1
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
2
|
Dow L, Gallart M, Ramarajan M, Law SR, Thatcher LF. Streptomyces and their specialised metabolites for phytopathogen control - comparative in vitro and in planta metabolic approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1151912. [PMID: 37389291 PMCID: PMC10301723 DOI: 10.3389/fpls.2023.1151912] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
In the search for new crop protection microbial biocontrol agents, isolates from the genus Streptomyces are commonly found with promising attributes. Streptomyces are natural soil dwellers and have evolved as plant symbionts producing specialised metabolites with antibiotic and antifungal activities. Streptomyces biocontrol strains can effectively suppress plant pathogens via direct antimicrobial activity, but also induce plant resistance through indirect biosynthetic pathways. The investigation of factors stimulating the production and release of Streptomyces bioactive compounds is commonly conducted in vitro, between Streptomyces sp. and a plant pathogen. However, recent research is starting to shed light on the behaviour of these biocontrol agents in planta, where the biotic and abiotic conditions share little similarity to those of controlled laboratory conditions. With a focus on specialised metabolites, this review details (i) the various methods by which Streptomyces biocontrol agents employ specialised metabolites as an additional line of defence against plant pathogens, (ii) the signals shared in the tripartite system of plant, pathogen and biocontrol agent, and (iii) an outlook on new approaches to expedite the identification and ecological understanding of these metabolites under a crop protection lens.
Collapse
Affiliation(s)
- Lachlan Dow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Marta Gallart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| | - Margaret Ramarajan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
| | - Simon R. Law
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Louise F. Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| |
Collapse
|
3
|
Metabolite-based biosensors for natural product discovery and overproduction. Curr Opin Biotechnol 2022; 75:102699. [DOI: 10.1016/j.copbio.2022.102699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
|
4
|
Sekurova ON, Sun YQ, Zehl M, Rückert C, Stich A, Busche T, Kalinowski J, Zotchev S. Coupling of the engineered DNA "mutator" to a biosensor as a new paradigm for activation of silent biosynthetic gene clusters in Streptomyces. Nucleic Acids Res 2021; 49:8396-8405. [PMID: 34197612 PMCID: PMC8373060 DOI: 10.1093/nar/gkab583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
DNA replication fidelity in Streptomyces bacteria, prolific producers of many medically important secondary metabolites, is understudied, while in Escherichia coli it is controlled by DnaQ, the ϵ subunit of DNA polymerase III (DNA PolIII). Manipulation of dnaQ paralogues in Streptomyces lividans TK24, did not lead to increased spontaneous mutagenesis in this bacterium suggesting that S. lividans DNA PolIII uses an alternative exonuclease activity for proofreading. In Mycobacterium tuberculosis, such activity is attributed to the DnaE protein representing α subunit of DNA PolIII. Eight DnaE mutants designed based on the literature data were overexpressed in S. lividans, and recombinant strains overexpressing two of these mutants displayed markedly increased frequency of spontaneous mutagenesis (up to 1000-fold higher compared to the control). One of these 'mutators' was combined in S. lividans with a biosensor specific for antibiotic coelimycin, which biosynthetic gene cluster is present but not expressed in this strain. Colonies giving a positive biosensor signal appeared at a frequency of ca 10-5, and all of them were found to produce coelimycin congeners. This result confirmed that our approach can be applied for chemical- and radiation-free mutagenesis in Streptomyces leading to activation of orphan biosynthetic gene clusters and discovery of novel bioactive secondary metabolites.
Collapse
Affiliation(s)
- Olga N Sekurova
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Yi-Qian Sun
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Anna Stich
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Sergey B Zotchev
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Beck C, Blin K, Gren T, Jiang X, Mohite OS, Palazzotto E, Tong Y, Charusanti P, Weber T. Metabolic Engineering of Filamentous Actinomycetes. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Mingyar E, Mühling L, Kulik A, Winkler A, Wibberg D, Kalinowski J, Blin K, Weber T, Wohlleben W, Stegmann E. A Regulator Based "Semi-Targeted" Approach to Activate Silent Biosynthetic Gene Clusters. Int J Mol Sci 2021; 22:ijms22147567. [PMID: 34299187 PMCID: PMC8306873 DOI: 10.3390/ijms22147567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel "semi-targeted" approach focusing on activating "silent" BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tübingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TÜ17, Streptomyces sp. TÜ10 and Streptomyces sp. TÜ102. Introduction of the CSRs-plasmid into strain S. sp. TÜ17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TÜ102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TÜ10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TÜ102 and aur1P and pntR in of S. sp. TÜ10.
