1
|
Ponukumati A, Carr R, Ebrahimpourboura Z, Hu Y, Narani A, Gao Y, Shang Z, Krishnamurthy A, Mba Wright M, Seok Moon T, Foston M. Microbial Upgrading of Lignin Depolymerization: Enhancing Efficiency with Lignin-First Catalysis. CHEMSUSCHEM 2025; 18:e202400954. [PMID: 39648819 DOI: 10.1002/cssc.202400954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Chemical depolymerization of lignin is a non-selective process that often generates a wide distribution of product compounds, denoted herein as lignin breakdown products (LBPs). To address this limitation, we developed a hybrid lignin conversion process that employs a lignin-first catalytic approach on biomass and subsequent microbial upgrading. A Pd/C catalyst was used for reductive catalytic fractionation (RCF) of poplar biomass, and Rhodococcus opacus PD630 (R. opacus PD630) was then cultivated on the resulting LBPs. This RCF approach increases the total biomass utilization by R. opacus PD630 over base-catalyzed depolymerization (BCD) reactions that were performed in the absence of Pd/C and molecular hydrogen (H2). LBPs generated using RCF resulted in higher cell growth per gram of biomass. Cellulose in the residual biomass after RCF treatment also showed enhanced enzymatic digestibility due to saccharification yields over 40%. Techno-economic analysis (TEA) and life cycle analysis (LCA) of this hybrid lignin conversion scheme, integrated into a cellulosic bioethanol plant, decreased the minimum ethanol selling price from $4.07/gallon (base case) to $3.94/gallon. Global warming potentials ranged from 29 and 30.5 CO2,eq/MJ. These results highlight the potential for an industrial hybrid conversion-based biorefinery scheme that utilizes lignin-first catalytic deconstruction and R. opacus PD630 upgrading.
Collapse
Affiliation(s)
- Aditya Ponukumati
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Rhiannon Carr
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Zahra Ebrahimpourboura
- Department of Mechanical Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA
| | - Yifeng Hu
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Anand Narani
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Yu Gao
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Zeyu Shang
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Anirudh Krishnamurthy
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Mark Mba Wright
- Department of Mechanical Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Marcus Foston
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
2
|
Zhao ZT, Yang SS, Luo G, Sun HJ, Liu BF, Cao GL, Bao MY, Pang JW, Ren NQ, Ding J. Biohydrogen fermentation from pretreated biomass in lignocellulose biorefinery: Effects of inhibitory byproducts and recent progress in mitigation strategies. Biotechnol Adv 2025; 79:108508. [PMID: 39740753 DOI: 10.1016/j.biotechadv.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH2) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization. However, certain intermediates by-products generated during the pretreatment process, such as phenolic compounds, furan derivatives, and aldehydes, have been identified as potent inhibitors of subsequent anaerobic fermentation due to their disruptive effects on the physiological and metabolic functions of hydrogen-producing microbiota. To counteract the negative effects of these inhibitors on bio-H2 fermentation, various detoxification strategies for LCB hydrolysates have been explored. This review presents a comprehensive analysis of fermentation-inhibitory by-products commonly generated by modern pretreatment protocols and their negative impacts on biohydrogen fermentation. Furthermore, the underlying mechanisms of inhibition upon hydrogen-producing microbes and their impacts on microbial community dynamics are exhibited. State-of-the-art strategies for detoxifying pretreated LCB have been also discussed, along with alternative pretreatment strategies designed to minimize or eliminate the formation of inhibitory by-products. Additionally, this review addresses the significant gap in the economic viability assessments of these processes, offering a detailed evaluation of both the technological and economic feasibility of biomass fermentation. Given the limitations of previous studies, strategies for cost-effective pretreatment and detoxification should be developed in the future to overcome the inhibition of fermentation inhibitors in the bioconversion of biomass to hydrogen.
Collapse
Affiliation(s)
- Zi-Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Geng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Mei-Yi Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ji-Wei Pang
- Harbin Corner Science & Technology Inc., Harbin 150023, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
3
|
Almeida L, Schöllkopf A, Edelmann H, Ehrenreich A, Liebl W. Markerless deletion of the putative type I and III restriction-modification systems in the cellulolytic bacterium Clostridium cellulovorans using a codBA-based counterselection technique. J Biotechnol 2025; 397:22-31. [PMID: 39522731 DOI: 10.1016/j.jbiotec.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Cellulose from lignocellulosic biomass (LB) is of increasing interest for the production of commodity chemicals. However, its use as substrate for fermentations is a challenge due to its structural complexity. In this context, the highly cellulolytic Clostridium cellulovorans has been considered an interesting microorganism for the breakdown of LB. C. cellulovorans does not naturally produce solvents in useful concentrations, but this could be achieved by metabolic engineering. Unfortunately, this is hampered by the lack of tools for genetic engineering. We describe a genetic system that allows strain engineering by the allelic-coupled exchange method. First, the Gram-positive origin of pUB110 was identified as a suitable clostridial 'pseudo-suicide' origin of replication for the construction of deletion vectors. Second, an efficient counterselection strategy based on a codBA cassette and the use of 5-fluorocytosine as the counterselective compound was employed. Third, since the prevention of DNA transfer by host restriction-modification (RM) systems is a critical barrier to genome engineering, deletion plasmids containing flanking regions for the putative type I (Clocel_1114) and III (Clocel_2651) RM systems were constructed and transferred into C. cellulovorans. The restriction-less strains C. cellulovorans ΔClocel_1114 and C. cellulovorans ΔClocel_2651 exhibit high conjugation efficiency and can be easily used for further metabolic engineering.
Collapse
Affiliation(s)
- Luciana Almeida
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Aline Schöllkopf
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Holger Edelmann
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Armin Ehrenreich
- Chair of Microbiology, Technical University of Munich, Freising, Germany.
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Sodré V, Bugg TDH. Sustainable production of aromatic chemicals from lignin using enzymes and engineered microbes. Chem Commun (Camb) 2024; 60:14360-14375. [PMID: 39569570 PMCID: PMC11580001 DOI: 10.1039/d4cc05064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Lignin is an aromatic biopolymer found in plant cell walls and is the most abundant source of renewable aromatic carbon in the biosphere. Hence there is considerable interest in the conversion of lignin, either derived from agricultural waste or produced as a byproduct of pulp/paper manufacture, into high-value chemicals. Although lignin is rather inert, due to the presence of ether C-O and C-C linkages, several microbes are able to degrade lignin. This review will introduce these microbes and the enzymes that they use to degrade lignin and will describe recent studies on metabolic engineering that can generate high-value chemicals from lignin bioconversion. Catabolic pathways for degradation of lignin fragments will be introduced, and case studies where these pathways have been engineered by gene knockout/insertion to generate bioproducts that are of interest as monomers for bioplastic synthesis or aroma chemicals will be described. Life cycle analysis of lignin bioconversion processes is discussed.
