1
|
Pruckner F, Morelli L, Patwari P, Fabris M. Remodeling of the terpenoid metabolism during prolonged phosphate depletion in the marine diatom Phaeodactylum tricornutum. JOURNAL OF PHYCOLOGY 2025. [PMID: 40234016 DOI: 10.1111/jpy.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Terpenoids are a diverse class of naturally occurring organic compounds, which derive from five-carbon isoprene units and play crucial roles in physiology, ecological interactions such as defense mechanisms, or adaptation to environmental stresses. In Phaeodactylum tricornutum, some of the most important isoprenoids are sterols and pigments, derived from precursors of the cytosolic mevalonate and the plastidial methyl-erythritol 4-phosphate pathway, respectively. However, the regulation of isoprenoid metabolism in P. tricornutum has not yet been characterized, presenting a major gap in our understanding of its ecological functions and adaptations. By leveraging metabolic, photosynthetic, and transcriptomic analyses, we characterized the dynamic remodeling of the isoprenoid pathways during prolonged nutrient stress in wild-type diatoms. We observed the down-regulation of the methylerythritol 4-phosphate and pigment biosynthesis pathways and the upregulation of key genes in the mevalonate and sterol biosynthesis pathways. At the metabolite level, we observed an overall decrease in pigment and no changes in sterol levels. Using a genetically engineered diatom strain to produce a heterologous monoterpenoid to monitor the availability of one of the main terpenoid precursors, geranyl diphosphate (GPP), we suggest that cytosolic GPP pools increase during prolonged phosphate depletion. Our results have demonstrated how the biosynthesis of isoprenoid metabolites and the pools of prenyl phosphate are vastly remodeled during phosphate depletion. We anticipate that the knowledge generated in this study can serve as a foundation for understanding ecological responses and adaptations of diatoms to nutrient stress, contributing to our broader comprehension of marine ecosystem dynamics and design strategies for producing high-value compounds in diatoms.
Collapse
Affiliation(s)
- Florian Pruckner
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Luca Morelli
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Payal Patwari
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Michele Fabris
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
- SDU Climate Cluster, Faculty of Science, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
2
|
Sene N, Gonçalves Dos Santos KC, Merindol N, Gélinas SE, Custeau A, Awwad F, Fantino E, Meddeb-Mouelhi F, Germain H, Desgagné-Penix I. Impact of heterologous expression of Cannabis sativa tetraketide synthase on Phaeodactylum tricornutum metabolic profile. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:42. [PMID: 40186218 PMCID: PMC11969993 DOI: 10.1186/s13068-025-02638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pharmaceutical safety is an increasing global priority, particularly as the demand for therapeutic compounds rises alongside population growth. Phytocannabinoids, a class of bioactive polyketide molecules derived from plants, have garnered significant attention due to their interaction with the human endocannabinoid system, offering potential benefits for managing a range of symptoms and conditions. Traditional extraction from cannabis plants poses regulatory, environmental, and yield-related challenges. Consequently, microbial biosynthesis has emerged as a promising biotechnological alternative to produce cannabinoids in a controlled, scalable, and sustainable manner. Developing diatom-based biofactories represent a crucial step in advancing this biotechnology, enabling the efficient production of high-valued compounds such as cannabinoids. RESULTS We engineered the diatom Phaeodactylum tricornutum, a unicellular photosynthetic model organism prized for its naturally high lipid content, to produce olivetolic acid (OA), a key metabolic precursor to most cannabinoids. The genes encoding tetraketide synthase and olivetolic acid cyclase from cannabis were cloned onto episomal vectors and introduced using bacterial conjugation in two separate P. tricornutum transconjugant lines to evaluate enzyme activity and OA production in vivo. Both genes were successfully expressed, and the corresponding enzymes accumulated within the transconjugant lines. However, despite testing the cell extracts individually and in combination, OA accumulation was not detected suggesting potential conversion or utilization of OA by endogenous metabolic pathways within the diatoms. To investigate this further, we analyzed the impact of CsTKS expression on the diatom's metabolome, revealing significant alterations that may indicate metabolic flux redirection or novel pathway interactions. CONCLUSIONS Our study demonstrates the successful expression of cannabinoid biosynthetic genes in P. tricornutum but highlights challenges in OA accumulation, likely due to endogenous metabolic interactions. These findings underscore the complexity of metabolic engineering in diatoms and suggest the need for further pathway optimization and metabolic flux analysis to achieve efficient cannabinoid biosynthesis. This research contributes to advancing sustainable biotechnological approaches for cannabinoid production.
Collapse
Affiliation(s)
- Nicolas Sene
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Karen Cristine Gonçalves Dos Santos
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Natacha Merindol
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Sarah-Eve Gélinas
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Alexandre Custeau
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Fatima Awwad
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Elisa Fantino
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugo Germain
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
| |
Collapse
|
3
|
Boulogne I, Toustou C, Bardor M. Meta-analysis of RNA-Seq datasets allows a better understanding of P. tricornutum cellular biology, a requirement to improve the production of Biologics. Sci Rep 2025; 15:3603. [PMID: 39875483 PMCID: PMC11775308 DOI: 10.1038/s41598-025-87620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
The marine diatom Phaeodactylum tricornutum is currently used for various industrial applications, including the pharmaceutical industry as a cost-effective cell biofactory to produce Biologics. Recent studies demonstrated that P. tricornutum can produce functional monoclonal antibodies, such application is currently limited by the production yield that hinders industrialization. Therefore, it is necessary to understand and control the cell biology of P. tricornutum to improve the Biologics production yield. Transcriptomic analyses have recently been used by the pharmaceutical industry to improve the production of Biologics in mammalian cells, especially Biologics titer and cell productivity. Hence, in the present work, we performed a meta-analysis of seven publicly available RNA-Seq datasets from different strains of P. tricornutum, for which the culture conditions were chosen as similar as possible. We analyzed the differential expression of genes that are involved in biological processes that are well known to potentially impact the bioproduction and critical quality attributes of Biologics. Therefore, the expression of genes involved in the N-glycan biosynthesis, protein export and secretion, protein quality control and proteasome, as well as those encoding proteases were analyzed and compared. The results pave the way towards optimizing Biologics production in P. tricornutum and highlight that the Pt4, Pt3 Ov and Pt8 strains seem to be the most promising P. tricornutum strains.
Collapse
Affiliation(s)
- Isabelle Boulogne
- University of Rouen Normandie, UNIROUEN, UFR des Sciences et Techniques, GlycoMEV UR4358, Innovation Chimie Carnot, Fédération de Recherche Normandie-Végétal FED 4277, 76821, Mont-Saint-Aignan, France.
