | |
Collapse
|
4
|
Liu S, Tao Z, Qiao M, Shi L. The Functions of Major Gut Microbiota in Obesity and Type 2 Diabetes. Metabolites 2025; 15:167. [PMID: 40137132 PMCID: PMC11943573 DOI: 10.3390/metabo15030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Gut microbiomes play a vital role in maintaining whole-body metabolic homeostasis. It has gained significant attention in recent years due to advancements in genome sequencing technologies and a deeper understanding of its relationship with obesity. However, the specific ways in which different microorganisms directly or indirectly influence host obesity, as well as the underlying mechanisms, remain uncertain because of the complexity of gut microbiota composition. Methods: In this review, we summarize the roles of the major gut microbiota phyla such as Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia in obesity and type 2 diabetes based on studies published in the past five years on PubMed and Google Scholar. The current therapeutic strategies associated with gut microbiota are also explored from clinical trials, and challenges and future directions are discussed. Results and Conclusions: This review will provide a deeper understanding of the functions of major gut microbiota in obesity and type 2 diabetes, which could lead to more individualized and effective treatments for metabolic diseases.
Collapse
Affiliation(s)
- Siman Liu
- Departments of Nutritional Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhipeng Tao
- Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA
| | - Mingyu Qiao
- Departments of Nutritional Science, University of Connecticut, Storrs, CT 06269, USA
| | - Limin Shi
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| |
Collapse
|
5
|
Yu H, Nyasae L, Lee R, Lu W, So E, Feng H, Yang Z. Development of a Dihydrofolate Reductase Selection System for Saccharomyces boulardii. Int J Mol Sci 2025; 26:2073. [PMID: 40076696 PMCID: PMC11899850 DOI: 10.3390/ijms26052073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Saccharomyces boulardii, the only commercially available probiotic yeast, has gained attention as a recombinant live biotherapeutic product (rLBP) empowered with the expression of heterologous therapeutic proteins for treating gastrointestinal diseases. However, the genetic modification of S. boulardii intended for clinical use is hindered by regulatory and technical challenges. In this study, we developed a dihydrofolate reductase (DHFR)-based selection system as an innovative alternative to traditional auxotrophic selection strategies for engineering S. boulardii. The DHFR selection system overcame inherent resistance of the yeast to methotrexate (MTX) by incorporating sulfanilamide, a dihydrofolate synthesis inhibitor, to enhance selection efficiency. The system demonstrated robust functionality, enabling the efficient screening of high-expression clones and tunable expression of therapeutic proteins, such as cytokines and antibodies, by modulating MTX concentrations. Furthermore, the yeast's endogenous DHFR homolog, DFR1, was shown to be a viable selection marker, providing greater host compatibility while maintaining functionality compared to DHFR. This selection system avoids reliance on foreign antibiotic selection markers and the construction of auxotrophic strains, thus simplifying engineering and allowing for a tunable protein expression. These advancements establish the DHFR/DFR1 selection system as a robust and versatile platform for developing S. boulardii-based live biotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Yang
- Fzata Inc., 1450 S. Rolling Rd, Halethorpe, MD 21227, USA
| |
Collapse
|
6
|
Rebeck ON, Wallace MJ, Prusa J, Ning J, Evbuomwan EM, Rengarajan S, Habimana-Griffin L, Kwak S, Zahrah D, Tung J, Liao J, Mahmud B, Fishbein SRS, Ramirez Tovar ES, Mehta R, Wang B, Gorelik MG, Helmink BA, Dantas G. A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden. Cell Chem Biol 2025; 32:98-110.e7. [PMID: 39571582 PMCID: PMC11741927 DOI: 10.1016/j.chembiol.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Engineered probiotics are an emerging platform for in situ delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered Saccharomyces cerevisiae var. boulardii (Sb), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete "miniature" antibody variants that target programmed death ligand 1 (Sb_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, Sb_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Olivia N Rebeck
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miranda J Wallace
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome Prusa
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Esse M Evbuomwan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sunaina Rengarajan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63110, USA
| | - LeMoyne Habimana-Griffin
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suryang Kwak
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Zahrah
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Tung
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erick S Ramirez Tovar
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rehan Mehta
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark G Gorelik
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beth A Helmink
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
8
|
Vazquez-Uribe R, Hedin KA, Licht TR, Nieuwdorp M, Sommer MOA. Advanced microbiome therapeutics as a novel modality for oral delivery of peptides to manage metabolic diseases. Trends Endocrinol Metab 2025; 36:29-41. [PMID: 38782649 DOI: 10.1016/j.tem.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.
Collapse
Affiliation(s)
- Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Ke Z, Ma Q, Ye X, Wang Y, Jin Y, Zhao X, Su Z. Peptide GLP-1 receptor agonists: From injection to oral delivery strategies. Biochem Pharmacol 2024; 229:116471. [PMID: 39127152 DOI: 10.1016/j.bcp.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Peptide glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective drugs for treating type 2 diabetes (T2DM) and have been proven to benefit the heart and kidney. Apart from oral semaglutide, which does not require injection, other peptide GLP-1RAs need to be subcutaneously administered. However, oral semaglutide also faces significant challenges, such as low bioavailability and frequent gastrointestinal discomfort. Thus, it is imperative that advanced oral strategies for peptide GLP-1RAs need to be explored. This review mainly compares the current advantages and disadvantages of various oral delivery strategies for peptide GLP-1RAs in the developmental stage and discusses the latest research progress of peptide GLP-1RAs, providing a useful guide for the development of new oral peptide GLP-1RA drugs.
