1
|
Wang G, Wei X, Li Q, Chang J, Yang X. Metabolic Engineering of Escherichia coli for Enhanced Production of Cembratrien-ols via Precursor Supply Optimization and Membrane Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12342-12352. [PMID: 40327726 DOI: 10.1021/acs.jafc.5c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Cembratrien-ols (CBT-ols) are diterpenoid compounds derived from Nicotiana plants, exhibit significant insecticidal activity, and have attracted considerable attention for the development of sustainable biopesticides. In this study, an efficient CBT-ols biosynthesis strain was constructed by integrating an artificial isopentenol utilization pathway into Escherichia coli. Multiple endogenous pyrophosphatase genes were systematically knocked out to enhance precursor supply, increasing CBT-ol production to 211.6 ± 5.74 mg/L. To further promote CBT-ol accumulation, cell membrane engineering was employed to expand membrane storage capacity, resulting in a yield of 475.6 ± 13.73 mg/L. Through fermentation optimization via continuous feeding, the engineered strain produced a final yield of 2.87 g/L in a 5 L bioreactor, with a substrate conversion rate of 44.3%, which represents the highest reported yield to date. These findings underscore the substantial benefits of the isopentenol utilization pathway in optimizing synthesis processes, thereby establishing a more robust foundation for the production of isoprenoid compounds.
Collapse
Affiliation(s)
- Guanglu Wang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, People's Republic of China
| | - Xinduo Wei
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, People's Republic of China
| | - Qian Li
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, People's Republic of China
| | - Jin Chang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, People's Republic of China
| | - Xuepeng Yang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
2
|
Zuo Y, Zhao M, Gou Y, Huang L, Xu Z, Lian J. Transportation engineering for enhanced production of plant natural products in microbial cell factories. Synth Syst Biotechnol 2024; 9:742-751. [PMID: 38974023 PMCID: PMC11224930 DOI: 10.1016/j.synbio.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Plant natural products (PNPs) exhibit a wide range of biological activities and have essential applications in various fields such as medicine, agriculture, and flavors. Given their natural limitations, the production of high-value PNPs using microbial cell factories has become an effective alternative in recent years. However, host metabolic burden caused by its massive accumulation has become one of the main challenges for efficient PNP production. Therefore, it is necessary to strengthen the transmembrane transport process of PNPs. This review introduces the discovery and mining of PNP transporters to directly mediate PNP transmembrane transportation both intracellularly and extracellularly. In addition to transporter engineering, this review also summarizes several auxiliary strategies (such as small molecules, environmental changes, and vesicles assisted transport) for strengthening PNP transportation. Finally, this review is concluded with the applications and future perspectives of transportation engineering in the construction and optimization of PNP microbial cell factories.
Collapse
Affiliation(s)
- Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Minghui Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
3
|
Chang J, Wei X, Liu D, Li Q, Li C, Zhao J, Cheng L, Wang G. Engineering Escherichia coli via introduction of the isopentenol utilization pathway to effectively produce geranyllinalool. Microb Cell Fact 2024; 23:292. [PMID: 39443997 PMCID: PMC11515624 DOI: 10.1186/s12934-024-02563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Geranyllinalool, a natural diterpenoid found in plants, has a floral and woody aroma, making it valuable in flavors and fragrances. Currently, its synthesis primarily depends on chemical methods, which are environmentally harmful and economically unsustainable. Microbial synthesis through metabolic engineering has shown potential for producing geranyllinalool. However, achieving efficient synthesis remains challenging owing to the limited availability of terpenoid precursors in microorganisms. Thus, an artificial isopentenol utilization pathway (IUP) was constructed and introduced in Escherichia coli to enhance precursor availability and further improve terpenoid synthesis. RESULTS We first constructed an artificial IUP in E. coli to enhance the supply of precursor geranylgeranyl diphosphate (GGPP) and then screened geranyllinalool synthases from plants to achieve efficient synthesis of geranyllinalool (274.78 ± 2.48 mg/L). To further improve geranyllinalool synthesis, we optimized various cultivation factors, including carbon source, IPTG concentration, and prenol addition and obtained 447.51 ± 6.92 mg/L of geranyllinalool after 72 h of shaken flask fermentation. Moreover, a scaled-up production in a 5-L fermenter was investigated to give 2.06 g/L of geranyllinalool through fed-batch fermentation. To the best of our knowledge, this is the highest reported titer so far. CONCLUSIONS Efficient synthesis of geranyllinalool in E. coli can be achieved through a two-step pathway and optimization of culture conditions. The findings of this study provide valuable insights into the production of other terpenoids in E. coli.
