1
|
Sim EJ, Tran QG, Lee YR, Le TT, Yoon HR, Choi DY, Cho DH, Yun JH, Il Choi H, Kim HS, Lee YJ. Cell-Penetrating Peptide-Based Triple Nanocomplex Enables Efficient Nuclear Gene Delivery in Chlamydomonas reinhardtii. Biotechnol Bioeng 2025. [PMID: 40342143 DOI: 10.1002/bit.29019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/11/2025]
Abstract
Microalgae are a promising solution for mitigating climate change due to their ability to capture greenhouse gases and produce renewable materials. However, their effective application is often hindered by barriers that necessitate advances in genetic engineering to improve photosynthesis and productivity. One major obstacle is the microalgal cell wall, which complicates the delivery of genetic material into these organisms. To address these challenges, we developed a novel triple nanocomplex system integrating cell-penetrating peptides (CPPs), nuclear localization signal (NLS) peptides, and plasmid DNA. This system allows simple preparation while achieving efficient nuclear translocation of plasmid DNA. We evaluated two CPPs, pVEC-ORI and pVEC-R6A, for their efficacy in facilitating intracellular transfer of DNA into wild-type Chlamydomonas reinhardtii cells. Notably, pVEC-R6A demonstrated a 6.88-fold increase in efficiency compared to pVEC-ORI, despite the presence of thick cell walls. The optimal CPP:DNA ratio for stable nanocomplex formation was determined to be 5:1 for pVEC-ORI and 10:1 for pVEC-R6A. By incorporating the simian virus 40 (SV40) NLS into CPP/DNA nanocomplexes, we successfully directed the localization of plasmid DNA into the nucleus. Our findings indicate that this simple and efficient DNA delivery system has significant potential as a tool to advance microalgal synthetic biology.
Collapse
Affiliation(s)
- Eun Jeong Sim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yu Rim Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Trang Thi Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyang Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
2
|
Zhu J, Liang Z, Yao H, Wu Z. Identifying Cell-Penetrating Peptides for Effectively Delivering Antimicrobial Molecules into Streptococcus suis. Antibiotics (Basel) 2024; 13:725. [PMID: 39200025 PMCID: PMC11350675 DOI: 10.3390/antibiotics13080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cell-penetrating peptides (CPPs) are promising carriers to effectively transport antisense oligonucleotides (ASOs), including peptide nucleic acids (PNAs), into bacterial cells to combat multidrug-resistant bacterial infections, demonstrating significant therapeutic potential. Streptococcus suis, a Gram-positive bacterium, is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. In this study, through the combination of super-resolution structured illumination microscopy (SR-SIM), flow cytometry analysis, and toxicity analysis assays, we investigated the suitability of four CPPs for delivering PNAs into S. suis cells: HIV-1 TAT efficiently penetrated S. suis cells with low toxicity against S. suis; (RXR)4XB had high penetration efficiency with inherent toxicity against S. suis; (KFF)3K showed lower penetration efficiency than HIV-1 TAT and (RXR)4XB; K8 failed to penetrate S. suis cells. HIV-1 TAT-conjugated PNA specific for the essential gyrase A subunit gene (TAT-anti-gyrA PNA) effectively inhibited the growth of S. suis. TAT-anti-gyrA PNA exhibited a significant bactericidal effect on serotypes 2, 4, 5, 7, and 9 strains of S. suis, which are known to cause human infections. Our study demonstrates the potential of CPP-ASO conjugates as new antimicrobial compounds for combating S. suis infections. Furthermore, our findings demonstrate that applying SR-SIM and flow cytometry analysis provides a convenient, intuitive, and cost-effective approach to identifying suitable CPPs for delivering cargo molecules into bacterial cells.