- ECOTERCA - ÉCOlogie TERrestre CAribéenne, Université des Antilles, Faculté des Sciences Exactes et Naturelles, Campus de Fouillole, BP 592, 97159, Pointe-à-Pitre Cedex, France.
| | - Charlotte Toustou
- University of Rouen Normandie, UNIROUEN, UFR des Sciences et Techniques, GlycoMEV UR4358, Innovation Chimie Carnot, Fédération de Recherche Normandie-Végétal FED 4277, 76821, Mont-Saint-Aignan, France
| | - Muriel Bardor
- University of Rouen Normandie, UNIROUEN, UFR des Sciences et Techniques, GlycoMEV UR4358, Innovation Chimie Carnot, Fédération de Recherche Normandie-Végétal FED 4277, 76821, Mont-Saint-Aignan, France.
- Alga Biologics, CURIB, 25 Rue Tesnières, 76821, Mont Saint Aignan Cedex, France.
| |
Collapse
|
4
|
Niraula A, Danesh A, Merindol N, Meddeb-Mouelhi F, Desgagné-Penix I. Aromatic Amino Acids: Exploring Microalgae as a Potential Biofactory. BIOTECH 2025; 14:6. [PMID: 39982273 PMCID: PMC11843938 DOI: 10.3390/biotech14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
In recent times, microalgae have emerged as powerful hosts for biotechnological applications, ranging from the production of lipids and specialized metabolites (SMs) of pharmaceutical interest to biofuels, nutraceutical supplements, and more. SM synthesis through bioengineered pathways relies on the availability of aromatic amino acids (AAAs) as an essential precursor. AAAs, phenylalanine, tyrosine, and tryptophan are also the building blocks of proteins, maintaining the structural and functional integrity of cells. Hence, they are crucial intermediates linking the primary and specialized metabolism. The biosynthesis pathway of AAAs in microbes and plants has been studied for decades, but not much is known about microalgae. The allosteric control present in this pathway has been targeted for metabolic engineering in microbes. This review focuses on the biosynthesis of AAAs in eukaryotic microalgae and engineering techniques for enhanced production. All the putative genes involved in AAA pathways in the model microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum are listed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (A.N.); (A.D.); (N.M.); (F.M.-M.)
| |
Collapse
|
5
|
Goold HD, Kroukamp H, Erpf PE, Zhao Y, Kelso P, Calame J, Timmins JJB, Wightman ELI, Peng K, Carpenter AC, Llorente B, Hawthorne C, Clay S, van Wyk N, Daniel EL, Harrison F, Meier F, Willows RD, Cai Y, Walker RSK, Xu X, Espinosa MI, Stracquadanio G, Bader JS, Mitchell LA, Boeke JD, Williams TC, Paulsen IT, Pretorius IS. Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome. Nat Commun 2025; 16:841. [PMID: 39833175 PMCID: PMC11747415 DOI: 10.1038/s41467-024-55318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.0 project. Application of the CRISPR D-BUGS protocol identified defective loci, which were modified to improve sporulation and recover wild-type like growth when grown on glycerol as a sole carbon source when grown at 37˚C. LoxPsym sites inserted downstream of dubious open reading frames impacted the 5' UTR of genes required for optimal growth and were identified as a systematic cause of defective growth. Based on lessons learned from analysis of Sc2.0 defects and synXVI, an in-silico redesign of the synXVI chromosome was performed, which can be used as a blueprint for future synthetic yeast genome designs. The in-silico redesign of synXVI includes reduced PCR tag frequency, modified chunk and megachunk termini, and adjustments to allocation of loxPsym sites and TAA stop codons to dubious ORFs. This redesign provides a roadmap into applications of Sc2.0 strategies in non-yeast organisms.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agriculture Institute, Advanced Gene Technology Centre, Woodbridge Road, Menangle, NSW, 2568, Australia.
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| | - Heinrich Kroukamp
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
- Microbiogen Pty. Ltd., Level 4/78 Waterloo Rd, Macquarie Park, Sydney, NSW 2113, Australia.
| | - Paige E Erpf
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Yu Zhao
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - Philip Kelso
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Julie Calame
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - John J B Timmins
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Elizabeth L I Wightman
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
- Microbiogen Pty. Ltd., Level 4/78 Waterloo Rd, Macquarie Park, Sydney, NSW 2113, Australia
| | - Kai Peng
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Alexander C Carpenter
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
- Number 8 Bio, Unit 1A 2/6 Orion Road, Lane Cove West, Sydney, NSW, 2066, Australia
| | - Briardo Llorente
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
- The Australian Genome Foundry, Sydney, Australia
| | - Carmen Hawthorne
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Samuel Clay
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Niël van Wyk
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Elizabeth L Daniel
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Fergus Harrison
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Felix Meier
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Robert D Willows
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Yizhi Cai
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Roy S K Walker
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Xin Xu
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Monica I Espinosa
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | | | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, 11201, NY, USA
| | - Thomas C Williams
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
- Number 8 Bio, Unit 1A 2/6 Orion Road, Lane Cove West, Sydney, NSW, 2066, Australia
| | - Ian T Paulsen
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
- The Australian Genome Foundry, Sydney, Australia.
| | - Isak S Pretorius
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
6
|
Windhagauer M, Doblin MA, Signal B, Kuzhiumparambil U, Fabris M, Abbriano RM. Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 2024; 108:104. [PMID: 38212969 DOI: 10.1007/s00253-023-12823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.
Collapse
Affiliation(s)
- Matthias Windhagauer
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | | | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, 5230, Odense M, Denmark
| | - Raffaela M Abbriano
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
7
|
Jaramillo Jimenez BA, Awwad F, Desgagné-Penix I. Cinnamaldehyde in Focus: Antimicrobial Properties, Biosynthetic Pathway, and Industrial Applications. Antibiotics (Basel) 2024; 13:1095. [PMID: 39596788 PMCID: PMC11590939 DOI: 10.3390/antibiotics13111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Trans-cinnamaldehyde (TCA), a major bioactive compound derived from cinnamon (Cinnamomum spp.), has garnered significant attention for its diverse therapeutic properties. Its broad-spectrum antimicrobial activity, targeting both Gram-positive and Gram-negative bacteria as well as various fungi, positions TCA as a potent natural antimicrobial agent. Beyond its antimicrobial effects, TCA demonstrates promising antidiabetic and anti-inflammatory activities, making it a valuable compound in medicinal and cosmetic applications. Recent studies have highlighted its role in disrupting microbial membranes, inhibiting biofilm formation, and modulating key metabolic pathways in pathogens. Furthermore, TCA has gained popularity in cosmetics due to its antimicrobial activity, antioxidant properties, and skin-friendly profile. This review provides a comprehensive overview of TCA's antimicrobial potential, focusing on its mechanisms of action and its market and industrial applications. We also discuss the biosynthetic pathway of TCA, exploring both its natural production in cinnamon and advances in biotechnological production methods. As the demand for sustainable and natural antimicrobial agents grows, TCA emerges as a promising candidate for diverse applications. Finally, this review explores future directions for optimizing TCA production through metabolic engineering and synthetic biology approaches to meet industrial-scale demands.