Collapse
Affiliation(s)
- Jin Chang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Xinduo Wei
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Deyu Liu
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Chong Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Jianguo Zhao
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Likun Cheng
- Laboratory of Synthetic Biology, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Research Institution of Veterinarian, No.777 Chang Jiang 5th Road, Binzhou, Shandong Province, 256600, China.
| | - Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China.
| |
Collapse
|
4
|
Zhu Q, Wang S, Fu G, Guo F, Huang W, Zhang T, Dong H, Jin Z, Zhang D. Highly flexible cell membranes are the key to efficient production of lipophilic compounds. J Lipid Res 2024; 65:100597. [PMID: 39029799 PMCID: PMC11367113 DOI: 10.1016/j.jlr.2024.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Lipophilic compounds have a variety of positive effects on human physiological functions and exhibit good effects in the prevention and treatment of clinical diseases. This has led to significant interest in the technical applications of synthetic biology for the production of lipophilic compounds. However, the strict selective permeability of the cell membrane and the hydrophobic nature of lipophilic compounds pose significant challenges to their production. During fermentation, lipophilic compounds tend to accumulate within cell membrane compartments rather than being secreted extracellularly. The toxic effects of excessive lipophilic compound accumulation can threaten cell viability, while the limited space within the cell membrane restricts further increases in production yield. Consequently, to achieve efficient production of lipophilic compounds, research is increasingly focused on constructing robust and multifunctional microbial cell factories. Utilizing membrane engineering techniques to construct highly flexible cell membranes is considered an effective strategy to break through the upper limit of lipophilic compound production. Currently, there are two main approaches to cell membrane modification: constructing artificial storage compartments for lipophilic compounds and engineering the cell membrane structure to facilitate product outflow. This review summarizes recent cell membrane engineering strategies applied in microbial cell factories for the production of liposoluble compounds, discussing the challenges and future prospects. These strategies enhance membrane flexibility and effectively promote the production of liposoluble compounds.
Collapse
Affiliation(s)
- Qiyao Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Sijia Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Fengming Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wei Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tengyue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
5
|
Song F, Qin Z, Qiu K, Huang Z, Wang L, Zhang H, Shan X, Meng H, Liu X, Zhou J. Development of a vitamin B 5 hyperproducer in Escherichia coli by multiple metabolic engineering. Metab Eng 2024; 84:158-168. [PMID: 38942195 DOI: 10.1016/j.ymben.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Vitamin B5 [D-pantothenic acid (D-PA)] is an essential water-soluble vitamin that is widely used in the food and feed industries. Currently, the relatively low fermentation efficiency limits the industrial application of D-PA. Here, a plasmid-free D-PA hyperproducer was constructed using systematic metabolic engineering strategies. First, pyruvate was enriched by deleting the non-phosphotransferase system, inhibiting pyruvate competitive branches, and dynamically controlling the TCA cycle. Next, the (R)-pantoate pathway was enhanced by screening the rate-limiting enzyme PanBC and regulating the other enzymes of this pathway one by one. Then, to enhance NADPH sustainability, NADPH regeneration was achieved through the novel "PEACES" system by (1) expressing the NAD + kinase gene ppnk from Clostridium glutamicum and the NADP + -dependent gapCcae from Clostridium acetobutyricum and (2) knocking-out the endogenous sthA gene, which interacts with ilvC and panE in the D-PA biosynthesis pathway. Combined with transcriptome analysis, it was found that the membrane proteins OmpC and TolR promoted D-PA efflux by increasing membrane fluidity. Strain PA132 produced a D-PA titer of 83.26 g/L by two-stage fed-batch fermentation, which is the highest D-PA titer reported so far. This work established competitive producers for the industrial production of D-PA and provided an effective strategy for the production of related products.
Collapse
Affiliation(s)
- Fuqiang Song
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhijie Qin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Kun Qiu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhongshi Huang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Lian Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Heng Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Hao Meng
- Hunan Chengda Biotechnology Co., Ltd., Malukou, Anhua, Hunan, 413506, China
| | - Xirong Liu
- Hunan Chengda Biotechnology Co., Ltd., Malukou, Anhua, Hunan, 413506, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Wu T, Jiang J, Zhang H, Liu J, Ruan H. Transcending membrane barriers: advances in membrane engineering to enhance the production capacity of microbial cell factories. Microb Cell Fact 2024; 23:154. [PMID: 38796463 PMCID: PMC11128114 DOI: 10.1186/s12934-024-02436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
Microbial cell factories serve as pivotal platforms for the production of high-value natural products, which tend to accumulate on the cell membrane due to their hydrophobic properties. However, the limited space of the cell membrane presents a bottleneck for the accumulation of these products. To enhance the production of intracellular natural products and alleviate the burden on the cell membrane caused by product accumulation, researchers have implemented various membrane engineering strategies. These strategies involve modifying the membrane components and structures of microbial cell factories to achieve efficient accumulation of target products. This review summarizes recent advances in the application of membrane engineering technologies in microbial cell factories, providing case studies involving Escherichia coli and yeast. Through these strategies, researchers have not only improved the tolerance of cells but also optimized intracellular storage space, significantly enhancing the production efficiency of natural products. This article aims to provide scientific evidence and references for further enhancing the efficiency of similar cell factories.