Collapse
Affiliation(s)
- Victoria Sodré
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
5
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Jansen Z, Alameri A, Wei Q, Kulhanek DL, Gilmour AR, Halper S, Schwalm ND, Thyer R. A modular toolkit for environmental Rhodococcus, Gordonia, and Nocardia enables complex metabolic manipulation. Appl Environ Microbiol 2024; 90:e0034024. [PMID: 39082821 PMCID: PMC11337820 DOI: 10.1128/aem.00340-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/29/2024] [Indexed: 08/22/2024] Open
Abstract
Soil-dwelling Actinomycetes are a diverse and ubiquitous component of the global microbiome but largely lack genetic tools comparable to those available in model species such as Escherichia coli or Pseudomonas putida, posing a fundamental barrier to their characterization and utilization as hosts for biotechnology. To address this, we have developed a modular plasmid assembly framework, along with a series of genetic control elements for the previously genetically intractable Gram-positive environmental isolate Rhodococcus ruber C208, and demonstrate conserved functionality in 11 additional environmental isolates of Rhodococcus, Nocardia, and Gordonia. This toolkit encompasses five Mycobacteriale origins of replication, five broad-host-range antibiotic resistance markers, transcriptional and translational control elements, fluorescent reporters, a tetracycline-inducible system, and a counter-selectable marker. We use this toolkit to interrogate the carotenoid biosynthesis pathway in Rhodococcus erythropolis N9T-4, a weakly carotenogenic environmental isolate and engineer higher pathway flux toward the keto-carotenoid canthaxanthin. This work establishes several new genetic tools for environmental Mycobacteriales and provides a synthetic biology framework to support the design of complex genetic circuits in these species.IMPORTANCESoil-dwelling Actinomycetes, particularly the Mycobacteriales, include both diverse new hosts for sustainable biomanufacturing and emerging opportunistic pathogens. Rhodococcus, Gordonia, and Nocardia are three abundant genera with particularly flexible metabolisms and untapped potential for natural product discovery. Among these, Rhodococcus ruber C208 was shown to degrade polyethylene; Gordonia paraffinivorans can assimilate carbon from solid hydrocarbons; and Nocardia neocaledoniensis (and many other Nocardia spp.) possesses dual isoprenoid biosynthesis pathways. Many species accumulate high levels of carotenoid pigments, indicative of highly active isoprenoid biosynthesis pathways which may be harnessed for fermentation of terpenes and other commodity isoprenoids. Modular genetic toolkits have proven valuable for both fundamental and applied research in model organisms, but such tools are lacking for most Actinomycetes. Our suite of genetic tools and DNA assembly framework were developed for broad functionality and to facilitate rapid prototyping of genetic constructs in these organisms.
Collapse
Affiliation(s)
- Zachary Jansen
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas, USA
| | - Abdulaziz Alameri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Qiyao Wei
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Devon L. Kulhanek
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Andrew R. Gilmour
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas, USA
| | - Sean Halper
- DEVCOM Army Research Laboratory, Adelphi, Maryland, USA
| | | | - Ross Thyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
7
|
Wang L, Hou J, Yang K, Yu H, Zhang B, Liu Z, Zheng Y. Development of synthetic small regulatory RNA for Rhodococcus erythropolis. Biotechnol J 2024; 19:e2400022. [PMID: 38528342 DOI: 10.1002/biot.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
Rhodococci have been regarded as ideal chassis for biotransformation, biodegradation, and biosynthesis for their unique environmental persistence and robustness. However, most species of Rhodococcus are still difficult to metabolically engineer due to the lack of genetic tools and techniques. In this study, synthetic sRNA strategy was exploited for gene repression in R. erythropolis XP. The synthetic sRNA based on the RhlS scaffold from Pseudomonas aeruginosa functions better in repressing sfgfp expression than those based on E. coli MicC, SgrS, and P. aeruginosa PrrF1-2 scaffold. The RhlS-based sRNAs were applied to study the influence of sulfur metabolism on biodesulfurization (BDS) efficiency in R. erythropolis XP and successfully identified two genes involved in sulfur metabolism that affect the BDS efficiency significantly. The RhlS-based synthetic sRNAs show promise in the metabolic engineering of Rhodococcus and promote the industrial applications of Rhodococcus in environmental remediation and biosynthesis.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Jie Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, P.R. China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Haonan Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
8
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
9
|
Xue L, Zhao Y, Li L, Rao X, Chen X, Ma F, Yu H, Xie S. A key O-demethylase in the degradation of guaiacol by Rhodococcus opacus PD630. Appl Environ Microbiol 2023; 89:e0052223. [PMID: 37800939 PMCID: PMC10617553 DOI: 10.1128/aem.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 10/07/2023] Open
Abstract
Rhodococcus opacus PD630 is a high oil-producing strain with the ability to convert lignin-derived aromatics to high values, but limited research has been done to elucidate its conversion pathway, especially the upper pathways. In this study, we focused on the upper pathways and demethylation mechanism of lignin-derived aromatics metabolism by R. opacus PD630. The results of the aromatic carbon resource utilization screening showed that R. opacus PD630 had a strong degradation capacity to the lignin-derived methoxy-containing aromatics, such as guaiacol, 3,4-veratric acid, anisic acid, isovanillic acid, and vanillic acid. The gene of gcoAR, which encodes cytochrome P450, showed significant up-regulation when R. opacus PD630 grew on diverse aromatics. Deletion mutants of gcoAR and its partner protein gcoBR resulted in the strain losing the ability to grow on guaiacol, but no significant difference to the other aromatics. Only co-complementation alone of gcoAR and gcoBR restored the strain's ability to utilize guaiacol, demonstrating that both genes were equally important in the utilization of guaiacol. In vitro assays further revealed that GcoAR could convert guaiacol and anisole to catechol and phenol, respectively, with the production of formaldehyde as a by-product. The study provided robust evidence to reveal the molecular mechanism of R. opacus PD630 on guaiacol metabolism and offered a promising study model for dissecting the demethylation process of lignin-derived aromatics in microbes.IMPORTANCEAryl-O-demethylation is believed to be the key rate-limiting step in the catabolism of heterogeneous lignin-derived aromatics in both native and engineered microbes. However, the mechanisms of O-demethylation in lignin-derived aromatic catabolism remain unclear. Notably, guaiacol, the primary component unit of lignin, lacks in situ demonstration and illustration of the molecular mechanism of guaiacol O-demethylation in lignin-degrading bacteria. This is the first study to illustrate the mechanism of guaiacol metabolism by R. opacus PD630 in situ as well as characterize the purified key O-demethylase in vitro. This study provided further insight into the lignin metabolic pathway of R. opacus PD630 and could guide the design of an efficient biocatalytic system for lignin valorization.
Collapse
Affiliation(s)
- Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjie Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
van Schaik J, Li Z, Cheadle J, Crook N. Engineering the Maize Root Microbiome: A Rapid MoClo Toolkit and Identification of Potential Bacterial Chassis for Studying Plant-Microbe Interactions. ACS Synth Biol 2023; 12:3030-3040. [PMID: 37712562 DOI: 10.1021/acssynbio.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sustainably enhancing crop production is a global necessity to meet the escalating demand for staple crops while sustainably managing their associated carbon/nitrogen inputs. Leveraging plant-associated microbiomes is a promising avenue for addressing this demand. However, studying these communities and engineering them for sustainable enhancement of crop production have remained a challenge due to limited genetic tools and methods. In this work, we detail the development of the Maize Root Microbiome ToolKit (MRMTK), a rapid Modular Cloning (MoClo) toolkit that only takes 2.5 h to generate desired constructs (5400 potential plasmids) that replicate and express heterologous genes in Enterobacter ludwigii strain AA4 (Elu), Pseudomonas putida strain AA7 (Ppu), Herbaspirillum robiniae strain AA6 (Hro), Stenotrophomonas maltophilia strain AA1 (Sma), and Brucella pituitosa strain AA2 (Bpi), which comprise a model maize root synthetic community (SynCom). In addition to these genetic tools, we describe a highly efficient transformation protocol (107-109 transformants/μg of DNA) 1 for each of these strains. Utilizing this highly efficient transformation protocol, we identified endogenous Expression Sequences (ES; promoter and ribosomal binding sites) for each strain via genomic promoter trapping. Overall, MRMTK is a scalable and adaptable platform that expands the genetic engineering toolbox while providing a standardized, high-efficiency transformation method across a diverse group of root commensals. These results unlock the ability to elucidate and engineer plant-microbe interactions promoting plant growth for each of the 5 bacterial strains in this study.