Collapse
Affiliation(s)
| | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (B.A.J.J.); (F.A.)
| |
Collapse
|
8
|
Diaz-Garza AM, Merindol N, Dos Santos KCG, Lavoie-Marchand F, Ingalls B, Desgagné-Penix I. No two clones are alike: characterization of heterologous subpopulations in a transgenic cell line of the model diatom Phaeodactylum tricornutum. Microb Cell Fact 2024; 23:286. [PMID: 39428506 PMCID: PMC11492738 DOI: 10.1186/s12934-024-02559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Conjugation-based episome delivery is a highly efficient method used to transfer DNA into the diatom Phaeodactylum tricornutum, facilitating the production of recombinant proteins and high-value metabolites. However, previous reports have indicated phenotypic heterogeneity among individual cells from clonally propagated exconjugant cell lines, potentially affecting the stability of recombinant protein production in the diatom. RESULTS Here, we characterized the differences between subpopulations with distinct fluorescence intensity phenotypes derived from a single exconjugant colony of P. tricornutum expressing the enhanced green fluorescent protein (eGFP). We analyzed the expression cassette sequence integrity, plasmid copy number, and global gene expression. Our findings reveal that lower copy numbers and the deletion of the expression cassette in part of the population contributed to low transgene expression. Gene co-expression analysis identified a set of genes with similar expression pattern to eGFP including a gene encoding a putative Flp recombinase, which may be related to variations in fluorescence intensity. These genes thus present themselves as potential candidates for increasing recombinant proteins production in P. tricornutum episomal expression system. CONCLUSIONS Overall, our study elucidates genetic and transcriptomic differences between distinct subpopulations in a clonally propagated culture, contributes to a better understanding of heterogeneity in diatom expression systems for synthetic biology applications.
Collapse
Affiliation(s)
- Aracely Maribel Diaz-Garza
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois- Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois- Rivières, Trois-Rivières, Québec, Canada
| | | | - Félix Lavoie-Marchand
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois- Rivières, Trois-Rivières, Québec, Canada
| | - Brian Ingalls
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois- Rivières, Trois-Rivières, Québec, Canada.
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois‑Rivières, QC, Canada.
| |
Collapse
|
9
|
Messaabi A, Merindol N, Bohnenblust L, Fantino E, Meddeb-Mouelhi F, Desgagné-Penix I. In vivo thrombin activity in the diatom Phaeodactylum tricornutum: biotechnological insights. Appl Microbiol Biotechnol 2024; 108:481. [PMID: 39377797 PMCID: PMC11461642 DOI: 10.1007/s00253-024-13322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Diatoms are responsible for 20% of global carbon dioxide fixation and have significant potential in various biotechnological and industrial applications. Recently, the pennate diatom Phaeodactylum tricornutum has emerged as a prominent platform organism for metabolic engineering and synthetic biology. The availability of its genome sequence has facilitated the development of new bioengineering tools. In this study, we used in silico analyses to identify sequences potentially encoding thrombin-like proteins, which are involved in recognizing and cleaving the thrombin sequence LVPRGS in P. tricornutum. Protein structure prediction and docking studies indicated a similar active site and ligand positioning compared to characterized human and bovine thrombin. The evidence and efficiency of the cleavage were determined in vivo using two fusion-protein constructs that included YFP to measure expression, protein accumulation, and cleavage. Western blot analysis revealed 50-100% cleavage between YFP and N-terminal fusion proteins. Our findings suggest the existence of a novel thrombin-like protease in P. tricornutum. This study advances the application of diatoms for the synthesis and production of complex proteins and enhances our understanding of the functional role of these putative thrombin sequences in diatom physiology. KEY POINTS: • Protein structure predictions reveal thrombin-like active sites in P. tricornutum. • Validated cleavage efficiency of thrombin-like protease on fusion proteins in vivo. • Study advances bioengineering tools for diatom-based biotechnological applications.
Collapse
Affiliation(s)
- Anis Messaabi
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lea Bohnenblust
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Elisa Fantino
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada.
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada.
| |
Collapse
|
10
|
Cagney MH, O'Neill EC. Strategies for producing high value small molecules in microalgae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108942. [PMID: 39024780 DOI: 10.1016/j.plaphy.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Eukaryotic microalgae are a diverse group of organisms that can be used for the sustainable production of a wide range of high value compounds, including lipids, flavours and dyes, bioplastics, and cosmetics. Optimising total biomass production often does not lead to optimal product yield and more sophisticated biphasic growth strategies are needed, introducing specific stresses to induce product synthesis. Genetic tools have been used to increase yields of natural products or to introduce new pathways to algae, and wider deployment of these tools offers promising routes for commercial production of high value compounds utilising minimal inputs.
Collapse
Affiliation(s)
- Michael H Cagney
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ellis C O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
11
|
Russo MT, Rogato A, Jaubert M, Karas BJ, Falciatore A. Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology. JOURNAL OF PHYCOLOGY 2023; 59:1114-1122. [PMID: 37975560 DOI: 10.1111/jpy.13400] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Diatoms are prominent and highly diverse microalgae in aquatic environments. Compared with other diatom species, Phaeodactylum tricornutum is an "atypical diatom" displaying three different morphotypes and lacking the usual silica shell. Despite being of limited ecological relevance, its ease of growth in the laboratory and well-known physiology, alongside the steady increase in genome-enabled information coupled with effective tools for manipulating gene expression, have meant it has gained increased recognition as a powerful experimental model for molecular research on diatoms. We here present a brief overview of how over the last 25 years P. tricornutum has contributed to the unveiling of fundamental aspects of diatom biology, while also emerging as a new tool for algal process engineering and synthetic biology.
Collapse
Affiliation(s)
- Monia T Russo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources, National Research Council, IBBR-CNR, Naples, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marianne Jaubert
- UMR7141 Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de Biologie Physico-Chimique, Paris, France
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Angela Falciatore
- UMR7141 Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
12
|
Awwad F, Fantino EI, Héneault M, Diaz-Garza AM, Merindol N, Custeau A, Gélinas SE, Meddeb-Mouelhi F, Li J, Lemay JF, Karas BJ, Desgagne-Penix I. Bioengineering of the Marine Diatom Phaeodactylum tricornutum with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid. Int J Mol Sci 2023; 24:16624. [PMID: 38068947 PMCID: PMC10706280 DOI: 10.3390/ijms242316624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom Phaeodactylum tricornutum through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). P. tricornutum is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes TKS and OAC into the diatom. P. tricornutum transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6-2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of P. tricornutum with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.