Collapse
Affiliation(s)
- Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| | - Jingjing Jiang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hongyang Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Jiazhi Liu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| |
Collapse
|
7
|
Wang J, Ma W, Ma W, Fang Z, Jiang Y, Jiang W, Kong X, Xin F, Zhang W, Jiang M. Strategies for the efficient biosynthesis of β-carotene through microbial fermentation. World J Microbiol Biotechnol 2024; 40:160. [PMID: 38607448 DOI: 10.1007/s11274-024-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
β-Carotene is an orange fat-soluble compound, which has been widely used in fields such as food, medicine and cosmetics owing to its anticancer, antioxidant and cardiovascular disease prevention properties. Currently, natural β-carotene is mainly extracted from plants and algae, which cannot meet the growing market demand, while chemical synthesis of β-carotene cannot satisfy the pursuit for natural products of consumers. The β-carotene production through microbial fermentation has become a promising alternative owing to its high efficiency and environmental friendliness. With the rapid development of synthetic biology and in-depth study on the synthesis pathway of β-carotene, microbial fermentation has shown promising applications in the β-carotene synthesis. Accordingly, this review aims to summarize the research progress and strategies of natural carotenoid producing strain and metabolic engineering strategies in the heterologous synthesis of β-carotene by engineered microorganisms. Moreover, it also summarizes the adoption of inexpensive carbon sources to synthesize β-carotene as well as proposes new strategies that can further improve the β-carotene production.
Collapse
Affiliation(s)
- Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenqi Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weixu Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Zhanyang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Xiangping Kong
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| |
Collapse
|
8
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
9
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
10
|
Fordjour E, Bai Z, Li S, Li S, Sackey I, Yang Y, Liu CL. Improved Membrane Permeability via Hypervesiculation for In Situ Recovery of Lycopene in Escherichia coli. ACS Synth Biol 2023; 12:2725-2739. [PMID: 37607052 DOI: 10.1021/acssynbio.3c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene biosynthesis is frequently hampered by downstream processing hugely due to its inability to be secreted out from the producing chassis. Engineering cell factories can resolve this issue by secreting this hydrophobic compound. A highly permeable E. coli strain was developed for a better release rate of lycopene. Specifically, the heterologous mevalonate pathway and crtEBI genes from Corynebacterium glutamicum were overexpressed in Escherichia coli BL21 (DE3) for lycopene synthesis. To ensure in situ lycopene production, murein lipoprotein, lipoprotein NlpI, inner membrane permease protein, and membrane-anchored protein in TolA-TolQ-TolR were deleted for improved membrane permeability. The final strain, LYC-8, produced 438.44 ± 8.11 and 136.94 ± 1.94 mg/L of extracellular and intracellular lycopene in fed-batch fermentation. Both proteomics and lipidomics analyses of secreted outer membrane vesicles were perfect indicators of hypervesiculation. Changes in the ratio of saturated fatty acids, unsaturated fatty acids, and cyclopropane fatty acids coupled with the branching and acyl chain lengths altered the membrane fatty acid composition. This ensured membrane fluidity and permeability for in situ lycopene release. The combinatorial deletion of these genes altered the cellular morphology. The structural and morphological changes in cell shape, size, and length were associated with changes in the mechanical strength of the cell envelope. The enhanced lycopene production and secretion mediated by improved membrane permeability established a cell lysis-free system for an efficient releasing rate and downstream processing, demonstrating the importance of vesicle-associated membrane permeability in efficient lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sihan Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shijie Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Isaac Sackey
- Department of Biological Sciences, Faculty of Biosciences, University for Development Studies, P.O. Box TL1350, NT-0272-1946 Tamale, Ghana
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol Adv 2023; 65:108150. [PMID: 37044266 DOI: 10.1016/j.biotechadv.2023.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.
Collapse
Affiliation(s)
- Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resources Mining and Molecular Breeding, Shenyang, China; Liaoning Provincial Key Laboratory of Agricultural Biotechnology, Shenyang, China.
| |
Collapse
|
12
|
Du YH, Wang MY, Yang LH, Tong LL, Guo DS, Ji XJ. Optimization and Scale-Up of Fermentation Processes Driven by Models. Bioengineering (Basel) 2022; 9:bioengineering9090473. [PMID: 36135019 PMCID: PMC9495923 DOI: 10.3390/bioengineering9090473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the era of sustainable development, the use of cell factories to produce various compounds by fermentation has attracted extensive attention; however, industrial fermentation requires not only efficient production strains, but also suitable extracellular conditions and medium components, as well as scaling-up. In this regard, the use of biological models has received much attention, and this review will provide guidance for the rapid selection of biological models. This paper first introduces two mechanistic modeling methods, kinetic modeling and constraint-based modeling (CBM), and generalizes their applications in practice. Next, we review data-driven modeling based on machine learning (ML), and highlight the application scope of different learning algorithms. The combined use of ML and CBM for constructing hybrid models is further discussed. At the end, we also discuss the recent strategies for predicting bioreactor scale-up and culture behavior through a combination of biological models and computational fluid dynamics (CFD) models.