Collapse
Affiliation(s)
- John van Schaik
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - John Cheadle
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
11
|
Grechishnikova EG, Shemyakina AO, Novikov AD, Lavrov KV, Yanenko AS. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform. Crit Rev Biotechnol 2023; 43:835-850. [PMID: 35786136 DOI: 10.1080/07388551.2022.2091976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022]
Abstract
Rhodococcus bacteria are a fast-growing platform for biocatalysis, biodegradation, and biosynthesis, but not a platform for molecular biology. That is, Rhodococcus are not convenient for genetic engineering. One major issue for the engineering of Rhodococcus is the absence of a publicly available, curated, and commented collection of sequences of genetic parts that are functional in biotechnologically relevant species of Rhodococcus (R. erythropolis, R. rhodochrous, R. ruber, and R. jostii). Here, we present a collection of genetic parts for Rhodococcus (vector replicons, promoter regions, regulators, markers, and reporters) supported by a thorough analysis of their functionality. We also highlight and discuss the gaps in Rhodococcus-related genetic parts and techniques, which should be filled in order to make these bacteria a full-fledged molecular biology platform independent of Escherichia coli. We conclude that all major types of required genetic parts for Rhodococcus are available now, except multicopy replicons. As for model Rhodococcus strains, there is a particular shortage of strains with high electrocompetence levels and strains designed for solving specific genetic engineering tasks. We suggest that these obstacles are surmountable in the near future due to an intensification of research work in the field of genetic techniques for non-conventional bacteria.
Collapse
Affiliation(s)
- Elena G Grechishnikova
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Anna O Shemyakina
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Andrey D Novikov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Konstantin V Lavrov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Alexander S Yanenko
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
12
|
Kathol M, Immethun C, Saha R. Protocol to develop a synthetic biology toolkit for the non-model bacterium R. palustris. STAR Protoc 2023; 4:102158. [PMID: 37104094 PMCID: PMC10154974 DOI: 10.1016/j.xpro.2023.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 04/28/2023] Open
Abstract
Numerous biology tools are developed to work for model organisms, which, however, do not work effectively in non-model organisms. Here, we present a protocol for developing a synthetic biology toolkit for Rhodopseudomonas palustris CGA009, a non-model bacterium with unique metabolic properties. We describe steps for introducing and characterizing biological devices in non-model bacteria, such as the utilization of fluorescence markers and RT-qPCR. This protocol may also be applicable for other non-model organisms. For complete details on the use and execution of this protocol, please refer to Immethun et al..1.
Collapse
Affiliation(s)
- Mark Kathol
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
13
|
Diao J, Hu Y, Tian Y, Carr R, Moon TS. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Cell Rep 2023; 42:111908. [PMID: 36640302 DOI: 10.1016/j.celrep.2022.111908] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
More than 70 million tons of poly(ethylene terephthalate) (PET) are manufactured worldwide every year. The accumulation of PET waste has become a global pollution concern, motivating the urgent development of technologies to valorize post-consumer PET. The development of chemocatalytic and enzymatic approaches for depolymerizing PET to its corresponding monomers opens up new opportunities for PET upcycling through biological transformation. Here, we identify Rhodococcus jostii strain PET (RPET) that can directly use PET hydrolysate as a sole carbon source. We also investigate the potential of RPET to upcycle PET into value-added chemicals, using lycopene as a proof-of-concept product. Through rational metabolic engineering, we improve lycopene production by more than 500-fold over that of the wild type. In addition, we demonstrate the production of approximately 1,300 μg/L lycopene from PET by cascading this strain with PET alkaline hydrolysis. This work highlights the great potential of biological conversion as a means of achieving PET upcycling.
Collapse
Affiliation(s)
- Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA
| | - Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA
| | - Yuxin Tian
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA
| | - Rhiannon Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA.
| |
Collapse
|
14
|
Coyle H, Wawrousek K. Rhodococcus opacus PD630 Bioconversion of Molasses Desugarized Solubles for Fatty Acid Production. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hanley Coyle
- Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Karen Wawrousek
- Chemical Engineering, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
15
|
Moon TS. SynMADE: synthetic microbiota across diverse ecosystems. Trends Biotechnol 2022; 40:1405-1414. [PMID: 36117027 DOI: 10.1016/j.tibtech.2022.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
The past two decades have witnessed rapid advances in engineering individual microbial strains to produce biochemicals and biomaterials. However, engineering microbial consortia has been relatively slow. Using systems and synthetic biology approaches, researchers have been developing tools for engineering complex microbiota. In this opinion article, I discuss future directions and visions regarding developing microbiota as a biomanufacturing host. Specifically, I propose that we can develop the soil microbial community itself as a huge bioreactor. Ultimately, researchers will provide a generalizable system that enables us to understand a microbial consortium's interaction and metabolism on diverse temporal and spatial scales to address global problems, including the climate crisis, food inequality, the issue of waste, and sustainable bioproduction.
Collapse
Affiliation(s)
- Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO 63130, USA.
| |
Collapse
|
16
|
Jain G, Ertesvåg H. Improved site-specific mutagenesis in Rhodococcus opacus using a novel conditional suicide plasmid. Appl Microbiol Biotechnol 2022; 106:7129-7138. [PMID: 36194264 PMCID: PMC9592669 DOI: 10.1007/s00253-022-12204-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Rhodococcus opacus PD630 is a biotechnologically important bacterium with metabolic capability for bioremediation, metal recovery, and storage of triacylglycerols. Genome editing by homologous recombination in R. opacus is hampered by a very low combined frequency of DNA transfer and recombination. To improve recombination in the species, a conjugative, conditional suicide plasmid based on the replicon derived from the Corynebacterium glutamicum plasmid pGA1 was constructed and evaluated in R. opacus. The replication of this plasmid is controlled by a dual inducible and repressible promoter system originally developed for Mycobacterium spp. Next, we demonstrated that a derivative of this plasmid containing sacB as a counterselection marker and homologous regions of R. opacus could be used for homologous recombination, and that the problem of obtaining recombinants had been solved. Like for other Corynebacteriales, the cell wall of Rhodococcus spp. contains mycolic acids which form a hydrophobic and impermeable outer layer. Mycolic acids are essential for Mycobacterium smegmatis, but not for Corynebacterium glutamicum, and the new vector was used to study if mycolic acid is essential for R. opacus. We found that accD3 that is necessary for mycolic acid synthesis could only be deleted from the chromosome in strains containing a plasmid-encoded copy of accD3. This indicates that mycolic acid is important for R. opacus viability. The conditional suicide vector should be useful for homologous recombination or for delivering gene products like recombinases or Cas proteins and gRNA to Rhodococcus and related genera, while the approach should be applicable for any plasmid needing a plasmid-encoded protein for replication. KEY POINTS: • Improved vector for homologous recombination in R. opacus. • Mycolic acid is important for survival of R. opacus like it is for Mycobacterium. • Similar conditional suicide plasmids may be constructed for other bacteria.