Collapse
Affiliation(s)
- Fatima Awwad
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Elisa Ines Fantino
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Marianne Héneault
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Aracely Maribel Diaz-Garza
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Riviere, QC G9A 5H7, Canada
| | - Alexandre Custeau
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Sarah-Eve Gélinas
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Riviere, QC G9A 5H7, Canada
| | - Jessica Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jean-François Lemay
- Centre National en Électrochimie et en Technologies Environnementales Inc., 2263 Avenue du Collège, Shawinigan, QC G9N 6V8, Canada
| | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Isabel Desgagne-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Riviere, QC G9A 5H7, Canada
| |
Collapse
|
13
|
Garza EA, Bielinski VA, Espinoza JL, Orlandi K, Alfaro JR, Bolt TM, Beeri K, Weyman PD, Dupont CL. Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering. ACS Synth Biol 2023; 12:3215-3228. [PMID: 37857380 PMCID: PMC10661051 DOI: 10.1021/acssynbio.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 10/21/2023]
Abstract
While diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies. These plasmids are delivered via bacterial conjugation and, when combined with modular DNA assembly technologies, provide a flexibility and speed not possible with biolistic-mediated strain generation. In order to expand the current toolbox for plasmid-based engineering in the diatom Phaeodactylum tricornutum, a conjugation-based forward genetics screen for promoter discovery was developed, and application to a diatom genomic DNA library defined 252 P. tricornutum promoter elements. From this library, 40 promoter/terminator pairs were delivered via conjugation on episomal plasmids, characterized in vivo, and ranked across 4 orders of magnitude difference in reporter gene expression levels.
Collapse
Affiliation(s)
- Erin A. Garza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | - Josh L. Espinoza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Patwari P, Pruckner F, Fabris M. Biosensors in microalgae: A roadmap for new opportunities in synthetic biology and biotechnology. Biotechnol Adv 2023; 68:108221. [PMID: 37495181 DOI: 10.1016/j.biotechadv.2023.108221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Biosensors are powerful tools to investigate, phenotype, improve and prototype microbial strains, both in fundamental research and in industrial contexts. Genetic and biotechnological developments now allow the implementation of synthetic biology approaches to novel different classes of microbial hosts, for example photosynthetic microalgae, which offer unique opportunities. To date, biosensors have not yet been implemented in phototrophic eukaryotic microorganisms, leaving great potential for novel biological and technological advancements untapped. Here, starting from selected biosensor technologies that have successfully been implemented in heterotrophic organisms, we project and define a roadmap on how these could be applied to microalgae research. We highlight novel opportunities for the development of new biosensors, identify critical challenges, and finally provide a perspective on the impact of their eventual implementation to tackle research questions and bioengineering strategies. From studying metabolism at the single-cell level to genome-wide screen approaches, and assisted laboratory evolution experiments, biosensors will greatly impact the pace of progress in understanding and engineering microalgal metabolism. We envision how this could further advance the possibilities for unraveling their ecological role, evolutionary history and accelerate their domestication, to further drive them as resource-efficient production hosts.
Collapse
Affiliation(s)
- Payal Patwari
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Florian Pruckner
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark.
| |
Collapse
|
15
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
16
|
Abbriano RM, George J, Kahlke T, Commault AS, Fabris M. Mobilization of a diatom mutator-like element (MULE) transposon inactivates the uridine monophosphate synthase (UMPS) locus in Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:926-936. [PMID: 37147901 DOI: 10.1111/tpj.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023]
Abstract
Diatoms are photosynthetic unicellular microalgae that drive global ecological phenomena in the biosphere and are emerging as sustainable feedstock for an increasing number of industrial applications. Diatoms exhibit enormous taxonomic and genetic diversity, which often results in peculiar biochemical and biological traits. Transposable elements (TEs) represent a substantial portion of diatom genomes and have been hypothesized to exert a relevant role in enriching genetic diversity and making a core contribution to genome evolution. Here, through long-read whole-genome sequencing, we identified a mutator-like element (MULE) in the model diatom Phaeodactylum tricornutum, and we report the direct observation of its mobilization within the course of a single laboratory experiment. Under selective conditions, this TE inactivated the uridine monophosphate synthase (UMPS) gene of P. tricornutum, one of the few endogenous genetic loci currently targeted for selectable auxotrophy for functional genetics and genome-editing applications. We report the observation of a recently mobilized transposon in diatoms with unique features. These include the combined presence of a MULE transposase with zinc-finger SWIM-type domains and a diatom-specific E3 ubiquitin ligase of the zinc-finger UBR type, which are suggestive of a mobilization mechanism. Our findings provide new elements for the understanding of the role of TEs in diatom genome evolution and in the enrichment of intraspecific genetic variability.
Collapse
Affiliation(s)
- Raffaela M Abbriano
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Jestin George
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Audrey S Commault
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Michele Fabris
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW, 2007, Australia
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD, 4001, Australia
| |
Collapse
|
17
|
Diamond A, Diaz-Garza AM, Li J, Slattery SS, Merindol N, Fantino E, Meddeb-Mouelhi F, Karas BJ, Barnabé S, Desgagné-Penix I. Instability of extrachromosomal DNA transformed into the diatom Phaeodactylum tricornutum. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Li X, Lan C, Li X, Hu Z, Jia B. A review on design-build-test-learn cycle to potentiate progress in isoprenoid engineering of photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2022; 363:127981. [PMID: 36130687 DOI: 10.1016/j.biortech.2022.127981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, the generation of isoprenoid factories in microalgae relies on two strategies: 1) enhanced production of endogenous isoprenoids; or 2) production of heterologous terpenes by metabolic engineering. Nevertheless, low titers and productivity are still a feature of isoprenoid biotechnology and need to be addressed. In this context, the mechanisms underlying isoprenoid biosynthesis in microalgae and its relationship with central carbon metabolism are reviewed. Developments in microalgal biotechnology are discussed, and a new approach of integrated "design-build-test-learn" cycle is advocated to the trends, challenges and prospects involved in isoprenoid engineering. The emerging and promising strategies and tools are discussed for microalgal engineering in the future. This review encourages a systematic engineering perspective aimed at potentiating progress in isoprenoid engineering of photosynthetic microalgae.