Collapse
Affiliation(s)
- Jinlu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (J.Z.); (Z.L.); (H.Y.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (J.Z.); (Z.L.); (H.Y.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (J.Z.); (Z.L.); (H.Y.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (J.Z.); (Z.L.); (H.Y.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-Breeding and Pig-Disease Prevention, Guangzhou 511400, China
| |
Collapse
|
3
|
Perera PGT, Linklater DP, Vilagosh Z, Nguyen THP, Hanssen E, Rubanov S, Wanjara S, Aadum B, Alfred R, Dekiwadia C, Juodkazis S, Croft R, Ivanova EP. Genetic Transformation of Plasmid DNA into Escherichia coli Using High Frequency Electromagnetic Energy. NANO LETTERS 2024; 24:1145-1152. [PMID: 38194429 DOI: 10.1021/acs.nanolett.3c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We present a novel technique of genetic transformation of bacterial cells mediated by high frequency electromagnetic energy (HF EME). Plasmid DNA, pGLO (5.4 kb), was successfully transformed into Escherichia coli JM109 cells after exposure to 18 GHz irradiation at a power density between 5.6 and 30 kW m-2 for 180 s at temperatures ranging from 30 to 40 °C. Transformed bacteria were identified by the expression of green fluorescent protein (GFP) using confocal scanning microscopy (CLSM) and flow cytometry (FC). Approximately 90.7% of HF EME treated viable E. coli cells exhibited uptake of the pGLO plasmid. The interaction of plasmid DNA with bacteria leading to transformation was confirmed by using cryogenic transmission electron microscopy (cryo-TEM). HF EME-induced plasmid DNA transformation was shown to be unique, highly efficient, and cost-effective. HF EME-induced genetic transformation is performed under physiologically friendly conditions in contrast to existing techniques that generate higher temperatures, leading to altered cellular integrity. This technique allows safe delivery of genetic material into bacterial cells, thus providing excellent prospects for applications in microbiome therapeutics and synthetic biology.
Collapse
Affiliation(s)
- Palalle G Tharushi Perera
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Denver P Linklater
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zoltan Vilagosh
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - The Hong Phong Nguyen
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Eric Hanssen
- Ian Holmes Imaging Centre, Bio21 institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sergey Rubanov
- Ian Holmes Imaging Centre, Bio21 institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steve Wanjara
- WaveCyte Biotechnologies, 9900 13th Ave N, Plymouth, Minnesota 55441, United States
| | - Bari Aadum
- WaveCyte Biotechnologies, 9900 13th Ave N, Plymouth, Minnesota 55441, United States
| | - Rebecca Alfred
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, College of Science, Engineering and Health, RMIT University, P.O. Box 2476, Melbourne, VIC 3001, Australia
| | - Saulius Juodkazis
- Centre for Quantum and Optical Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Rodney Croft
- School of Psychology, Illawara Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elena P Ivanova
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Flavin C, Chatterjee A. Cell-Penetrating Peptide Delivery of Nucleic Acid Cargo to Emiliania huxleyi, a Calcifying Marine Coccolithophore. ACS Synth Biol 2024; 13:77-84. [PMID: 38147049 DOI: 10.1021/acssynbio.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Coccolithophores are a group of unicellular marine phytoplankton that exhibit a prolific capacity for carbon conversion and are critical to ocean biogeochemistry. A fundamental understanding of coccolithophore biomineralization has been limited, in part, by the lack of genetic and molecular tools to investigate the organisms. In particular, it has proven to be difficult to deliver macromolecules across the coccosphere-membrane complex. To overcome this barrier, we employed cell-penetrating peptides (CPP) in the Emiliania huxleyi coccolithophores. We evaluated three established CPPs (TAT, R9, and KFF) and designed a CPP that incorporates a high proline content identified in the protein transduction domain of EhV060, an E. huxleyi virus lectin protein. To measure the delivery performance, we covalently linked CPPs to synthetic peptide nucleic acids (PNA) and attached a fluorescein marker. CPP-PNA-FITC complexes were efficiently delivered across the coccosphere-membrane complex to the cytoplasm of E. huxleyi cells. Characterization of E. huxleyi demonstrates that CPP-PNA are nontoxic and reveals specific effects of CPP-PNA on cell biology and calcification. Direct delivery and characterization of synthetic nucleic acids represent a step forward in synthetic biology to explore coccolithophore biomineralization.