Collapse
Affiliation(s)
- Garima Jain
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway.
| |
Collapse
|
17
|
Deciphering the transcriptional regulation of the catabolism of lignin-derived aromatics in Rhodococcus opacus PD630. Commun Biol 2022; 5:1109. [PMID: 36261484 DOI: 10.1038/s42003-022-04069-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Rhodococcus opacus PD630 has considerable potential as a platform for valorizing lignin due to its innate "biological funneling" pathways. However, the transcriptional regulation of the aromatic catabolic pathways and the mechanisms controlling aromatic catabolic operons in response to different aromatic mixtures are still underexplored. Here, we identified and studied the transcription factors for aromatic degradation using GFP-based sensors and comprehensive deletion analyses. Our results demonstrate that the funneling pathways for phenol, guaiacol, 4-hydroxybenzoate, and vanillate are controlled by transcriptional activators. The two different branches of the β-ketoadipate pathway, however, are controlled by transcriptional repressors. Additionally, promoter activity assays revealed that the substrate hierarchy in R. opacus may be ascribed to the transcriptional cross-regulation of the individual aromatic funneling pathways. These results provide clues to clarify the molecule-level mechanisms underlying the complex regulation of aromatic catabolism, which facilitates the development of R. opacus as a promising chassis for valorizing lignin.
Collapse
|
18
|
Salusjärvi L, Ojala L, Peddinti G, Lienemann M, Jouhten P, Pitkänen JP, Toivari M. Production of biopolymer precursors beta-alanine and L-lactic acid from CO2 with metabolically versatile Rhodococcus opacus DSM 43205. Front Bioeng Biotechnol 2022; 10:989481. [PMID: 36281430 PMCID: PMC9587121 DOI: 10.3389/fbioe.2022.989481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogen oxidizing autotrophic bacteria are promising hosts for conversion of CO2 into chemicals. In this work, we engineered the metabolically versatile lithoautotrophic bacterium R. opacus strain DSM 43205 for synthesis of polymer precursors. Aspartate decarboxylase (panD) or lactate dehydrogenase (ldh) were expressed for beta-alanine or L-lactic acid production, respectively. The heterotrophic cultivations on glucose produced 25 mg L−1 beta-alanine and 742 mg L−1 L-lactic acid, while autotrophic cultivations with CO2, H2, and O2 resulted in the production of 1.8 mg L−1 beta-alanine and 146 mg L−1 L-lactic acid. Beta-alanine was also produced at 345 μg L−1 from CO2 in electrobioreactors, where H2 and O2 were provided by water electrolysis. This work demonstrates that R. opacus DSM 43205 can be engineered to produce chemicals from CO2 and provides a base for its further metabolic engineering.
Collapse
Affiliation(s)
- Laura Salusjärvi
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
- *Correspondence: Laura Salusjärvi,
| | - Leo Ojala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Gopal Peddinti
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Paula Jouhten
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
19
|
Cai C, Xu Z, Li J, Zhou H, Jin M. Developing
Rhodococcus opacus
and
Sphingobium
sp. co‐culture systems for valorization of lignin‐derived dimers. Biotechnol Bioeng 2022; 119:3162-3177. [DOI: 10.1002/bit.28215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chenggu Cai
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Zhaoxian Xu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Jie Li
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Huarong Zhou
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Mingjie Jin
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| |
Collapse
|
20
|
Swartjes T, Shang P, van den Berg DTM, Künne T, Geijsen N, Brouns SJJ, van der Oost J, Staals RHJ, Notebaart RA. Modulating CRISPR-Cas Genome Editing Using Guide-Complementary DNA Oligonucleotides. CRISPR J 2022; 5:571-585. [PMID: 35856642 PMCID: PMC9419950 DOI: 10.1089/crispr.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity. In this study, we report on the potential of guide-complementary DNA oligonucleotides as controlled inhibitors of Cas9 ribonucleoprotein complexes. First, we show that DNA oligonucleotides inhibit Cas9 activity in human cells, reducing both on- and off-target cleavage. We then used in vitro assays to better understand how inhibition is achieved and under which conditions. Two factors were found to be important for robust inhibition: the length of the complementary region and the presence of a protospacer adjacent motif-loop on the inhibitor. We conclude that DNA oligonucleotides can be used to effectively inhibit Cas9 activity both ex vivo and in vitro.
Collapse
Affiliation(s)
- Thomas Swartjes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peng Shang
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Tim Künne
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
22
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
23
|
Jiang W, Gao H, Sun J, Yang X, Jiang Y, Zhang W, Jiang M, Xin F. Current status, challenges and prospects for lignin valorization by using Rhodococcus sp. Biotechnol Adv 2022; 60:108004. [PMID: 35690272 DOI: 10.1016/j.biotechadv.2022.108004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Lignin represents the most abundant renewable aromatics in nature, which has complicated and heterogeneous structure. The rapid development of biotransformation technology has brought new opportunities to achieve the complete lignin valorization. Especially, Rhodococcus sp. possesses excellent capabilities to metabolize aromatic hydrocarbons degraded from lignin. Furthermore, it can convert these toxic compounds into high value added bioproducts, such as microbial lipids, polyhydroxyalkanoate and carotenoid et al. Accordingly, this review will discuss the potentials of Rhodococcus sp. as a cell factory for lignin biotransformation, including phenol tolerance, lignin depolymerization and lignin-derived aromatic hydrocarbon metabolism. The detailed metabolic mechanism for lignin biotransformation and bioproducts spectrum of Rhodococcus sp. will be comprehensively discussed. The available molecular tools for the conversion of lignin by Rhodococcus sp. will be reviewed, and the possible direction for lignin biotransformation in the future will also be proposed.
Collapse
Affiliation(s)
- Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xinyi Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
24
|
Bernhards CB, Liem AT, Berk KL, Roth PA, Gibbons HS, Lux MW. Putative Phenotypically Neutral Genomic Insertion Points in Prokaryotes. ACS Synth Biol 2022; 11:1681-1685. [PMID: 35271248 PMCID: PMC9016761 DOI: 10.1021/acssynbio.1c00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The barriers to effective
genome editing in diverse prokaryotic
organisms have been falling at an accelerated rate. As editing becomes
easier in more organisms, quickly identifying genomic locations to
insert new genetic functions without disrupting organism fitness becomes
increasingly useful. When the insertion is noncoding DNA for applications
such as information storage or barcoding, a neutral insertion point
can be especially important. Here we describe an approach to identify
putatively neutral insertion sites in prokaryotes. An algorithm (targetFinder)
finds convergently transcribed genes with gap sizes within a specified
range, and looks for annotations within the gaps. We report putative
editing targets for 10 common synthetic biology chassis organisms,
including coverage of available RNA-seq data, and provide software
to apply to others. We further experimentally evaluate the neutrality
of six identified targets in Escherichia coli through
insertion of a DNA barcode. We anticipate this information and the
accompanying tool will prove useful for synthetic biologists seeking
neutral insertion points for genome editing.