Collapse
Affiliation(s)
- Erik Mingyar
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Lucas Mühling
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
| | - Andreas Kulik
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Kai Blin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; (K.B.); (T.W.)
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; (K.B.); (T.W.)
| | - Wolfgang Wohlleben
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Evi Stegmann
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
7
|
The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays Biochem 2021; 65:261-275. [PMID: 33956071 DOI: 10.1042/ebc20200132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Streptomycetes are producers of a wide range of specialized metabolites of great medicinal and industrial importance, such as antibiotics, antifungals, or pesticides. Having been the drivers of the golden age of antibiotics in the 1950s and 1960s, technological advancements over the last two decades have revealed that very little of their biosynthetic potential has been exploited so far. Given the great need for new antibiotics due to the emerging antimicrobial resistance crisis, as well as the urgent need for sustainable biobased production of complex molecules, there is a great renewed interest in exploring and engineering the biosynthetic potential of streptomycetes. Here, we describe the Design-Build-Test-Learn (DBTL) cycle for metabolic engineering experiments in streptomycetes and how it can be used for the discovery and production of novel specialized metabolites.
Collapse
|
8
|
Bednarz B, Millan-Oropeza A, Kotowska M, Świat M, Quispe Haro JJ, Henry C, Pawlik K. Coelimycin Synthesis Activatory Proteins Are Key Regulators of Specialized Metabolism and Precursor Flux in Streptomyces coelicolor A3(2). Front Microbiol 2021; 12:616050. [PMID: 33897632 PMCID: PMC8062868 DOI: 10.3389/fmicb.2021.616050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
Many microbial specialized metabolites are industrially relevant agents but also serve as signaling molecules in intra-species and even inter-kingdom interactions. In the antibiotic-producing Streptomyces, members of the SARP (Streptomyces antibiotic regulatory proteins) family of regulators are often encoded within biosynthetic gene clusters and serve as their direct activators. Coelimycin is the earliest, colored specialized metabolite synthesized in the life cycle of the model organism Streptomyces coelicolor A3(2). Deletion of its two SARP activators cpkO and cpkN abolished coelimycin synthesis and resulted in dramatic changes in the production of the later, stationary-phase antibiotics. The underlying mechanisms of these phenotypes were deregulation of precursor flux and quorum sensing, as shown by label-free, bottom-up shotgun proteomics. Detailed profiling of promoter activities demonstrated that CpkO is the upper-level cluster activator that induces CpkN, while CpkN activates type II thioesterase ScoT, necessary for coelimycin synthesis. What is more, we show that cpkN is regulated by quorum sensing gamma-butyrolactone receptor ScbR.
Collapse
Affiliation(s)
- Bartosz Bednarz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aaron Millan-Oropeza
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Magdalena Kotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Świat
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Juan J Quispe Haro
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Krzysztof Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
10
|
Vickery CR, McCulloch IP, Sonnenschein EC, Beld J, Noel JP, Burkart MD. Dissecting modular synthases through inhibition: A complementary chemical and genetic approach. Bioorg Med Chem Lett 2020; 30:126820. [PMID: 31812466 DOI: 10.1016/j.bmcl.2019.126820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/23/2023]
Abstract
Modular synthases, such as fatty acid, polyketide, and non-ribosomal peptide synthases (NRPSs), are sophisticated machineries essential in both primary and secondary metabolism. Various techniques have been developed to understand their genetic background and enzymatic abilities. However, uncovering the actual biosynthetic pathways remains challenging. Herein, we demonstrate a pipeline to study an assembly line synthase by interrogating the enzymatic function of each individual enzymatic domain of BpsA, a NRPS that produces the blue 3,3'-bipyridyl pigment indigoidine. Specific inhibitors for each biosynthetic domain of BpsA were obtained or synthesized, and the enzymatic performance of BpsA upon addition of each inhibitor was monitored by pigment development in vitro and in living bacteria. The results were verified using genetic mutants to inactivate each domain. Finally, the results complemented the currently proposed biosynthetic pathway of BpsA.