Collapse
Affiliation(s)
- Cory Flavin
- Molecular Biophysics Program, University of Colorado, Boulder, Colorado 80301, United States
- Materials Science & Engineering Program, University of Colorado, Boulder, Colorado 80301, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80301, United States
- Sachi Bio, Louisville, Colorado 80027, United States
- Antimicrobial Regeneration Consortium Laboratories, Louisville, Colorado 80027, United States
| |
Collapse
|
5
|
Lee HM, Thai TD, Lim W, Ren J, Na D. Functional small peptides for enhanced protein delivery, solubility, and secretion in microbial biotechnology. J Biotechnol 2023; 375:40-48. [PMID: 37652168 DOI: 10.1016/j.jbiotec.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
In microbial biotechnology, there is a constant demand for functional peptides to give new functionality to engineered proteins to address problems such as direct delivery of functional proteins into bacterial cells, enhanced protein solubility during the expression of recombinant proteins, and efficient protein secretion from bacteria. To tackle these critical issues, we selected three types of functional small peptides: cell-penetrating peptides (CPPs) enable the delivery of diverse cargoes into bacterial cytoplasm for a variety of purposes, protein-solubilizing peptide tags demonstrate remarkable efficiency in solubilizing recombinant proteins without folding interference, and signal peptides play a key role in enabling the secretion of recombinant proteins from bacterial cells. In this review, we introduced these three functional small peptides that offer effective solutions to address emerging problems in microbial biotechnology. Additionally, we summarized various engineering efforts aimed at enhancing the activity and performance of these peptides, thereby providing valuable insights into their potential for further applications.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea
| | - Thi Duc Thai
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea
| | - Wonseop Lim
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea.
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea.
| |
Collapse
|
6
|
Liu BR, Chen CW, Huang YW, Lee HJ. Cell-Penetrating Peptides for Use in Development of Transgenic Plants. Molecules 2023; 28:molecules28083367. [PMID: 37110602 PMCID: PMC10142301 DOI: 10.3390/molecules28083367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Genetically modified plants and crops can contribute to remarkable increase in global food supply, with improved yield and resistance to plant diseases or insect pests. The development of biotechnology introducing exogenous nucleic acids in transgenic plants is important for plant health management. Different genetic engineering methods for DNA delivery, such as biolistic methods, Agrobacterium tumefaciens-mediated transformation, and other physicochemical methods have been developed to improve translocation across the plasma membrane and cell wall in plants. Recently, the peptide-based gene delivery system, mediated by cell-penetrating peptides (CPPs), has been regarded as a promising non-viral tool for efficient and stable gene transfection into both animal and plant cells. CPPs are short peptides with diverse sequences and functionalities, capable of agitating plasma membrane and entering cells. Here, we highlight recent research and ideas on diverse types of CPPs, which have been applied in DNA delivery in plants. Various basic, amphipathic, cyclic, and branched CPPs were designed, and modifications of functional groups were performed to enhance DNA interaction and stabilization in transgenesis. CPPs were able to carry cargoes in either a covalent or noncovalent manner and to internalize CPP/cargo complexes into cells by either direct membrane translocation or endocytosis. Importantly, subcellular targets of CPP-mediated nucleic acid delivery were reviewed. CPPs offer transfection strategies and influence transgene expression at subcellular localizations, such as in plastids, mitochondria, and the nucleus. In summary, the technology of CPP-mediated gene delivery provides a potent and useful tool to genetically modified plants and crops of the future.