Collapse
Affiliation(s)
- Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min-Yu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (D.-S.G.); (X.-J.J.)
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence: (D.-S.G.); (X.-J.J.)
| |
Collapse
|
13
|
Yang D, Eun H, Prabowo CPS, Cho S, Lee SY. Metabolic and cellular engineering for the production of natural products. Curr Opin Biotechnol 2022; 77:102760. [PMID: 35908315 DOI: 10.1016/j.copbio.2022.102760] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Increased awareness of the environmental and health concerns of consuming chemically synthesized products has led to a rising demand for natural products that are greener and more sustainable. Despite their importance, however, industrial-scale production of natural products has been challenging due to the low yield and high cost of the bioprocesses. To cope with this problem, systems metabolic engineering has been employed to efficiently produce natural products from renewable biomass. Here, we review the recent systems metabolic engineering strategies employed for enhanced production of value-added natural products, together with accompanying examples. Particular focus is set on systems-level engineering and cell physiology engineering strategies. Future perspectives are also discussed.
Collapse
Affiliation(s)
- Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.
| | - Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
| | - Cindy Pricilia Surya Prabowo
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
| | - Sumin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
14
|
Lv X, Xue H, Qin L, Li C. Transporter Engineering in Microbial Cell Factory Boosts Biomanufacturing Capacity. BIODESIGN RESEARCH 2022; 2022:9871087. [PMID: 37850143 PMCID: PMC10521751 DOI: 10.34133/2022/9871087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2022] [Indexed: 10/19/2023] Open
Abstract
Microbial cell factories (MCFs) are typical and widely used platforms in biomanufacturing for designing and constructing synthesis pathways of target compounds in microorganisms. In MCFs, transporter engineering is especially significant for improving the biomanufacturing efficiency and capacity through enhancing substrate absorption, promoting intracellular mass transfer of intermediate metabolites, and improving transmembrane export of target products. This review discusses the current methods and strategies of mining and characterizing suitable transporters and presents the cases of transporter engineering in the production of various chemicals in MCFs.
Collapse
Affiliation(s)
- Xiaodong Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijie Xue
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Strategies for production of hydrophobic compounds. Curr Opin Biotechnol 2022; 75:102681. [DOI: 10.1016/j.copbio.2022.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022]
|
16
|
Jin K, Xia H, Liu Y, Li J, Du G, Lv X, Liu L. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb Cell Fact 2022; 21:92. [PMID: 35599322 PMCID: PMC9125818 DOI: 10.1186/s12934-022-01819-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Microbial cell factories for terpenoid synthesis form a less expensive and more environment-friendly approach than chemical synthesis and extraction, and are thus being regarded as mainstream research recently. Organelle compartmentalization for terpenoid synthesis has received much attention from researchers owing to the diverse physiochemical characteristics of organelles. In this review, we first systematically summarized various compartmentalization strategies utilized in terpenoid production, mainly plant terpenoids, which can provide catalytic reactions with sufficient intermediates and a suitable environment, while bypassing competing metabolic pathways. In addition, because of the limited storage capacity of cells, strategies used for the expansion of specific organelle membranes were discussed. Next, transporter engineering strategies to overcome the cytotoxic effects of terpenoid accumulation were analyzed. Finally, we discussed the future perspectives of compartmentalization and transporter engineering strategies, with the hope of providing theoretical guidance for designing and constructing cell factories for the purpose of terpenoid production.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Hongzhi Xia
- Richen Bioengineering Co., Ltd, Nantong, 226000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Production of natural colorants by metabolically engineered microorganisms. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
19
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
20
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
21
|
Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnol Adv 2022; 55:107912. [PMID: 35041862 DOI: 10.1016/j.biotechadv.2022.107912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
Abstract
Microbial cell surface layers, which mainly include the cell membrane, cell wall, periplasmic space, outer membrane, capsules, S-layers, pili, and flagella, control material exchange between the cell and the extracellular environment, and have great impact on production titers and yields of various bio-products synthesized by microbes. Recent research work has made exciting achievements in metabolic engineering using microbial cell surface components as novel regulation targets without direct modifications of the metabolic pathways of the desired products. This review article will summarize the accomplishments obtained in this emerging field, and will describe various engineering strategies that have been adopted in bacteria and yeasts for the enhancement of mass transfer across the cell surface, improvement of protein expression and folding, modulation of cell size and shape, and re-direction of cellular resources, all of which contribute to the construction of more efficient microbial cell factories toward the synthesis of a variety of bio-products. The existing problems and possible future directions will also be discussed.