Collapse
Affiliation(s)
- Xiangyu Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengxiang Lan
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bin Jia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
19
|
Gomide MDS, Leitão MDC, Coelho CM. Biocircuits in plants and eukaryotic algae. FRONTIERS IN PLANT SCIENCE 2022; 13:982959. [PMID: 36212277 PMCID: PMC9545776 DOI: 10.3389/fpls.2022.982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Collapse
Affiliation(s)
- Mayna da Silveira Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
- School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
20
|
Xu Y, Du X, Yu X, Jiang Q, Zheng K, Xu J, Wang P. Recent Advances in the Heterologous Expression of Biosynthetic Gene Clusters for Marine Natural Products. Mar Drugs 2022; 20:341. [PMID: 35736144 PMCID: PMC9225448 DOI: 10.3390/md20060341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Marine natural products (MNPs) are an important source of biologically active metabolites, particularly for therapeutic agent development after terrestrial plants and nonmarine microorganisms. Sequencing technologies have revealed that the number of biosynthetic gene clusters (BGCs) in marine microorganisms and the marine environment is much higher than expected. Unfortunately, the majority of them are silent or only weakly expressed under traditional laboratory culture conditions. Furthermore, the large proportion of marine microorganisms are either uncultivable or cannot be genetically manipulated. Efficient heterologous expression systems can activate cryptic BGCs and increase target compound yield, allowing researchers to explore more unknown MNPs. When developing heterologous expression of MNPs, it is critical to consider heterologous host selection as well as genetic manipulations for BGCs. In this review, we summarize current progress on the heterologous expression of MNPs as a reference for future research.
Collapse
Affiliation(s)
- Yushan Xu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Xinhua Du
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Xionghui Yu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Qian Jiang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Kaiwen Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Jinzhong Xu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
- State Key Laboratory of Motor Vehicle Biofuel Technology, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
21
|
Zhao C, Wang XH, Lu XY, Zong H, Zhuge B. Tuning Geraniol Biosynthesis via a Novel Decane-Responsive Promoter in Candida glycerinogenes. ACS Synth Biol 2022; 11:1835-1844. [PMID: 35507528 DOI: 10.1021/acssynbio.2c00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geraniol is a rose-scented monoterpene with significant commercial and industrial value in medicine, condiments, cosmetics, and bioenergy. Here, we first targeted geraniol as a reporter metabolite and explored the suitability and potential of Candida glycerinogenes as a heterologous host for monoterpenoid production. Subsequently, dual-pathway engineering was employed to improve the production of geraniol with a geraniol titer of 858.4 mg/L. We then applied a synthetic hybrid promoter approach to develop a decane-responsive hybrid promoter based on the native promoter PGAP derived from C. glycerinogenes itself. The hybrid promoter was able to be induced by n-decane with 3.6 times higher transcriptional intensity than the natural promoter PGAP. In particular, the hybrid promoter effectively reduces the conflict between cell growth and product formation in the production of geraniol. Ultimately, 1194.6 mg/L geraniol was obtained at the shake flask level. The strong and tunable decane-responsive hybrid promoter developed in this study provides an important tool for fine regulation of toxic terpenoid production in cells.
Collapse
Affiliation(s)
- Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xi-Hui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Chen J, Huang Y, Shu Y, Hu X, Wu D, Jiang H, Wang K, Liu W, Fu W. Recent Progress on Systems and Synthetic Biology of Diatoms for Improving Algal Productivity. Front Bioeng Biotechnol 2022; 10:908804. [PMID: 35646842 PMCID: PMC9136054 DOI: 10.3389/fbioe.2022.908804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae have drawn much attention for their potential applications as a sustainable source for developing bioactive compounds, functional foods, feeds, and biofuels. Diatoms, as one major group of microalgae with high yields and strong adaptability to the environment, have shown advantages in developing photosynthetic cell factories to produce value-added compounds, including heterologous bioactive products. However, the commercialization of diatoms has encountered several obstacles that limit the potential mass production, such as the limitation of algal productivity and low photosynthetic efficiency. In recent years, systems and synthetic biology have dramatically improved the efficiency of diatom cell factories. In this review, we discussed first the genome sequencing and genome-scale metabolic models (GEMs) of diatoms. Then, approaches to optimizing photosynthetic efficiency are introduced with a focus on the enhancement of biomass productivity in diatoms. We also reviewed genome engineering technologies, including CRISPR (clustered regularly interspaced short palindromic repeats) gene-editing to produce bioactive compounds in diatoms. Finally, we summarized the recent progress on the diatom cell factory for producing heterologous compounds through genome engineering to introduce foreign genes into host diatoms. This review also pinpointed the bottlenecks in algal engineering development and provided critical insights into the future direction of algal production.
Collapse
Affiliation(s)
- Jiwei Chen
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Yifan Huang
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Yuexuan Shu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Xiaoyue Hu
- Center for Data Science, Zhejiang University, Hangzhou, China
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Di Wu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Kui Wang
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Weihua Liu
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Weiqi Fu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
- Center for Systems Biology and Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
- *Correspondence: Weiqi Fu,
| |
Collapse
|
23
|
Krämer LC, Wasser D, Haitz F, Sabel B, Büchel C. Heterologous expression of HUP1 glucose transporter enables low-light mediated growth on glucose in Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
24
|
Kuo EY, Yang RY, Chin YY, Chien YL, Chen YC, Wei CY, Kao LJ, Chang YH, Li YJ, Chen TY, Lee TM. Multi-omics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae. Biotechnol J 2022; 17:e2100603. [PMID: 35467782 DOI: 10.1002/biot.202100603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value-added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome-editing tools in microalgae biorefinery and wastewater treatment. The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eva YuHua Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yuan Yu Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Lin Chien
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu Chu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Cheng-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Li-Jung Kao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Hua Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu-Jia Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Te-Yuan Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
25
|
Sreenikethanam A, Raj S, J RB, Gugulothu P, Bajhaiya AK. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Front Bioeng Biotechnol 2022; 10:836056. [PMID: 35402414 PMCID: PMC8984019 DOI: 10.3389/fbioe.2022.836056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Microalgae are highly diverse photosynthetic organisms with higher growth rate and simple nutritional requirements. They are evolved with an efficiency to adapt to a wide range of environmental conditions, resulting in a variety of genetic diversity. Algae accounts for nearly half of global photosynthesis, which makes them a crucial player for CO2 sequestration. In addition, they have metabolic capacities to produce novel secondary metabolites of pharmaceutical, nutraceutical and industrial applications. Studies have explored the inherent metabolic capacities of microalgae with altered growth conditions for the production of primary and secondary metabolites. However, the production of the targeted metabolites at higher rates is not guaranteed just with the inherent genetic potentials. The strain improvement using genetic engineering is possible hope to overcome the conventional methods of culture condition improvements for metabolite synthesis. Although the advanced gene editing tools are available, the gene manipulation of microalgae remains relatively unexplored. Among the performed gene manipulations studies, most of them focus on primary metabolites with limited focus on secondary metabolite production. The targeted genes can be overexpressed to enhance the production of the desired metabolite or redesigning them using the synthetic biology. A mutant (KOR1) rich in carotenoid and lipid content was developed in a recent study employing mutational breeding in microalgae (Kato, Commun. Biol, 2021, 4, 450). There are lot of challenges in genetic engineering associated with large algal diversity but the numerous applications of secondary metabolites make this field of research very vital for the biotech industries. This review, summarise all the genetic engineering studies and their significance with respect to secondary metabolite production from microalgae. Further, current genetic engineering strategies, their limitations and future strategies are also discussed.