Collapse
Affiliation(s)
- Betty Revon Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chi-Wei Chen
- Department of Life Science, College of Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, College of Arts, Sciences, and Education, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, College of Environmental Studies and Oceanography, National Dong Hwa University, Hualien 974301, Taiwan
| |
Collapse
|
7
|
Liu D, Siguenza NE, Zarrinpar A, Ding Y. Methods of DNA introduction for the engineering of commensal microbes. ENGINEERING MICROBIOLOGY 2022; 2:100048. [PMID: 39628703 PMCID: PMC11610962 DOI: 10.1016/j.engmic.2022.100048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/06/2024]
Abstract
The microbiome is an essential component of ecological systems and is comprised of a diverse array of microbes. Over the past decades, the accumulated observational evidence reveals a close correlation between the microbiome and human health and disease. Many groups are now manipulating individual microbial strains, species and the community as a whole to gain a mechanistic understanding of the functions of the microbiome. Here, we discuss three major approaches for introducing DNA to engineer model bacteria and isolated undomesticated bacteria, including transformation, transduction, and conjugation. We provide an overview of these approaches and describe the advantages and limitations of each method. In addition, we highlight examples of human microbiome engineering using these approaches. Finally, we provide perspectives for the future of microbiome engineering.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville 32610, Florida, United States
| | - Nicole E. Siguenza
- Division of Gastroenterology, Center for Microbiome Innovation, University of California, La Jolla, San Diego 92093, California , United States
| | - Amir Zarrinpar
- Division of Gastroenterology, Center for Microbiome Innovation, University of California, La Jolla, San Diego 92093, California , United States
- VA San Diego Health System, La Jolla 92161, California, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville 32610, Florida, United States
| |
Collapse
|
8
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
9
|
Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release 2022; 341:166-183. [PMID: 34822907 DOI: 10.1016/j.jconrel.2021.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The safety issues like immunogenicity and unacceptable cancer risk of viral vectors for DNA/mRNA vaccine delivery necessitate the development of non-viral vectors with no toxicity. Among the non-viral strategies, cell-penetrating peptides (CPPs) have been a topic of interest recently because of their ability to cross plasma membranes and facilitate nucleic acids delivery both in vivo and in vitro. In addition to the application in the field of gene vaccine and gene therapy, CPPs based nucleic acids delivery have been proved by its potential application like gene editing, RNA-sequencing, and imaging. Here, we focus on summarizing the recent applications and progress of CPPs-mediated nucleic acids delivery and discuss the current problems and solutions in this field.
Collapse
Affiliation(s)
- Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, Medical School, China Three Gorges University, Yichang 443002, China
| | - Lin Teng
- Department of Cardiovascular Medicine, The First Clinical Medical College of China Three Gorges University, Yichang 443002, China
| | - Lidan Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Linlin Chen
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
| | - Xiangli Guo
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Bonn Belingon
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Xuemei Feng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Wendou Shang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yingying Wan
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
10
|
Chen Y, Li S, Zhao J, Cao X, Wang F. Efficient drug delivery by novel cell-penetrating peptide derived from Midkine, with two heparin binding sites braced by a length-specific helix. J Drug Target 2021; 30:326-333. [PMID: 34708678 DOI: 10.1080/1061186x.2021.1999960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-penetrating peptides (CPPs) have been regarded as potential drug carriers for cancer therapy. However, most well-studied CPPs fail to deliver exogenous drugs efficiently and selectively. In this study, a tumour-targeted CPP with high efficiency derived from heparin-binding domain (HBD) of Midkine (named HMD) was discovered. HMD exhibited higher delivery efficiency than classic CPPs (TAT and R9) and manifested selectivity in tumour cells. Normally, the positive charge is the key factor for the transmembrane activity of CPPs such as TAT and R9. Here, the length of α-helix inside CPP was found also important for in the recognition of heparan sulphate proteoglycans (HSPGs). Subsequently, the introduction of HMD enhanced the inhibitory effect of Momordica antiviral protein of 30 kDa (MAP30) on tumour cells, resulting in a 6.07-fold and 5.42-fold increase in HeLa cells and MGC80-3 cells respectively without enhanced cytotoxicity in normal cells. These results show that HMD possesses high efficiency and good tumour specificity and can be utilised as a promising agent for the tumour-targeted delivery of drug. This study is also a supplement to the existing theories about the biological activities of the α-helix in CPPs.