Collapse
|
22
|
Li C, Swofford CA, Rückert C, Chatzivasileiou AO, Ou RW, Opdensteinen P, Luttermann T, Zhou K, Stephanopoulos G, Jones Prather KL, Zhong-Johnson EZL, Liang S, Zheng S, Lin Y, Sinskey AJ. Heterologous production of α-Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method. BIORESOURCE TECHNOLOGY 2021; 341:125782. [PMID: 34419880 DOI: 10.1016/j.biortech.2021.125782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The carotenoid, α-carotene, is very beneficial for human health and wellness, but microbial production of this compound is notoriously difficult, due to the asymmetric rings on either end of its terpenoid backbone. Here, we report for the first time the efficient production of α-carotene in the industrial bacterium Corynebaterium glutamicum by using a combined pathway engineering approach including evaluation of the performance of different cyclases and analysis of key metabolic intermediates to determine flux bottlenecks in the carotenoid biosynthesis pathway. A multi-copy chromosomal integration method was pivotal in achieving stable expression of the cyclases. In fed-batch fermentation, 1,054 mg/L of α-carotene was produced by the best strain, which is the highest reported titer achieved in microbial fermentation. The success of increased α-carotene production suggests that the multi-copy chromosomal integration method can be a useful metabolic engineering tool for overexpression of key enzymes in C. glutamicum and other bacterium as well.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Charles A Swofford
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Christian Rückert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Alkiviadis Orfefs Chatzivasileiou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Rui Wen Ou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Patrick Opdensteinen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Tobias Luttermann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 Singapore
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kristala L Jones Prather
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | | | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.
| |
Collapse
|
23
|
Qi Z, Tong X, Bu S, Pei J, Zhao L. Cloning and Characterization of a Novel Carotenoid Cleavage Dioxygenase 1 from Helianthus annuus. Chem Biodivers 2021; 19:e202100694. [PMID: 34780126 DOI: 10.1002/cbdv.202100694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Natural β-ionone, a high-value flavoring agent, has been widely applied in the food, cosmetics, and perfume industry. However, attempts to overproduce β-ionone in microorganisms have been limited by the efficiency of carotenoid cleavage dioxygenases (CCDs), which catalyzes β-carotene in the biosynthesis pathway. In order to obtain CCD genes responsible for the specific cleavage of carotenoids generating β-ionone, a novel carotenoid cleavage dioxygenase 1 from Helianthus annuus was cloned and overexpressed in Escherichia coli BL21(DE3). The recombinant CCD was able to cleave a variety of carotenoids at the 9, 10 (9', 10') sites to produce C13 products in vitro, including β-ionone, pseudoionone, 3-hydroxy-4-oxo-β-ionone, 3-hydroxy-β-ionone, and 3-hydroxy-α-ionone, which vary depending on the carotenoid substrates. In comparison with lycopene and zeaxanthin, HaCCD1 also showed the high specificity for β-carotene to cleave the 9, 10 (9', 10') double bond to produce β-ionone in E. coli accumulating carotenoids. Finally, the expression of HaCCD1 in E. coli was optimized, and biochemical characterizations were further clarified. The optimal activity of HaCCD1 was at pH 8.8 and 50 °C. The Vmax for β-apo-8'-carotenal was 10.14 U/mg, while the Km was 0.32 mM. Collectively, our study provides a valuable enzyme for the synthesis of natural β-ionone by biotransformation and synthetic biology platform.
Collapse
Affiliation(s)
- Zhipeng Qi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, P. R. China.,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, P. R. China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, P. R. China
| | - Su Bu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Jianjun Pei
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, P. R. China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, P. R. China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, P. R. China.,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, P. R. China
| |
Collapse
|
24
|
Yang D, Park SY, Lee SY. Production of Rainbow Colorants by Metabolically Engineered Escherichia coli. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100743. [PMID: 34032018 PMCID: PMC8261500 DOI: 10.1002/advs.202100743] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Indexed: 05/07/2023]
Abstract
There has been much interest in producing natural colorants to replace synthetic colorants of health concerns. Escherichia coli has been employed to produce natural colorants including carotenoids, indigo, anthocyanins, and violacein. However, production of natural green and navy colorants has not been reported. Many natural products are hydrophobic, which are accumulated inside or on the cell membrane. This causes cell growth limitation and consequently reduces production of target chemicals. Here, integrated membrane engineering strategies are reported for the enhanced production of rainbow colorants-three carotenoids and four violacein derivatives-as representative hydrophobic natural products in E. coli. By integration of systems metabolic engineering, cell morphology engineering, inner- and outer-membrane vesicle formation, and fermentation optimization, production of rainbow colorants are significantly enhanced to 322 mg L-1 of astaxanthin (red), 343 mg L-1 of β-carotene (orange), 218 mg L-1 of zeaxanthin (yellow), 1.42 g L-1 of proviolacein (green), 0.844 g L-1 of prodeoxyviolacein (blue), 6.19 g L-1 of violacein (navy), and 11.26 g L-1 of deoxyviolacein (purple). The membrane engineering strategies reported here are generally applicable to microbial production of a broader range of hydrophobic natural products, contributing to food, cosmetic, chemical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
| | - Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
- BioInformatics Research CenterKAISTDaejeon34141Republic of Korea
| |
Collapse
|
25
|
Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem 2021; 65:225-246. [PMID: 33956149 DOI: 10.1042/ebc20200172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Bio-based production of industrially important chemicals and materials from non-edible and renewable biomass has become increasingly important to resolve the urgent worldwide issues including climate change. Also, bio-based production, instead of chemical synthesis, of food ingredients and natural products has gained ever increasing interest for health benefits. Systems metabolic engineering allows more efficient development of microbial cell factories capable of sustainable, green, and human-friendly production of diverse chemicals and materials. Escherichia coli is unarguably the most widely employed host strain for the bio-based production of chemicals and materials. In the present paper, we review the tools and strategies employed for systems metabolic engineering of E. coli. Next, representative examples and strategies for the production of chemicals including biofuels, bulk and specialty chemicals, and natural products are discussed, followed by discussion on materials including polyhydroxyalkanoates (PHAs), proteins, and nanomaterials. Lastly, future perspectives and challenges remaining for systems metabolic engineering of E. coli are discussed.