Collapse
Affiliation(s)
- Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Thirvarur, India
| | | | - Amit K Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| |
Collapse
|
26
|
Kang NK, Baek K, Koh HG, Atkinson CA, Ort DR, Jin YS. Microalgal metabolic engineering strategies for the production of fuels and chemicals. BIORESOURCE TECHNOLOGY 2022; 345:126529. [PMID: 34896527 DOI: 10.1016/j.biortech.2021.126529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Microalgae are promising sustainable resources because of their ability to convert CO2 into biofuels and chemicals directly. However, the industrial production and economic feasibility of microalgal bioproducts are still limited. As such, metabolic engineering approaches have been undertaken to enhance the productivities of microalgal bioproducts. In the last decade, impressive advances in microalgae metabolic engineering have been made by developing genetic engineering tools and multi-omics analysis. This review presents comprehensive microalgal metabolic pathways and metabolic engineering strategies for producing lipids, long chain-polyunsaturated fatty acids, terpenoids, and carotenoids. Additionally, promising metabolic engineering approaches specific to target products are summarized. Finally, this review discusses current challenges and provides future perspectives for the effective production of chemicals and fuels via microalgal metabolic engineering.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kwangryul Baek
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christine Anne Atkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL, USA; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
27
|
Kassaw TK, Paton AJ, Peers G. Episome-Based Gene Expression Modulation Platform in the Model Diatom Phaeodactylum tricornutum. ACS Synth Biol 2022; 11:191-204. [PMID: 35015507 DOI: 10.1021/acssynbio.1c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemically inducible gene expression systems have been an integral part of the advanced synthetic genetic circuit design and are employed for precise dynamic control over genetically engineered traits. However, the current systems for controlling transgene expression in most algae are limited to endogenous promoters that respond to different environmental factors. We developed a highly efficient, tunable, and reversible episome-based transcriptional control system in the model diatom alga, Phaeodactylum tricornutum. We assessed the time- and dose-response dynamics of each expression system using a reporter protein (eYFP) as a readout. Using our circuit configuration, we found two inducible expression systems with a high dynamic range and confirmed the suitability of an episome expression platform for synthetic biological applications in diatoms. These systems are controlled by the presence of β-estradiol and digoxin. Addition of either chemical to transgenic strains activates transcription with a dynamic range of up to ∼180-fold and ∼90-fold, respectively. We demonstrated that our episome-based transcriptional control systems are tunable and reversible in a dose- and time-dependent manner. Using droplet digital polymerase chain reaction (PCR), we also confirmed that inducer-dependent transcriptional activation starts within minutes of inducer application without any detectable transcript in the uninduced controls. The system described here expands the molecular and synthetic biology toolkits in algae and will facilitate future gene discovery and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tessema K. Kassaw
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J. Paton
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
28
|
Scarsini M, Thiriet-Rupert S, Veidl B, Mondeguer F, Hu H, Marchand J, Schoefs B. The Transition Toward Nitrogen Deprivation in Diatoms Requires Chloroplast Stand-By and Deep Metabolic Reshuffling. FRONTIERS IN PLANT SCIENCE 2022; 12:760516. [PMID: 35126407 PMCID: PMC8811913 DOI: 10.3389/fpls.2021.760516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Microalgae have adapted to face abiotic stresses by accumulating energy storage molecules such as lipids, which are also of interest to industries. Unfortunately, the impairment in cell division during the accumulation of these molecules constitutes a major bottleneck for the development of efficient microalgae-based biotechnology processes. To address the bottleneck, a multidisciplinary approach was used to study the mechanisms involved in the transition from nitrogen repletion to nitrogen starvation conditions in the marine diatom Phaeodactylum tricornutum that was cultured in a turbidostat. Combining data demonstrate that the different steps of nitrogen deficiency clustered together in a single state in which cells are in equilibrium with their environment. The switch between the nitrogen-replete and the nitrogen-deficient equilibrium is driven by intracellular nitrogen availability. The switch induces a major gene expression change, which is reflected in the reorientation of the carbon metabolism toward an energy storage mode while still operating as a metabolic flywheel. Although the photosynthetic activity is reduced, the chloroplast is kept in a stand-by mode allowing a fast resuming upon nitrogen repletion. Altogether, these results contribute to the understanding of the intricate response of diatoms under stress.
Collapse
Affiliation(s)
- Matteo Scarsini
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Stanislas Thiriet-Rupert
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
- Institut Pasteur, Genetics of Biofilms Laboratory, Paris, France
| | - Brigitte Veidl
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Florence Mondeguer
- Phycotoxins Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Chinese Academy of Sciences, Wuhan, China
| | - Justine Marchand
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| |
Collapse
|
29
|
Taparia Y, Dolui AK, Boussiba S, Khozin-Goldberg I. Multiplexed Genome Editing via an RNA Polymerase II Promoter-Driven sgRNA Array in the Diatom Phaeodactylum tricornutum: Insights Into the Role of StLDP. FRONTIERS IN PLANT SCIENCE 2022; 12:784780. [PMID: 35058949 PMCID: PMC8763850 DOI: 10.3389/fpls.2021.784780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
CRISPR/Cas9-mediated genome editing has been demonstrated in the model diatom P. tricornutum, yet the currently available genetic tools do not combine the various advantageous features into a single, easy-to-assemble, modular construct that would allow the multiplexed targeting and creation of marker-free genome-edited lines. In this report, we describe the construction of the first modular two-component transcriptional unit system expressing SpCas9 from a diatom episome, assembled using the Universal Loop plasmid kit for Golden Gate assembly. We compared the editing efficiency of two constructs with orthogonal promoter-terminator combinations targeting the StLDP gene, encoding the major lipid droplet protein of P. tricornutum. Multiplexed targeting of the StLDP gene was confirmed via PCR screening, and lines with homozygous deletions were isolated from primary exconjugants. An editing efficiency ranging from 6.7 to 13.8% was observed in the better performing construct. Selected gene-edited lines displayed growth impairment, altered morphology, and the formation of lipid droplets during nutrient-replete growth. Under nitrogen deprivation, oversized lipid droplets were observed; the recovery of cell proliferation and degradation of lipid droplets were impaired after nitrogen replenishment. The results are consistent with the key role played by StLDP in the regulation of lipid droplet size and lipid homeostasis.