Collapse
Affiliation(s)
- Casey B. Bernhards
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
- Excet, Inc., Springfield, Virginia 22150, United States
| | - Alvin T. Liem
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Kimberly L. Berk
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Pierce A. Roth
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Henry S. Gibbons
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Matthew W. Lux
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
25
|
Immethun CM, Kathol M, Changa T, Saha R. Synthetic Biology Tool Development Advances Predictable Gene Expression in the Metabolically Versatile Soil Bacterium Rhodopseudomonas palustris. Front Bioeng Biotechnol 2022; 10:800734. [PMID: 35372317 PMCID: PMC8966681 DOI: 10.3389/fbioe.2022.800734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Harnessing the unique biochemical capabilities of non-model microorganisms would expand the array of biomanufacturing substrates, process conditions, and products. There are non-model microorganisms that fix nitrogen and carbon dioxide, derive energy from light, catabolize methane and lignin-derived aromatics, are tolerant to physiochemical stresses and harsh environmental conditions, store lipids in large quantities, and produce hydrogen. Model microorganisms often only break down simple sugars and require low stress conditions, but they have been engineered for the sustainable manufacture of numerous products, such as fragrances, pharmaceuticals, cosmetics, surfactants, and specialty chemicals, often by using tools from synthetic biology. Transferring complex pathways has proven to be exceedingly difficult, as the cofactors, cellular conditions, and energy sources necessary for this pathway to function may not be present in the host organism. Utilization of unique biochemical capabilities could also be achieved by engineering the host; although, synthetic biology tools developed for model microbes often do not perform as designed in other microorganisms. The metabolically versatile Rhodopseudomonas palustris CGA009, a purple non-sulfur bacterium, catabolizes aromatic compounds derived from lignin in both aerobic and anaerobic conditions and can use light, inorganic, and organic compounds for its source of energy. R. palustris utilizes three nitrogenase isozymes to fulfill its nitrogen requirements while also generating hydrogen. Furthermore, the bacterium produces two forms of RuBisCo in response to carbon dioxide/bicarbonate availability. While this potential chassis harbors many beneficial traits, stable heterologous gene expression has been problematic due to its intrinsic resistance to many antibiotics and the lack of synthetic biology parts investigated in this microbe. To address these problems, we have characterized gene expression and plasmid maintenance for different selection markers, started a synthetic biology toolbox specifically for the photosynthetic R. palustris, including origins of replication, fluorescent reporters, terminators, and 5′ untranslated regions, and employed the microbe’s endogenous plasmid for exogenous protein production. This work provides essential synthetic biology tools for engineering R. palustris’ many unique biochemical processes and has helped define the principles for expressing heterologous genes in this promising microbe through a methodology that could be applied to other non-model microorganisms.
Collapse
|
26
|
Rottinghaus AG, Xi C, Amrofell MB, Yi H, Moon TS. Engineering ligand-specific biosensors for aromatic amino acids and neurochemicals. Cell Syst 2022; 13:204-214.e4. [PMID: 34767760 PMCID: PMC8930536 DOI: 10.1016/j.cels.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Microbial biosensors have diverse applications in metabolic engineering and medicine. Specific and accurate quantification of chemical concentrations allows for adaptive regulation of enzymatic pathways and temporally precise expression of diagnostic reporters. Although biosensors should differentiate structurally similar ligands with distinct biological functions, such specific sensors are rarely found in nature and challenging to create. Using E. coli Nissle 1917, a generally regarded as safe microbe, we characterized two biosensor systems that promiscuously recognize aromatic amino acids or neurochemicals. To improve the sensors' selectivity and sensitivity, we applied rational protein engineering by identifying and mutagenizing amino acid residues and successfully demonstrated the ligand-specific biosensors for phenylalanine, tyrosine, phenylethylamine, and tyramine. Additionally, our approach revealed insights into the uncharacterized structure of the FeaR regulator, including critical residues in ligand binding. These results lay the groundwork for developing kinetically adaptive microbes for diverse applications. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Austin G Rottinghaus
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew B Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hyojeong Yi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
CRISPR-based metabolic engineering in non-model microorganisms. Curr Opin Biotechnol 2022; 75:102698. [PMID: 35217297 DOI: 10.1016/j.copbio.2022.102698] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Non-model microorganisms possess unique and versatile metabolic characteristics, offering great opportunities as cell factories for biosynthesis of target products. However, lack of efficient genetic tools for pathway engineering represents a big challenge to unlock the full production potential of these microbes. Over the past years, CRISPR systems have been extensively developed and applied to domesticate non-model microorganisms. In this paper, we summarize the current significant advances in designing and constructing CRISPR-mediated genetic modification systems in non-model microorganisms, such as bacteria, fungi and cyanobacteria. We particularly put emphasis on reviewing some successful implementations in metabolic pathway engineering via CRISPR-based genome editing tools. Moreover, the current barriers and future perspectives on improving the editing efficiency of CRISPR systems in non-model microorganisms are also discussed.
Collapse
|
28
|
Firrincieli A, Grigoriev B, Dostálová H, Cappelletti M. The Complete Genome Sequence and Structure of the Oleaginous Rhodococcus opacus Strain PD630 Through Nanopore Technology. Front Bioeng Biotechnol 2022; 9:810571. [PMID: 35252163 PMCID: PMC8892189 DOI: 10.3389/fbioe.2021.810571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Beatrice Grigoriev
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- *Correspondence: Martina Cappelletti,
| |
Collapse
|
29
|
Henke NA, Göttl VL, Schmitt I, Peters-Wendisch P, Wendisch VF. A synthetic biology approach to study carotenoid production in Corynebacterium glutamicum: Read-out by a genetically encoded biosensor combined with perturbing native gene expression by CRISPRi. Methods Enzymol 2022; 671:383-419. [DOI: 10.1016/bs.mie.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Donini E, Firrincieli A, Cappelletti M. Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes. Folia Microbiol (Praha) 2021; 66:701-713. [PMID: 34215934 PMCID: PMC8449775 DOI: 10.1007/s12223-021-00892-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/12/2021] [Indexed: 11/04/2022]
Abstract
Rhodococcus spp. strains are widespread in diverse natural and anthropized environments thanks to their high metabolic versatility, biodegradation activities, and unique adaptation capacities to several stress conditions such as the presence of toxic compounds and environmental fluctuations. Additionally, the capability of Rhodococcus spp. strains to produce high value-added products has received considerable attention, mostly in relation to lipid accumulation. In relation with this, several works carried out omic studies and genome comparative analyses to investigate the genetic and genomic basis of these anabolic capacities, frequently in association with the bioconversion of renewable resources and low-cost substrates into triacylglycerols. This review is focused on these omic analyses and the genetic and metabolic approaches used to improve the biosynthetic and bioconversion performance of Rhodococcus. In particular, this review summarizes the works that applied heterologous expression of specific genes and adaptive laboratory evolution approaches to manipulate anabolic performance. Furthermore, recent molecular toolkits for targeted genome editing as well as genome-based metabolic models are described here as novel and promising strategies for genome-scaled rational design of Rhodococcus cells for efficient biosynthetic processes application.