Collapse
|
26
|
Zhu L, Zhang J, Yang J, Jiang Y, Yang S. Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends Biotechnol 2021; 40:149-165. [PMID: 33965247 DOI: 10.1016/j.tibtech.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
Abstract
Acetyl CoA is an important precursor for various chemicals. We provide a metabolic engineering guideline for the production of acetyl-CoA and other end products from a bacterial chassis. Among 13 pathways that produce acetyl-CoA from glucose, 11 lose carbon in the process, and two do not. The first 11 use the Embden-Meyerhof-Parnas (EMP) pathway to produce redox cofactors and gain or lose ATP. The other two pathways function via phosphoketolase with net consumption of ATP, so they must therefore be combined with one of the 11 glycolytic pathways or auxiliary pathways. Optimization of these pathways can maximize the theoretical acetyl-CoA yield, thereby minimizing the overall cost of subsequent acetyl-CoA-derived molecules. Other strategies for generating hyper-producer strains are also addressed.
Collapse
Affiliation(s)
- Li Zhu
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawei Yang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China; Shanghai Taoyusheng Biotechnology Company Ltd, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China.
| |
Collapse
|
27
|
|
28
|
Gao Q, Chen H, Wang G, Yang W, Zhong X, Liu J, Huo X, Liu W, Huang J, Tao Y, Lin B. Highly Efficient Production of Menaquinone-7 from Glucose by Metabolically Engineered Escherichia coli. ACS Synth Biol 2021; 10:756-765. [PMID: 33755417 DOI: 10.1021/acssynbio.0c00568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Menaquinone-7 (MK-7) possesses wide health and medical value, and the market demand for MK-7 has increased. Metabolic engineering for MK-7 production in Escherichia coli still remains challenging due to the characteristics of the competing quinone synthesis, and cells mainly synthesized menaquinones under anaerobic conditions. To increase the production of MK-7 in engineered E. coli strains under aerobic conditions, we divided the whole MK-7 biosynthetic pathway into three modules (MVA pathway, DHNA pathway, and MK-7 pathway) and systematically optimized each of them. First, by screening and enhancing Idi expression, the amounts of MK-7/DMK-7 increased significantly. Then, in the MK-7 pathway, by combinatorial overexpression of endogenous MenA and exogenous UbiE, and fine-tuning the expression of HepPPS, MenA, and UbiE, 70 μM MK-7 was achieved. Third, the DHNA synthetic pathway was enhanced, and 157 μM MK-7 was achieved. By the combinational metabolic engineering strategies and membrane engineering, an efficient metabolic engineered E. coli strain for MK-7 synthesis was developed, and 200 μM (129 mg/L) MK-7 was obtained in shake flask experiment, representing a 306-fold increase compared to the starting strain. In the scale-up fermentation, 2074 μM (1350 mg/L) MK-7 was achieved after 52 h fermentation with a productivity of 26 mg/L/h. This is the highest titer of MK-7 ever reported. This study offers an alternative method for MK-7 production from biorenewable feedstock (glucose) by engineered E. coli. The high titer of our process should make it a promising cost-effective resource for MK-7.