Collapse
Affiliation(s)
| | | | | | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sede Boqer, Israel
| |
Collapse
|
30
|
Analysing intracellular isoprenoid metabolites in diverse prokaryotic and eukaryotic microbes. Methods Enzymol 2022; 670:235-284. [DOI: 10.1016/bs.mie.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Comparative Study Highlights the Potential of Spectral Deconvolution for Fucoxanthin Screening in Live Phaeodactylum tricornutum Cultures. Mar Drugs 2021; 20:md20010019. [PMID: 35049875 PMCID: PMC8780081 DOI: 10.3390/md20010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
Microalgal biotechnology shows considerable promise as a sustainable contributor to a broad range of industrial avenues. The field is however limited by processing methods that have commonly hindered the progress of high throughput screening, and consequently development of improved microalgal strains. We tested various microplate reader and flow cytometer methods for monitoring the commercially relevant pigment fucoxanthin in the marine diatom Phaeodactylum tricornutum. Based on accuracy and flexibility, we chose one described previously to adapt to live culture samples using a microplate reader and achieved a high correlation to HPLC (R2 = 0.849), effectively removing the need for solvent extraction. This was achieved by using new absorbance spectra inputs, reducing the detectable pigment library and changing pathlength values for the spectral deconvolution method in microplate reader format. Adaptation to 384-well microplates and removal of the need to equalize cultures by density further increased the screening rate. This work is of primary interest to projects requiring detection of biological pigments, and could theoretically be extended to other organisms and pigments of interest, improving the viability of microalgae biotechnology as a contributor to sustainable industry.
Collapse
|
32
|
Metabolic engineering of the oleaginous alga Nannochloropsis for enriching eicosapentaenoic acid in triacylglycerol by combined pulling and pushing strategies. Metab Eng 2021; 69:163-174. [PMID: 34864212 DOI: 10.1016/j.ymben.2021.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
The marine alga Nannochloropsis oceanica has been considered as a promising photosynthetic cell factory for synthesizing eicosapentaenoic acid (EPA), yet the accumulation of EPA in triacylglycerol (TAG) is restricted to an extreme low level. Poor channeling of EPA to TAG was observed in N. oceanica under TAG induction conditions, likely due to the weak activity of endogenous diacylglycerol acyltransferases (DGATs) on EPA-CoA. Screening over thirty algal DGATs revealed potent enzymes acting on EPA-CoA. Whilst overexpressing endogenous DGATs had no or slight effect on EPA abundance in TAG, introducing selected DGATs with strong activity on EPA-CoA, particularly the Chlamydomonas-derived CrDGTT1, which resided at the outermost membrane of the chloroplast and provided a strong pulling power to divert EPA to TAG for storage and protection, led to drastic increases in EPA abundance in TAG and TAG-derived EPA level in N. oceanica. They were further promoted by additional overexpression of an elongase gene involved in EPA biosynthesis, reaching 5.9- and 12.3-fold greater than the control strain, respectively. Our results together demonstrate the concept of applying combined pulling and pushing strategies to enrich EPA in algal TAG and provide clues for the enrichment of other desired fatty acids in TAG as well.
Collapse
|
33
|
Defrel G, Marsaud N, Rifa E, Martins F, Daboussi F. Identification of Loci Enabling Stable and High-Level Heterologous Gene Expression. Front Bioeng Biotechnol 2021; 9:734902. [PMID: 34660556 PMCID: PMC8517075 DOI: 10.3389/fbioe.2021.734902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Efficient and reliable genome engineering technologies have yet to be developed for diatoms. The delivery of DNA in diatoms results in the random integration of multiple copies, quite often leading to heterogeneous gene activity, as well as host instability. Transgenic diatoms are generally selected on the basis of transgene expression or high enzyme activity, without consideration of the copy number or the integration locus. Here, we propose an integrated pipeline for the diatom, Phaeodactylum tricornutum, that accurately quantifies transgene activity using a β-glucuronidase assay and the number of transgene copies integrated into the genome through Droplet Digital PCR (ddPCR). An exhaustive and systematic analysis performed on 93 strains indicated that 42% of them exhibited high β-glucuronidase activity. Though most were attributed to high transgene copy numbers, we succeeded in isolating single-copy clones, as well as sequencing the integration loci. In addition to demonstrating the impact of the genomic integration site on gene activity, this study identifies integration sites for stable transgene expression in Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- Gilles Defrel
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nathalie Marsaud
- Toulouse Biotechnology Institute (TBI), Plateforme Genome et Transcriptome (GeT-Biopuces) Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Etienne Rifa
- Toulouse Biotechnology Institute (TBI), Plateforme Genome et Transcriptome (GeT-Biopuces) Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM, UPS, Toulouse, France
- Plateforme Genome et Transcriptome (GeT), Genopole Toulouse, Toulouse, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), INSA, Toulouse, France
| |
Collapse
|
34
|
Prospects for viruses infecting eukaryotic microalgae in biotechnology. Biotechnol Adv 2021; 54:107790. [PMID: 34182051 DOI: 10.1016/j.biotechadv.2021.107790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
Besides being considered pathogens, viruses are important drivers of evolution and they can shape large ecological and biogeochemical processes, by influencing host fitness, population dynamics, and community structures. Moreover, they are simple systems that can be used and manipulated to be beneficial and useful for biotechnological applications. In this context, microalgae biotechnology is a growing field of research, which investigated the usage of photosynthetic microorganisms for the sustainable production of food, fuel, chemical, and pharmaceutical sectors. Viruses infecting microalgae have become important subject of ecological studies related to marine and aquatic environments only four decades ago when virus-like-particles associated with bloom-forming algae were discovered. These first findings have opened new questions on evolution and identity. To date, 63 viruses that infect eukaryotic microalgae have been isolated and cultured. In this short review we briefly summarize what is known about viruses infecting eukaryotic microalgae, and how acknowledging their importance can shape future research focussed not only on marine ecology and evolutionary biology but also on biotechnological applications related to microalgae cell factories.
Collapse
|
35
|
Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144905. [PMID: 33770892 DOI: 10.1016/j.scitotenv.2020.144905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In recent times, a considerable amount of evidence has come to light regarding the effect that air pollution has on skin conditions. The human skin is the chief protection we have against environmental harm, whether biological, chemical, or physical. The stress from these environmental factors, along with internal influences, can be a cause of skin aging and enlarged pores, thinner skin, skin laxity, wrinkles, fine lines, dryness, and a more fragile dermal layer. This knowledge has led to greater demand for skin cosmetics and a requirement for natural raw ingredients with a high degree of safety and efficiency in combating skin complications. Recent developments in green technology have made the employment of naturally occurring bioactive compounds more popular, and novel extraction methods have ensured that the use of these compounds has greater compatibility with sustainable development principles. Thus, there is a demand for investigations into efficient non-harmful naturally occurring raw ingredients; compounds derived from algae could be beneficial in this area. Algae, both macroalgae and microalgae, consists of waterborne photosynthetic organisms that are potentially valuable as they have a range of bioactive compounds in their composition. Several beneficial metabolites can be obtained from algae, such as antioxidants, carotenoids, mycosporine-like amino acids (MAA), pigments, polysaccharides, and scytonemin. Various algae strains are now widely employed in skincare products for various purposes, such as a moisturizer, anti-wrinkle agent, texture-enhancing agents, or sunscreen. This research considers the environmental stresses on human skin and how they may be mitigated using cosmetics created using algae; special attention will be paid to external factors, both generally and specifically (amongst them light exposure and pollutants).