Collapse
Affiliation(s)
- Eva Donini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
31
|
Round JW, Robeck LD, Eltis LD. An Integrative Toolbox for Synthetic Biology in Rhodococcus. ACS Synth Biol 2021; 10:2383-2395. [PMID: 34428025 DOI: 10.1021/acssynbio.1c00292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of microbial cell factories requires robust synthetic biology tools to reduce design uncertainty and accelerate the design-build-test-learn process. Herein, we developed a suite of integrative genetic tools to facilitate the engineering of Rhodococcus, a genus of bacteria with considerable biocatalytic potential. We first created pRIME, a modular, copy-controlled integrative-vector, to provide a robust platform for strain engineering and characterizing genetic parts. This vector was then employed to benchmark a series of strong promoters. We found PM6 to be the strongest constitutive rhodococcal promoter, 2.5- to 3-fold stronger than the next in our study, while overall promoter activities ranged 23-fold between the weakest and strongest promoters during exponential growth. Next, we used an optimized variant of PM6 to develop hybrid-promoters and integrative vectors to allow for tetracycline-inducible gene expression in Rhodococcus. The best of the resulting hybrid-promoters maintained a maximal activity of ∼50% of PM6 and displayed an induction factor of ∼40-fold. Finally, we developed and implemented a uLoop-derived Golden Gate assembly strategy for high-throughput DNA assembly in Rhodococcus. To demonstrate the utility of our approaches, pRIME was used to engineer Rhodococcus jostii RHA1 to grow on vanillin at concentrations 10-fold higher than what the wild-type strain tolerated. Overall, this study provides a suite of tools that will accelerate the engineering of Rhodococcus for various biocatalytic applications, including the sustainable production of chemicals from lignin-derived aromatics.
Collapse
Affiliation(s)
- James W. Round
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Logan D. Robeck
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
32
|
Liang Y, Wei Y, Jiao S, Yu H. A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630. Synth Syst Biotechnol 2021; 6:200-208. [PMID: 34430726 PMCID: PMC8365321 DOI: 10.1016/j.synbio.2021.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
Genome engineering of Rhodococcus opacus PD630, an important microorganism used for the bioconversion of lignin, is currently dependent on inefficient homologous recombination. Although a CRISPR interference procedure for gene repression has previously been developed for R. opacus PD630, a CRISPR/Cas9 system for gene knockout has yet to be reported for the strain. In this study, we found that the cytotoxicity of Cas9 and the deficiency in pathways for repairing DNA double-strand breaks (DSBs) were the major causes of the failure of conventional CRISPR/Cas9 technologies in R. opacus, even when augmented with the recombinases Che9c60 and Che9c61. We successfully developed an efficient single-stranded DNA (ssDNA) recombineering system coupled with CRISPR/Cas9 counter-selection, which facilitated rapid and scarless editing of the R. opacus genome. A two-plasmid system, comprising Cas9 driven by a weak Rhodococcus promoter Pniami, designed to prevent cytotoxicity, and a single-guide RNA (sgRNA) under the control of a strong constitutive promoter, was proven to be appropriate with respect to cleavage function. A novel recombinase, RrRecT derived from a Rhodococcus ruber prophage, was identified for the first time, which facilitated recombination of short ssDNA donors (40–80 nt) targeted to the lagging strand and enabled us to obtain a recombination efficiency up to 103-fold higher than that of endogenous pathways. Finally, by incorporating RrRecT and Cas9 into a single plasmid and then co-transforming cells with sgRNA plasmids and short ssDNA donors, we efficiently achieved gene disruption and base mutation in R. opacus, with editing efficiencies ranging from 22 % to 100 %. Simultaneous disruption of double genes was also confirmed, although at a lower efficiency. This effective genome editing tool will accelerate the engineering of R. opacus metabolism.
Collapse
Affiliation(s)
- Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing, 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing, 100084, China
| | - Song Jiao
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Alvarez HM, Hernández MA, Lanfranconi MP, Silva RA, Villalba MS. Rhodococcus as Biofactories for Microbial Oil Production. Molecules 2021; 26:molecules26164871. [PMID: 34443455 PMCID: PMC8401914 DOI: 10.3390/molecules26164871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
Bacteria belonging to the Rhodococcus genus are frequent components of microbial communities in diverse natural environments. Some rhodococcal species exhibit the outstanding ability to produce significant amounts of triacylglycerols (TAG) (>20% of cellular dry weight) in the presence of an excess of the carbon source and limitation of the nitrogen source. For this reason, they can be considered as oleaginous microorganisms. As occurs as well in eukaryotic single-cell oil (SCO) producers, these bacteria possess specific physiological properties and molecular mechanisms that differentiate them from other microorganisms unable to synthesize TAG. In this review, we summarized several of the well-characterized molecular mechanisms that enable oleaginous rhodococci to produce significant amounts of SCO. Furthermore, we highlighted the ability of these microorganisms to degrade a wide range of carbon sources coupled to lipogenesis. The qualitative and quantitative oil production by rhodococci from diverse industrial wastes has also been included. Finally, we summarized the genetic and metabolic approaches applied to oleaginous rhodococci to improve SCO production. This review provides a comprehensive and integrating vision on the potential of oleaginous rhodococci to be considered as microbial biofactories for microbial oil production.
Collapse
|
34
|
Dorado‐Morales P, Martínez I, Rivero‐Buceta V, Díaz E, Bähre H, Lasa I, Solano C. Elevated c-di-GMP levels promote biofilm formation and biodesulfurization capacity of Rhodococcus erythropolis. Microb Biotechnol 2021; 14:923-937. [PMID: 33128507 PMCID: PMC8085952 DOI: 10.1111/1751-7915.13689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
Bacterial biofilms provide high cell density and a superior adaptation and protection from stress conditions compared to planktonic cultures, making them a very promising approach for bioremediation. Several Rhodococcus strains can desulfurize dibenzothiophene (DBT), a major sulphur pollutant in fuels, reducing air pollution from fuel combustion. Despite multiple efforts to increase Rhodococcus biodesulfurization activity, there is still an urgent need to develop better biocatalysts. Here, we implemented a new approach that consisted in promoting Rhodococcus erythropolis biofilm formation through the heterologous expression of a diguanylate cyclase that led to the synthesis of the biofilm trigger molecule cyclic di-GMP (c-di-GMP). R. erythropolis biofilm cells displayed a significantly increased DBT desulfurization activity when compared to their planktonic counterparts. The improved biocatalyst formed a biofilm both under batch and continuous flow conditions which turns it into a promising candidate for the development of an efficient bioreactor for the removal of sulphur heterocycles present in fossil fuels.