Collapse
Affiliation(s)
- Quanxiu Gao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hao Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoyan Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotong Zhong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiezheng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - XiaoJing Huo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Weifeng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Wang J, Ma W, Wang X. Insights into the structure of Escherichia coli outer membrane as the target for engineering microbial cell factories. Microb Cell Fact 2021; 20:73. [PMID: 33743682 PMCID: PMC7980664 DOI: 10.1186/s12934-021-01565-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is generally used as model bacteria to define microbial cell factories for many products and to investigate regulation mechanisms. E. coli exhibits phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae on the outer membrane which is a self-protective barrier and closely related to cellular morphology, growth, phenotypes and stress adaptation. However, these outer membrane associated molecules could also lead to potential contamination and insecurity for fermentation products and consume lots of nutrients and energy sources. Therefore, understanding critical insights of these membrane associated molecules is necessary for building better microbial producers. Here the biosynthesis, function, influences, and current membrane engineering applications of these outer membrane associated molecules were reviewed from the perspective of synthetic biology, and the potential and effective engineering strategies on the outer membrane to improve fermentation features for microbial cell factories were suggested.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
30
|
Liu H, Qi Y, Zhou P, Ye C, Gao C, Chen X, Liu L. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol 2021; 41:339-354. [PMID: 33541146 DOI: 10.1080/07388551.2020.1856770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microbial cell factories provide vital platforms for the production of chemicals. Advanced biotechnological toolboxes have been developed to enhance their efficiency. However, these tools have limitations in improving physiological functions, and therefore boosting the efficiency (e.g. titer, rate, and yield) of microbial cell factories remains a challenge. In this review, we propose a strategy of microbial physiological engineering (MPE) to improve the efficiency of microbial cell factories. This strategy integrates tools from synthetic and systems biology to characterize and regulate physiological functions during chemical synthesis. MPE strategies mainly focus on the efficiency of substrate utilization, growth performance, stress tolerance, and the product export capacity of cell factories. In short, this review provides a new framework for resolving the bottlenecks that currently exist in low-efficiency cell factories.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Chen X, Zhang C, Lindley ND. Metabolic Engineering Strategies for Sustainable Terpenoid Flavor and Fragrance Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10252-10264. [PMID: 31865696 DOI: 10.1021/acs.jafc.9b06203] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Terpenoids derived from plant material are widely applied in the flavor and fragrance industry. Traditional extraction methods are unsustainable, but microbial synthesis offers a promising solution to attain efficient production of natural-identical terpenoids. Overproduction of terpenoids in microbes requires careful balancing of the synthesis pathway constituents within the constraints of host cell metabolism. Advances in metabolic engineering have greatly facilitated overcoming the challenges of achieving high titers, rates, and yields (TRYs). The review summarizes recent development in the molecular biology toolbox to achieve high TRYs for terpenoid biosynthesis, mainly in the two industrial platform microorganisms: Escherichia coli and Saccharomyces cerevisiae. The biosynthetic pathways, including alternative pathway designs, are briefly introduced, followed by recently developed methodologies used for pathway, genome, and strain optimization. Integrated applications of these tools are important to achieve high "TRYs" of terpenoid production and pave the way for translating laboratory research into successful commercial manufacturing.
Collapse
Affiliation(s)
- Xixian Chen
- Biotransformation Innovation Platform, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673
| | - Congqiang Zhang
- Biotransformation Innovation Platform, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673
| | - Nicholas D Lindley
- Biotransformation Innovation Platform, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673
- TBI, Université de Toulouse, CNRS, INRA, INSA,31077 Toulouse, France
| |
Collapse
|
32
|
Liu J, Wu X, Yao M, Xiao W, Zha J. Chassis engineering for microbial production of chemicals: from natural microbes to synthetic organisms. Curr Opin Biotechnol 2020; 66:105-112. [PMID: 32738762 DOI: 10.1016/j.copbio.2020.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
Chassis provides a setting for the expression of heterologous pathway genes, which often requires extensive engineering to achieve complete functions. Traditionally, chassis engineering relies on gene deletion/overexpression for the regulation of precursor/cofactor supply and product transportation, which has generated thousands of high-performance strains. With the development of synthetic biology, chassis modifications have expanded to the synthesis of artificial cellular machineries, creating synthetic cells for the biosynthesis of bioproducts. In this review, we will discuss the development of chassis engineering technologies, termed the first-generation and second-generation technologies, and their applications in the creation of chassis for the production of valued-added chemicals, with an emphasis on synthetic chassis and their applications and potential. The development of chassis engineering technologies will advance rational design and construction of customized chassis for the manufacturing of target bioproducts.
Collapse
Affiliation(s)
- Jingyi Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
33
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
34
|
Wu Y, Yan P, Li Y, Liu X, Wang Z, Chen T, Zhao X. Enhancing β-Carotene Production in Escherichia coli by Perturbing Central Carbon Metabolism and Improving the NADPH Supply. Front Bioeng Biotechnol 2020; 8:585. [PMID: 32582683 PMCID: PMC7296177 DOI: 10.3389/fbioe.2020.00585] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Beta (β)-carotene (C40H56; a provitamin) is a particularly important carotenoid for human health. Many studies have focused on engineering Escherichia coli as an efficient heterologous producer of β-carotene. Moreover, several strains with potential for use in the industrial production of this provitamin have already been constructed via different metabolic engineering strategies. In this study, we aimed to improve the β-carotene-producing capacity of our previously engineered E. coli strain ZF43ΔgdhA through further gene deletion and metabolic pathway manipulations. Deletion of the zwf gene increased the resultant strain's β-carotene production and content by 5.1 and 32.5%, respectively, relative to the values of strain ZF43ΔgdhA, but decreased the biomass by 26.2%. Deletion of the ptsHIcrr operon further increased the β-carotene production titer from 122.0 to 197.4 mg/L, but the provitamin content was decreased. Subsequently, comparative transcriptomic analysis was used to explore the dynamic transcriptional responses of the strains to the blockade of the pentose phosphate pathway and inactivation of the phosphotransferase system. Lastly, based on the analyses of comparative transcriptome and reduction cofactor, several strategies to increase the NADPH supply were evaluated for enhancement of the β-carotene content. The combination of yjgB gene deletion and nadK overexpression led to increased β-carotene production and content. The best strain, ECW4/p5C-nadK, produced 266.4 mg/L of β-carotene in flask culture and 2,579.1 mg/L in a 5-L bioreactor. The latter value is the highest reported from production via the methylerythritol phosphate pathway in E. coli. Although the strategies applied is routine in this study, the combinations reported were first implemented, are simple but efficient and will be helpful for the production of many other natural products, especially isoprenoids. Importantly, we demonstrated that the use of the methylerythritol phosphate pathway alone for efficient β-carotene biosynthesis could be achieved via appropriate modifications of the cell metabolic functions.