Collapse
Affiliation(s)
- Christopher R Vickery
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian P McCulloch
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Eva C Sonnenschein
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Joseph P Noel
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
11
|
Li L, Liu X, Jiang W, Lu Y. Recent Advances in Synthetic Biology Approaches to Optimize Production of Bioactive Natural Products in Actinobacteria. Front Microbiol 2019; 10:2467. [PMID: 31749778 PMCID: PMC6848025 DOI: 10.3389/fmicb.2019.02467] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Actinobacteria represent one of the most fertile sources for the discovery and development of natural products (NPs) with medicinal and industrial importance. However, production titers of actinobacterial NPs are usually low and require optimization for compound characterization and/or industrial production. In recent years, a wide variety of novel enabling technologies for engineering actinobacteria have been developed, which have greatly facilitated the optimization of NPs biosynthesis. In this review, we summarize the recent advances of synthetic biology approaches for overproducing desired drugs, as well as for the discovery of novel NPs in actinobacteria, including dynamic metabolic regulation based on metabolite-responsive promoters or biosensors, multi-copy chromosomal integration of target biosynthetic gene clusters (BGCs), promoter engineering-mediated rational BGC refactoring, and construction of genome-minimized Streptomyces hosts. Integrated with metabolic engineering strategies developed previously, these novel enabling technologies promise to facilitate industrial strain improvement process and genome mining studies for years to come.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Henan University, Kaifeng, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, Nanjing, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
12
|
Sekurova ON, Schneider O, Zotchev SB. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb Biotechnol 2019; 12:828-844. [PMID: 30834674 PMCID: PMC6680616 DOI: 10.1111/1751-7915.13398] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
For over seven decades, bacteria served as a valuable source of bioactive natural products some of which were eventually developed into drugs to treat infections, cancer and immune system-related diseases. Traditionally, novel compounds produced by bacteria were discovered via conventional bioprospecting based on isolation of potential producers and screening their extracts in a variety of bioassays. Over time, most of the natural products identifiable by this approach were discovered, and the pipeline for new drugs based on bacterially produced metabolites started to run dry. This mini-review highlights recent developments in bacterial bioprospecting for novel compounds that are based on several out-of-the-box approaches, including the following: (i) targeting bacterial species previously unknown to produce any bioactive natural products, (ii) exploring non-traditional environmental niches and methods for isolation of bacteria and (iii) various types of 'genome mining' aimed at unravelling genetic potential of bacteria to produce secondary metabolites. All these approaches have already yielded a number of novel bioactive compounds and, if used wisely, will soon revitalize drug discovery pipeline based on bacterial natural products.
Collapse
Affiliation(s)
- Olga N. Sekurova
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Olha Schneider
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Sergey B. Zotchev
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| |
Collapse
|
13
|
Multi-level regulation of coelimycin synthesis in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2019; 103:6423-6434. [PMID: 31250060 PMCID: PMC6667686 DOI: 10.1007/s00253-019-09975-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/03/2022]
Abstract
Despite being a yellow pigment visible to the human eye, coelimycin (CPK) remained to be an undiscovered secondary metabolite for over 50 years of Streptomyces research. Although the function of this polyketide is still unclear, we now know that its "cryptic" nature is attributed to a very complex and precise mechanism of cpk gene cluster regulation in the model actinomycete S. coelicolor A3(2). It responds to the stringent culture density and timing of the transition phase by the quorum-sensing butanolide system and to the specific nutrient availability/uptake signals mediated by the global (pleiotropic) regulators; many of which are two-component signal transduction systems. The final effectors of this regulation cascade are predicted to be two cluster-situated Streptomyces antibiotic regulatory proteins (SARPs) putatively activating the expression of type I polyketide synthase (PKS I) genes. After its synthesis, unstable, colorless antibiotic coelimycin A reacts with specific compounds in the medium losing its antibacterial properties and giving rise to yellow coelimycins P1 and P2. Here we review the current knowledge on coelimycin synthesis regulation in Streptomyces coelicolor A3(2). We focus on the regulatory feedback loop which interconnects the butanolide system with other cpk cluster-situated regulators. We also present the effects exerted on cpk genes expression by the global, pleiotropic regulators, and the regulatory connections between cpk and other biosynthetic gene clusters.