Collapse
Affiliation(s)
- Pedro Dorado‐Morales
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| | - Igor Martínez
- Department of Systems BiologyCentro Nacional de BiotecnologíaAgencia Estatal Consejo Superior de Investigaciones CientíficasDarwin 3Madrid28049Spain
| | - Virginia Rivero‐Buceta
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones CientíficasRamiro de Maeztu 9Madrid28040Spain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones CientíficasRamiro de Maeztu 9Madrid28040Spain
| | - Heike Bähre
- Research Core Unit MetabolomicsHannover Medical SchoolCarl‐Neuberg‐Straße 1Hannover30625Germany
| | - Iñigo Lasa
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| | - Cristina Solano
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| |
Collapse
|
35
|
DeLorenzo DM, Diao J, Carr R, Hu Y, Moon TS. An Improved CRISPR Interference Tool to Engineer Rhodococcus opacus. ACS Synth Biol 2021; 10:786-798. [PMID: 33787248 DOI: 10.1021/acssynbio.0c00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodococcus opacus is a nonmodel bacterium that is well suited for valorizing lignin. Despite recent advances in our systems-level understanding of its versatile metabolism, studies of its gene functions at a single gene level are still lagging. Elucidating gene functions in nonmodel organisms is challenging due to limited genetic engineering tools that are convenient to use. To address this issue, we developed a simple gene repression system based on CRISPR interference (CRISPRi). This gene repression system uses a T7 RNA polymerase system to express a small guide RNA, demonstrating improved repression compared to the previously demonstrated CRISPRi system (i.e., the maximum repression efficiency improved from 58% to 85%). Additionally, our cloning strategy allows for building multiple CRISPRi plasmids in parallel without any PCR step, facilitating the engineering of this GC-rich organism. Using the improved CRISPRi system, we confirmed the annotated roles of four metabolic pathway genes, which had been identified by our previous transcriptomic analysis to be related to the consumption of benzoate, vanillate, catechol, and acetate. Furthermore, we showed our tool's utility by demonstrating the inducible accumulation of muconate that is a precursor of adipic acid, an important monomer for nylon production. While the maximum muconate yield obtained using our tool was 30% of the yield obtained using gene knockout, our tool showed its inducibility and partial repressibility. Our CRISPRi tool will be useful to facilitate functional studies of this nonmodel organism and engineer this promising microbial chassis for lignin valorization.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rhiannon Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
36
|
Liang Y, Yu H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol Adv 2021; 49:107748. [PMID: 33823269 DOI: 10.1016/j.biotechadv.2021.107748] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023]
Abstract
Rhodococcus spp. are a group of non-model gram-positive bacteria with diverse catabolic activities and strong adaptive capabilities, which enable their wide application in whole-cell biocatalysis, environmental bioremediation, and lignocellulosic biomass conversion. Compared with model microorganisms, the engineering of Rhodococcus is challenging because of the lack of universal molecular tools, high genome GC content (61% ~ 71%), and low transformation and recombination efficiencies. Nevertheless, because of the high interest in Rhodococcus species for bioproduction, various genetic elements and engineering tools have been recently developed for Rhodococcus spp., including R. opacus, R. jostii, R. ruber, and R. erythropolis, leading to the expansion of the genetic toolkits for Rhodococcus engineering. In this article, we provide a comprehensive review of the important developed genetic elements for Rhodococcus, including shuttle vectors, promoters, antibiotic markers, ribosome binding sites, and reporter genes. In addition, we also summarize gene transfer techniques and strategies to improve transformation efficiency, as well as random and precise genome editing tools available for Rhodococcus, including transposition, homologous recombination, recombineering, and CRISPR/Cas9. We conclude by discussing future trends in Rhodococcus engineering. We expect that more synthetic and systems biology tools (such as multiplex genome editing, dynamic regulation, and genome-scale metabolic models) will be adapted and optimized for Rhodococcus.
Collapse
Affiliation(s)
- Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Singh R, Chandel S, Ghosh A, Dey D, Chakravarti R, Roy S, Ravichandiran V, Ghosh D. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules. Mol Biotechnol 2021; 63:459-476. [PMID: 33774733 DOI: 10.1007/s12033-021-00310-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas protein technology area is rapidly growing technique for genome editing and modulation of transcription of several microbes. Successful engineering in microbes requires an emphasis on the aspect of efficiency and targeted aiming, which can be employed using CRISPR/Cas system. Hence, this type of system is used to modify the genome of several microbes such as yeast and bacteria. In recent years, CRISPR/Cas systems have been chosen for metabolic engineering in microbes due to their specificity, orthogonality, and efficacy. Therefore, we need to review the scheme which was acquired for the execution of the CRISPR/Cas system for the modification and metabolic engineering in yeast and bacteria. In this review, we highlighted the application of the CRISPR/Cas system which has been used for the production of small molecules in the microbial system that is chemically and biologically important.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata, 700009, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Syamal Roy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India.
| |
Collapse
|
38
|
Shemyakina AO, Grechishnikova EG, Novikov AD, Asachenko AF, Kalinina TI, Lavrov KV, Yanenko AS. A Set of Active Promoters with Different Activity Profiles for Superexpressing Rhodococcus Strain. ACS Synth Biol 2021; 10:515-530. [PMID: 33605147 DOI: 10.1021/acssynbio.0c00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rhodococcus bacteria are a promising platform for biodegradation, biocatalysis, and biosynthesis, but the use of rhodococci is hampered by the insufficient number of both platform strains for expression and promoters that are functional and thoroughly studied in these strains. To expand the list of such strains and promoters, we studied the expression capability of the Rhodococcus rhodochrous M33 strain, and the functioning of a set of recombinant promoters in it. We showed that the strain supports superexpression of the target enzyme (nitrile hydratase) using alternative inexpensive feedings-acetate and urea-without growth factor supplementation, thus being a suitable expression platform. The promoter set included Ptuf (elongation factor Tu) and Psod (superoxide dismutase) from Corynebacterium glutamicum ATCC13032, Pcpi (isocitrate lyase) from Rhodococcus erythropolis PR4, and Pnh (nitrile hydratase) from R. rhodochrous M8. Activity levels, regulation possibilities, and growth-phase-dependent activity profiles of these promoters were studied in derivatives of the M33 strain. The activities of the promoters were significantly different (Pcpi < Psod ≪ Ptuf < Pnh), covering 103-fold range, and the most active Pnh and Ptuf produced up to a 30-50% portion of target protein in soluble intracellular proteins. On the basis of the mRNA quantification and amount of target protein, the production level of Pnh was positioned close to the theoretical upper limit of expression in a bacterial cell. A selection method for the laboratory evolution of such active promoters directly in Rhodococcus was also proposed. Concerning regulation, Ptuf could not be regulated (2-fold change), while others were tunable (6-fold for Psod, 79-fold for Pnh, and 44-fold for Pcpi). The promoters possessed four different activity profiles, including three with peak of activity at different growth phases and one with constant activity throughout the growth phases. Ptuf and Pcpi did not change their activity profile under different growth conditions, whereas the Psod and Pnh profiles changed depending on the growth media. The results allow flexible construction of Rhodococcus strains using the studied promoters, and demonstrate a valuable approach for complex characterization of promoters intended for biotechnological strain construction.
Collapse
Affiliation(s)
- Anna O. Shemyakina
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Elena G. Grechishnikova
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Andrey D. Novikov
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences, Leninsky prospect 29, Moscow, 119991, Russia
| | - Tatyana I. Kalinina
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Konstantin V. Lavrov
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Alexander S. Yanenko
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| |
Collapse
|
39
|
Heng E, Tan LL, Zhang MM, Wong FT. CRISPR-Cas strategies for natural product discovery and engineering in actinomycetes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Singhi D, Parwin S, Srivastava P. Genomic deletions in Rhodococcus based on transformation of linear heterologous DNA. Microbiology (Reading) 2021; 167. [DOI: 10.1099/mic.0.001028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several genome engineering methods have been developed for
Rhodococcus
. However, they suffer from limitations such as extensive cloning, multiple steps, successful expression of heterologous genes via plasmid etc. Here, we report a rapid method for performing genomic deletions/disruptions in
Rhodococcus
spp. using heterologous linear DNA. The method is cost effective and less labour intensive. The applicability of the method was demonstrated by successful disruption of rodA and orphan parA. None of the disrupted genes were found to be essential for the viability of the cell. Disruption of orphan parA and rodA resulted in elongated cells and short rods, respectively. This is the first report demonstrating disruption of rodA and orphan parA genes by electroporation of heterologous linear DNA in
Rhodococcus
spp.