Collapse
Affiliation(s)
- Ayesha Aslam
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ali Bahadar
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| | - Rabia Liaquat
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Saleem
- Department of Industrial Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Adeel Waqas
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Mohammed Zwawi
- Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
36
|
Gutiérrez S, Lauersen KJ. Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. BIOLOGY 2021; 10:265. [PMID: 33810286 PMCID: PMC8067306 DOI: 10.3390/biology10040265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.
Collapse
Affiliation(s)
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
37
|
Characterisation of novel regulatory sequences compatible with modular assembly in the diatom Phaeodactylum tricornutum. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021; 39:1019-1036. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
The major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains. However, engineering upstream photosynthetic and carbon fixation metabolism to enhance growth, productivity, and yield has barely been explored in microalgae. We describe strategies to improve the generation of reducing power from light, as well as to improve the assimilation of CO2 by either the native Calvin cycle or synthetic alternatives. Overall, we are optimistic that recent technological advances will prompt long-awaited breakthroughs in microalgal research.
Collapse
|
39
|
Overexpression of Key Sterol Pathway Enzymes in Two Model Marine Diatoms Alters Sterol Profiles in Phaeodactylum tricornutum. Pharmaceuticals (Basel) 2020; 13:ph13120481. [PMID: 33371196 PMCID: PMC7766473 DOI: 10.3390/ph13120481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known. To probe the role of these two metabolic nodes in the regulation of sterol metabolic flux in diatoms, we independently over-expressed two versions of the native HMGR and a conventional, heterologous SQE gene in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Overexpression of these key enzymes resulted in significant differential accumulation of downstream sterol pathway intermediates in P. tricornutum. HMGR-mVenus overexpression resulted in the accumulation of squalene, cycloartenol, and obtusifoliol, while cycloartenol and obtusifoliol accumulated in response to heterologous NoSQE-mVenus overexpression. In addition, accumulation of the end-point sterol 24-methylenecholesta-5,24(24’)-dien-3β-ol was observed in all P. tricornutum overexpression lines, and campesterol increased three-fold in P. tricornutum lines expressing NoSQE-mVenus. Minor differences in end-point sterol composition were also found in T. pseudonana, but no accumulation of sterol pathway intermediates was observed. Despite the successful manipulation of pathway intermediates and individual sterols in P. tricornutum, total sterol levels did not change significantly in transformed lines, suggesting the existence of tight pathway regulation to maintain total sterol content.
Collapse
|
40
|
Lefers RM, Tester M, Lauersen KJ. Emerging Technologies to Enable Sustainable Controlled Environment Agriculture in the Extreme Environments of Middle East-North Africa Coastal Regions. FRONTIERS IN PLANT SCIENCE 2020; 11:801. [PMID: 32714341 PMCID: PMC7343771 DOI: 10.3389/fpls.2020.00801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/19/2020] [Indexed: 05/24/2023]
Abstract
Despite global shifts in attitudes toward sustainability and increasing awareness of human impact on the environment, projected population growth and climate change require technological adaptations to ensure food and resource security at a global scale. Although desert areas have long been proposed as ideal sites for solar electricity generation, only recently have efforts shifted toward development of specialized and regionally focused agriculture in these extreme environments. In coastal regions of the Middle East and North Africa (MENA), the most abundant resources are consistent intense sunlight and saline sea water. MENA coastal regions hold incredible untapped potential for agriculture driven by the combination of key emerging technologies in future greenhouse concepts: transparent infrared collecting solar panels and low energy salt water cooling. These technologies can be combined to create greenhouses that drive regionally relevant agriculture in this extreme environment, especially when the target crops are salt-tolerant plants and algal biomass. Future controlled environment agriculture concepts will not compete for municipal fresh water and can be readily integrated into local human/livestock/fisheries food chains. With strategic technological implementation, marginal lands in these environments could participate in production of biomass, sustainable energy generation, and the circular carbon economy. The goal of this perspective is to reframe the idea of these environments as extreme, to having incredible untapped development potential.
Collapse
Affiliation(s)
- Ryan M. Lefers
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Texas AgriLife Research and Extension Center at Dallas, Texas A&M University, Dallas, TX, Unites States
| | - Mark Tester
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kyle J. Lauersen
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
41
|
George J, Kahlke T, Abbriano RM, Kuzhiumparambil U, Ralph PJ, Fabris M. Metabolic Engineering Strategies in Diatoms Reveal Unique Phenotypes and Genetic Configurations With Implications for Algal Genetics and Synthetic Biology. Front Bioeng Biotechnol 2020; 8:513. [PMID: 32582656 PMCID: PMC7290003 DOI: 10.3389/fbioe.2020.00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Diatoms are photosynthetic microeukaryotes that dominate phytoplankton populations and have increasing applicability in biotechnology. Uncovering their complex biology and elevating strains to commercial standards depends heavily on robust genetic engineering tools. However, engineering microalgal genomes predominantly relies on random integration of transgenes into nuclear DNA, often resulting in detrimental “position-effects” such as transgene silencing, integration into transcriptionally-inactive regions, and endogenous sequence disruption. With the recent development of extrachromosomal transgene expression via independent episomes, it is timely to investigate both strategies at the phenotypic and genomic level. Here, we engineered the model diatom Phaeodactylum tricornutum to produce the high-value heterologous monoterpenoid geraniol, which, besides applications as fragrance and insect repellent, is a key intermediate of high-value pharmaceuticals. Using high-throughput phenotyping we confirmed the suitability of episomes for synthetic biology applications and identified superior geraniol-yielding strains following random integration. We used third generation long-read sequencing technology to generate a complete analysis of all transgene integration events including their genomic locations and arrangements associated with high-performing strains at a genome-wide scale with subchromosomal detail, never before reported in any microalga. This revealed very large, highly concatenated insertion islands, offering profound implications on diatom functional genetics and next generation genome editing technologies, and is key for developing more precise genome engineering approaches in diatoms, including possible genomic safe harbour locations to support high transgene expression for targeted integration approaches. Furthermore, we have demonstrated that exogenous DNA is not integrated inadvertently into the nuclear genome of extrachromosomal-expression clones, an important characterisation of this novel engineering approach that paves the road to synthetic biology applications.
Collapse
Affiliation(s)
- Jestin George
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tim Kahlke
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Raffaela M Abbriano
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | | | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Michele Fabris
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. FRONTIERS IN PLANT SCIENCE 2020; 11:279. [PMID: 32256509 PMCID: PMC7090149 DOI: 10.3389/fpls.2020.00279] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Donna L. Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Audrey S. Commault
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Christopher C. Hall
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Leen Labeeuw
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janice I. McCauley
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Parijat Ray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|