Collapse
|
14
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
15
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Leng X, Tu Y, Wu Y, Wang Y, Liu S, Pei Q, Cui X, Huang J. Exonuclease III-aided recycling amplification of proximity ligation assay using thymine-melamine-thymine triplex structure for ultrasensitive fluorometric determination of melamine. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth Syst Biotechnol 2018; 3:163-178. [PMID: 30345402 PMCID: PMC6190515 DOI: 10.1016/j.synbio.2018.09.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Microbial natural products are a tremendous source of new bioactive chemical entities for drug discovery. Next generation sequencing has revealed an unprecedented genomic potential for production of secondary metabolites by diverse micro-organisms found in the environment and in the microbiota. Genome mining has further led to the discovery of numerous uncharacterized 'cryptic' metabolic pathways in the classical producers of natural products such as Actinobacteria and fungi. These biosynthetic gene clusters may code for improved biologically active metabolites, but harnessing the full genetic potential has been hindered by the observation that many of the pathways are 'silent' under laboratory conditions. Here we provide an overview of the various biotechnological methodologies, which can be divided to pleiotropic, biosynthetic gene cluster specific, and targeted genome-wide approaches that have been developed for the awakening of microbial secondary metabolic pathways.
Collapse
Affiliation(s)
| | | | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014, Turku, Finland
| |
Collapse
|
18
|
de Frias UA, Pereira GKB, Guazzaroni ME, Silva-Rocha R. Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7021826. [PMID: 30079350 PMCID: PMC6069586 DOI: 10.1155/2018/7021826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/11/2018] [Indexed: 01/05/2023]
Abstract
Bacteria are a source of a large number of secondary metabolites with several biomedical and biotechnological applications. In recent years, there has been tremendous progress in the development of novel synthetic biology approaches both to increase the production rate of secondary metabolites of interest in native producers and to mine and reconstruct novel biosynthetic gene clusters in heterologous hosts. Here, we present the recent advances toward the engineering of novel microbial biosensors to detect the synthesis of secondary metabolites in bacteria and in the development of synthetic promoters and expression systems aiming at the construction of microbial cell factories for the production of these compounds. We place special focus on the potential of Gram-negative bacteria as a source of biosynthetic gene clusters and hosts for pathway assembly, on the construction and characterization of novel promoters for native hosts, and on the use of computer-aided design of novel pathways and expression systems for secondary metabolite production. Finally, we discuss some of the potentials and limitations of the approaches that are currently being developed and we highlight new directions that could be addressed in the field.
Collapse
Affiliation(s)
| | | | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Silva-Rocha
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Schneider O, Ilic-Tomic T, Rückert C, Kalinowski J, Genčić MS, Živković MZ, Stankovic N, Radulović NS, Vasiljevic B, Nikodinovic-Runic J, Zotchev SB. Genomics-Based Insights Into the Biosynthesis and Unusually High Accumulation of Free Fatty Acids by Streptomyces sp. NP10. Front Microbiol 2018; 9:1302. [PMID: 29971051 PMCID: PMC6018390 DOI: 10.3389/fmicb.2018.01302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 01/15/2023] Open
Abstract
Streptomyces sp. NP10 was previously shown to synthesize large amounts of free fatty acids (FFAs). In this work, we report the first insights into the biosynthesis of these fatty acids (FAs) gained after genome sequencing and identification of the genes involved. Analysis of the Streptomyces sp. NP10 draft genome revealed that it is closely related to several strains of Streptomyces griseus. Comparative analyses of secondary metabolite biosynthetic gene clusters, as well as those presumably involved in FA biosynthesis, allowed identification of an unusual cluster C12-2, which could be identified in only one other S. griseus-related streptomycete. To prove the involvement of identified cluster in FFA biosynthesis, one of its three ketosynthase genes was insertionally inactivated to generate mutant strain mNP10. Accumulation of FFAs in mNP10 was almost completely abolished, reaching less than 0.01% compared to the wild-type strain. Cloning and transfer of the C12-2 cluster to the mNP10 mutant partially restored FFA production, albeit to a low level. The discovery of this rare FFA biosynthesis cluster opens possibilities for detailed characterization of the roles of individual genes and their products in the biosynthesis of FFAs in NP10.
Collapse
Affiliation(s)
- Olha Schneider
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marija S Genčić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Milena Z Živković
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Niko S Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Robertsen HL, Weber T, Kim HU, Lee SY. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Helene Lunde Robertsen
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| |
Collapse
|