Collapse
Affiliation(s)
- Divya Singhi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Shabnam Parwin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
41
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
42
|
Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 2020; 104:8567-8594. [PMID: 32918579 PMCID: PMC7502451 DOI: 10.1007/s00253-020-10861-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. KEY POINTS: • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance. Graphical abstract.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, Calgary University, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
43
|
Biggs BW, Bedore SR, Arvay E, Huang S, Subramanian H, McIntyre EA, Duscent-Maitland CV, Neidle EL, Tyo KEJ. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res 2020; 48:5169-5182. [PMID: 32246719 PMCID: PMC7229861 DOI: 10.1093/nar/gkaa167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023] Open
Abstract
One primary objective of synthetic biology is to improve the sustainability of chemical manufacturing. Naturally occurring biological systems can utilize a variety of carbon sources, including waste streams that pose challenges to traditional chemical processing, such as lignin biomass, providing opportunity for remediation and valorization of these materials. Success, however, depends on identifying micro-organisms that are both metabolically versatile and engineerable. Identifying organisms with this combination of traits has been a historic hindrance. Here, we leverage the facile genetics of the metabolically versatile bacterium Acinetobacter baylyi ADP1 to create easy and rapid molecular cloning workflows, including a Cas9-based single-step marker-less and scar-less genomic integration method. In addition, we create a promoter library, ribosomal binding site (RBS) variants and test an unprecedented number of rationally integrated bacterial chromosomal protein expression sites and variants. At last, we demonstrate the utility of these tools by examining ADP1’s catabolic repression regulation, creating a strain with improved potential for lignin bioprocessing. Taken together, this work highlights ADP1 as an ideal host for a variety of sustainability and synthetic biology applications.
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Biotechnology Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Stacy R Bedore
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Erika Arvay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Biotechnology Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Shu Huang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Harshith Subramanian
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Emily A McIntyre
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
44
|
Chatterjee A, DeLorenzo DM, Carr R, Moon TS. Bioconversion of renewable feedstocks by Rhodococcus opacus. Curr Opin Biotechnol 2020; 64:10-16. [DOI: 10.1016/j.copbio.2019.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
|
45
|
Parveen S, Akhtar N, Ghauri MA, Akhtar K. Conventional genetic manipulation of desulfurizing bacteria and prospects of using CRISPR-Cas systems for enhanced desulfurization activity. Crit Rev Microbiol 2020; 46:300-320. [PMID: 32530374 DOI: 10.1080/1040841x.2020.1772195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Highly active and stable biocatalysts are the prerequisite for industrial scale application of the biodesulfurization process. Scientists are making efforts for increasing the desulfurizing activity of native strains by employing various genetic engineering approaches. Nevertheless, the achieved desulfurization rate is lower than the industrial requirements. Thus, there is a dire need to use efficient genetic tools for precise genome editing of desulfurizing bacteria for enhanced efficiency. In comparison to the previously used genetic engineering tools the newly developed CRISPR-Cas is a more efficient and simple genetic tool that has been successfully applied for targeted genome modification of eukaryotes as well as prokaryotes. In this paper, we have reviewed the approaches, previously used to enhance the biodesulfurization rates of the sulfur metabolizing microorganisms and have discussed the potential of CRISPR-Cas systems in engineering desulfurizing biocatalysts. We have also proposed a model to construct competent desulfurizing recombinants involving use of CRISPR-Cas technology. The model can be used to over-express the dsz genes under a constitutive promoter in a suitable heterologous host, to get a steady expression of desulfurization pathway. This may serve as an inducement to develop better performing desulfurizing recombinant strains using CRISPR-Cas systems, which can be helpful in increasing the rate of biodesulfurization in future.
Collapse
Affiliation(s)
- Sana Parveen
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad A Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
46
|
Tailoring microbes to upgrade lignin. Curr Opin Chem Biol 2020; 59:23-29. [PMID: 32388219 DOI: 10.1016/j.cbpa.2020.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lignin depolymerization generates a mixture of numerous compounds that are difficult to separate cost-effectively. To address this heterogeneity issue, microbes have been employed to 'biologically funnel' a broad range of compounds present in depolymerized lignin into common central metabolites that can be converted into a single desirable product. Because the composition of depolymerized lignin varies significantly with the type of biomass and the depolymerization method, microbes should be selected and engineered by considering this compositional variation. An ideal microbe must efficiently metabolize all relevant lignin-derived compounds regardless of the compositional variation of feedstocks, but discovering or developing such a perfect microbe is very challenging. Instead, developing multiple tailored microbes to tolerate a given mixture of lignin-derived compounds and to convert most of these into a target product is more practical. This review summarizes recent progress toward the development of such microbes for lignin valorization and offers future directions.
Collapse
|
47
|
Liang Y, Jiao S, Wang M, Yu H, Shen Z. A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. Metab Eng 2020; 57:13-22. [DOI: 10.1016/j.ymben.2019.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023]
|
48
|
Schultenkämper K, Brito LF, Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 2020; 67:7-21. [DOI: 10.1002/bab.1901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Luciana F. Brito
- Department of Biotechnology and Food ScienceNTNUNorwegian University of Science and Technology Trondheim Norway
| | | |
Collapse
|
49
|
Jiao S, Li F, Yu H, Shen Z. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl Microbiol Biotechnol 2019; 104:1001-1012. [DOI: 10.1007/s00253-019-10284-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023]
|
50
|
Li B, Zeng C, Li W, Zhang X, Luo X, Zhao W, Zhang C, Dong Y. Synthetic Oligonucleotides Inhibit CRISPR-Cpf1-Mediated Genome Editing. Cell Rep 2019; 25:3262-3272.e3. [PMID: 30566855 PMCID: PMC6326575 DOI: 10.1016/j.celrep.2018.11.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/12/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Previously, researchers discovered a series of anti-CRISPR proteins that inhibit CRISPR-Cas activity, such as Cas9 and Cpf1 (Cas12a). Herein, we constructed crRNA variants consisting of chemically modified DNA-crRNA and RNA-crRNA duplexes and identified that phosphorothioate (PS)-modified DNA-crRNA duplex completely blocked the function of Cpf1. More important, without prehybridization, these PS-modified DNA oligonucleotides showed the ability to suppress DNA double-strand breaks induced by two Cpf1 orthologs, AsCpf1 and LbCpf1. Time-dependent inhibitory effects were validated in multiple loci of different human cells. Further studies demonstrated that PS-modified DNA oligo-nucleotides were able to serve as Cpf1 inhibitors in a sequence-independent manner. Mechanistic studies indicate that PS-modified DNA oligonucleotides hinder target DNA binding and recognition by Cpf1. Consequently, these synthetic DNA molecules expand the sources of CRISPR inhibitors, providing a platform to inactivate Cpf1-mediated genome editing. Li et al. show that phosphorothioate-modified DNA (psDNA) oligonucleotides inhibit Cpf1-mediated genome-editing activity in a sequence-independent manner in human cells. These psDNA oligonucleotides interact with Cpf1 protein and block the formation of Cpf1-crRNA-target DNA complex. They also display inhibitory effects on the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chunxi Zeng
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Wenqing Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Xinfu Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Xiao Luo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Weiyu Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|