Collapse
Affiliation(s)
- Yuanqing Wu
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Panpan Yan
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yang Li
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- College of Life Science, Shihezi University, Shihezi, China
| | - Xuewei Liu
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Chen
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xueming Zhao
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
35
|
Li C, Swofford CA, Sinskey AJ. Modular engineering for microbial production of carotenoids. Metab Eng Commun 2020; 10:e00118. [PMID: 31908924 PMCID: PMC6938962 DOI: 10.1016/j.mec.2019.e00118] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
There is an increasing demand for carotenoids due to their applications in the food, flavor, pharmaceutical and feed industries, however, the extraction and synthesis of these compounds can be expensive and technically challenging. Microbial production of carotenoids provides an attractive alternative to the negative environmental impacts and cost of chemical synthesis or direct extraction from plants. Metabolic engineering and synthetic biology approaches have been widely utilized to reconstruct and optimize pathways for carotenoid overproduction in microorganisms. This review summarizes the current advances in microbial engineering for carotenoid production and divides the carotenoid biosynthesis building blocks into four distinct metabolic modules: 1) central carbon metabolism, 2) cofactor metabolism, 3) isoprene supplement metabolism and 4) carotenoid biosynthesis. These four modules focus on redirecting carbon flux and optimizing cofactor supplements for isoprene precursors needed for carotenoid synthesis. Future perspectives are also discussed to provide insights into microbial engineering principles for overproduction of carotenoids.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Charles A. Swofford
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| |
Collapse
|
36
|
Zhu Y, Zhou C, Wang Y, Li C. Transporter Engineering for Microbial Manufacturing. Biotechnol J 2020; 15:e1900494. [PMID: 32298528 DOI: 10.1002/biot.201900494] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Indexed: 01/08/2023]
Abstract
Microbes play an important role in biotransformation and biosynthesis of biofuels, natural products, and polymers. Therefore, microbial manufacturing has been widely used in medicine, industry, and agriculture. However, common strategies including enzyme engineering, pathway optimization, and host engineering are generally inadequate to obtain an efficient microbial production system. Transporter engineering provides an alternative strategy to promote the transmembrane transfer of substrates, intermediates, and final products in microbial cells and thus enhances production by alleviating feedback inhibition and cytotoxicity caused by final products. According to the current studies in transport engineering, native transporters usually have low expression and poor transportation ability, resulting in inefficient transport processes and microbial production. In this review, current approaches for transporter mining, characterization, and verification are comprehensively summarized. Practical approaches to enhance the transport system in engineered cells, such as balancing transporter overexpression and cell growth, and evolution of native transporters are discussed. Furthermore, the applications of transporter engineering in microbial manufacturing, including enhancement of substrate utilization, concentration of metabolic flux to the target pathway, and acceleration of efflux and recovery of products, demonstrate its outstanding advantages and promising prospects.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chen Zhou
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Wang
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chun Li
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
37
|
Lu Q, Liu JZ. Enhanced Astaxanthin Production in Escherichia coli via Morphology and Oxidative Stress Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11703-11709. [PMID: 31578056 DOI: 10.1021/acs.jafc.9b05404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astaxanthin is a carotenoid of high commercial value because of its excellent antioxidative, anti-inflammatory, and anticancer properties. Here, we developed a novel strategy for improving the production of astaxanthin via morphology and oxidative stress engineering. First, we identified the morphology-/membrane- and oxidative stress-related genes, which should be knocked down, using the CRISPRi system. Deleting the morphology-/membrane-related genes (lpp and bamB) and the oxidative stress-related genes (uspE and yggE) generated longer and larger cells with higher reactive oxygen species (ROS) levels, thus enhancing the production of astaxanthin and decreasing cell growth. To not only improve cell growth but also obtain longer and larger cells with higher ROS levels, a complementary expression system using a temperature-sensitive plasmid was established. Complementarily expressing the morphology-/membrane-related genes (lpp and bamB) and the oxidative stress-related genes (uspE and yggE) further improved the production of astaxanthin to 11.92 mg/g dry cell weight in shake flask cultures.
Collapse
Affiliation(s)
- Qian Lu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|