Collapse
Affiliation(s)
- Zhiqiang Ke
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Qianqian Ma
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiaonan Ye
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yanlin Wang
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yan Jin
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Xinyuan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Zhengding Su
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
10
|
Pan Y, Li J, Fan Z, Chen Y, Huang X, Wu D. New Insights into Chronic Pancreatitis: Potential Mechanisms Related to Probiotics. Microorganisms 2024; 12:1760. [PMID: 39338435 PMCID: PMC11434092 DOI: 10.3390/microorganisms12091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic pancreatitis is a progressive fibroinflammatory disorder with no currently satisfactory treatment. Emerging evidence suggests an association between gut microbial dysbiosis and chronic pancreatitis. Although direct causative evidence is lacking, it is hypothesized that the gut microbiota may play a pivotal role in modulating pancreatic function via the gut-pancreas axis. Thus, modulating the gut microbiota through the administration of probiotics or prebiotics may alleviate pancreatic disorders. In this review, we first propose the potential mechanisms by which specific probiotics or prebiotics may ameliorate chronic pancreatitis, including the alleviation of small intestinal bacterial overgrowth (SIBO), the facilitation of short-chain fatty acids' (SCFAs) production, and the activation of glucagon-like peptide-1 receptors (GLP-1Rs) in the pancreas. Since there are currently no probiotics or prebiotics used for the treatment of chronic pancreatitis, we discuss research in other disease models that have used probiotics or prebiotics to modulate pancreatic endocrine and exocrine functions and prevent pancreatic fibrosis. This provides indirect evidence for their potential application in the treatment of chronic pancreatitis. We anticipate that this research will stimulate further investigation into the gut-pancreas axis and the potential therapeutic value of probiotics and prebiotics in chronic pancreatitis.
Collapse
Affiliation(s)
- Yingyu Pan
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianing Li
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhengyang Fan
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yonghao Chen
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoxuan Huang
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
11
|
Durmusoglu D, Haller DJ, Al'Abri IS, Day K, Sands C, Clark A, San-Miguel A, Vazquez-Uribe R, Sommer MOA, Crook NC. Programming Probiotics: Diet-Responsive Gene Expression and Colonization Control in Engineered S. boulardii. ACS Synth Biol 2024; 13:1851-1865. [PMID: 38787439 DOI: 10.1021/acssynbio.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Saccharomyces boulardii (Sb) is an emerging probiotic chassis for delivering biomolecules to the mammalian gut, offering unique advantages as the only eukaryotic probiotic. However, precise control over gene expression and gut residence time in Sb have remained challenging. To address this, we developed five ligand-responsive gene expression systems and repaired galactose metabolism in Sb, enabling inducible gene expression in this strain. Engineering these systems allowed us to construct AND logic gates, control the surface display of proteins, and turn on protein production in the mouse gut in response to dietary sugar. Additionally, repairing galactose metabolism expanded Sb's habitat within the intestines and resulted in galactose-responsive control over gut residence time. This work opens new avenues for precise dosing of therapeutics by Sb via control over its in vivo gene expression levels and localization within the gastrointestinal tract.
Collapse
Affiliation(s)
- Deniz Durmusoglu
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Daniel J Haller
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ibrahim S Al'Abri
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Katie Day
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Carmen Sands
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nathan C Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
12
|
Sands C, Hedin KA, Vazquez-Uribe R, Sommer MOA. Saccharomyces boulardii promoters for control of gene expression in vivo. Microb Cell Fact 2024; 23:16. [PMID: 38185666 PMCID: PMC10771652 DOI: 10.1186/s12934-023-02288-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Interest in the use of engineered microbes to deliver therapeutic activities has increased in recent years. The probiotic yeast Saccharomyces boulardii has been investigated for production of therapeutics in the gastrointestinal tract. Well-characterised promoters are a prerequisite for robust therapeutic expression in the gut; however, S. boulardii promoters have not yet been thoroughly characterised in vitro and in vivo. RESULTS We present a thorough characterisation of the expression activities of 12 S. boulardii promoters in vitro in glucose, fructose, sucrose, inulin and acetate, under both aerobic and anaerobic conditions, as well as in the murine gastrointestinal tract. Green fluorescent protein was used to report on promoter activity. Promoter expression was found to be carbon-source dependent, with inulin emerging as a favourable carbon source. Furthermore, relative promoter expression in vivo was highly correlated with expression in sucrose (R = 0.99). CONCLUSIONS These findings provide insights into S. boulardii promoter activity and aid in promoter selection in future studies utilising S. boulardii to produce therapeutics in the gut.
Collapse
Affiliation(s)
- Carmen Sands
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|