Collapse
Affiliation(s)
- Yihui Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Si Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xuewei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Fujun Wang
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, People's Republic of China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., Dongyang, People's Republic of China
| |
Collapse
|
11
|
Inoue G, Toyohara D, Mori T, Muraoka T. Critical Side Chain Effects of Cell-Penetrating Peptides for Transporting Oligo Peptide Nucleic Acids in Bacteria. ACS APPLIED BIO MATERIALS 2021; 4:3462-3468. [PMID: 35014430 DOI: 10.1021/acsabm.1c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Of various methods for delivering functional molecules into cells, a chemical approach using cell-penetrating peptides (CPPs) is facile and highly efficient. Currently, however, there are few examples of CPPs highly efficient with bacteria in contrast to CPPs targeting animal cells, and thus our understanding of the structural effects of these bacteria-efficient CPPs, termed as BCPPs, on permeation efficiency is limited. Herein, we report a comprehensive investigation on the permeation efficiencies of cationic short peptides through bacterial cell membranes. We observed that elongating the length of the main chain increased permeation efficiency. More interestingly, the length of the peptide side chain critically affected permeation efficiency; shortening the side chain significantly enhanced efficiency. Among the BCPPs investigated, 2,3-diaminopropionic acid nonamer showed the highest permeation efficiency into bacterial cells of diverse strains, allowing the transport of oligo peptide nucleic acids and subsequent growth inhibition. This study provides insights into the molecular design of efficient BCPPs for manipulating bacterial growth.
Collapse
Affiliation(s)
- Go Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daichi Toyohara
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
12
|
Ndawula C, Tabor AE. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines (Basel) 2020; 8:E457. [PMID: 32824962 PMCID: PMC7564958 DOI: 10.3390/vaccines8030457] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Ticks are second to mosquitoes as vectors of disease. Ticks affect livestock industries in Asia, Africa and Australia at ~$1.13 billion USD per annum. For instance, 80% of the global cattle population is at risk of infestation by the Rhipicephalus microplus species-complex, which in 2016 was estimated to cause $22-30 billion USD annual losses. Although the management of tick populations mainly relies on the application of acaricides, this raises concerns due to tick resistance and accumulation of chemical residues in milk, meat, and the environment. To counteract acaricide-resistant tick populations, immunological tick control is regarded among the most promising sustainable strategies. Indeed, immense efforts have been devoted toward identifying tick vaccine antigens. Until now, Bm86-based vaccines have been the most effective under field conditions, but they have shown mixed success worldwide. Currently, of the two Bm86 vaccines commercialized in the 1990s (GavacTM in Cuba and TickGARDPLUSTM in Australia), only GavacTM is available. There is thus growing consensus that combining antigens could broaden the protection range and enhance the efficacies of tick vaccines. Yet, the anticipated outcomes have not been achieved under field conditions. Therefore, this review demystifies the potential limitations and proposes ways of sustaining enhanced cocktail tick vaccine efficacy.
Collapse
Affiliation(s)
- Charles Ndawula
- Vaccinology Research program, National Livestock Resources Research Institute, P O. Box 5746, Nakyesasa 256, Uganda
| | - Ala E. Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland Australia, St Lucia 4072, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
13
|
Higuchi-Takeuchi M, Morisaki K, Numata K. Method for the facile transformation of marine purple photosynthetic bacteria using chemically competent cells. Microbiologyopen 2019; 9:e00953. [PMID: 31638342 PMCID: PMC6957439 DOI: 10.1002/mbo3.953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 02/03/2023] Open
Abstract
Marine purple photosynthetic bacteria are ideal organisms for the production of useful materials at reduced costs and contributing to a sustainable society because they can utilize sunlight, seawater, and components of air, including carbon dioxide and nitrogen gases, for their growth. However, conjugation is the only applicable method for the transformation of marine purple photosynthetic bacteria so far. Here, we examined a calcium chloride‐mediated method for the transformation of marine purple photosynthetic bacteria. Plasmid DNAs containing the kanamycin resistance gene were successfully transferred into chemically competent cells of two strains of marine purple photosynthetic bacteria (Rhodovulum sulfidophilum and Roseospira marina). Heat shock treatment increased the transformation efficiency in R. sulfidophilum, whereas the addition of cell‐penetrating peptide did not improve it. We also found that prolonged incubation in agar plates containing kanamycin led to spontaneous mutation of the 16S rRNA, resulting in kanamycin resistance in R. marina. Thus, we developed an efficient and facile transformation method using chemically competent cells of marine purple photosynthetic bacteria with calcium chloride.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kumiko Morisaki
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|