1
|
Minozzo M, de Souza MA, Bernardi JL, Puton BMS, Valduga E, Steffens C, Paroul N, Cansian RL. Antifungal activity and aroma persistence of free and encapsulated Cinnamomum cassia essential oil in maize. Int J Food Microbiol 2023; 394:110178. [PMID: 36947915 DOI: 10.1016/j.ijfoodmicro.2023.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
The objective of this study was to evaluate the chemical composition and antifungal activity of free and encapsulated Cinnamomum cassia essential oil (EO) against Penicillium crustosum, Alternaria alternata, and Aspergillus flavus, and the aroma persistence in maize flour. Trans-cinnamaldehyde (TC) was identified as the major compound (86 %) in the C. cassia EO. The EO was encapsulated by spray-dryer with 45.26 % efficiency using gum arabic (GA) and maltodextrin (MD) in a ratio of 1:1 (m/m). C. cassia EO showed antifungal activity against A. alternata, A. flavus, and P. crustosum, with a minimum inhibitory concentration (MIC) of 0.5 % for both free and standard TC, and 5 % for the encapsulated EO. Fungal growth inhibition was evaluated under exposition to vapors at different concentrations of C. cassia EO and TC standard, with MIC of 6 % and 8 % against P. crustosum, 4 % and 1 % A. alternata, and 4 % A. flavus, respectively. The sensory analysis results of the free and encapsulated C. cassia EO in maize flour showed a significant difference between the treated samples in relation to the standard sample (p < 0.05). The sample with free EO has high aroma intensity persistence, while the samples treated with encapsulated EO were evaluated as being closer to the standard sample. The results suggest that the encapsulated C. cassia EOs can be used as natural alternatives to control fungi in maize flour.
Collapse
Affiliation(s)
- Mariane Minozzo
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Marina Andreia de Souza
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Julia Lisboa Bernardi
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Bruna Maria Saorin Puton
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil.
| | - Eunice Valduga
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Natalia Paroul
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Rogério Luis Cansian
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| |
Collapse
|
2
|
Ultrasound-Assisted Encapsulation of Citronella Oil in Alginate/Carrageenan Beads: Characterization and Kinetic Models. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this research was to investigate the effect of ultrasonication on citronella oil encapsulation using alginate/carrageenan (Alg/Carr) in the presence of sodium dodecyl sulfate (SDS). The functional groups of microparticles were characterized using Fourier transform infrared spectroscopy (FTIR), and the beads’ morphologies were observed using a scanning electron microscope (SEM). The FTIR results showed that the ultrasonication process caused the C-H bonds (1426 cm−1) to break down, resulting in polymer degradation. The SEM results showed that the ultrasonication caused the presence of cavities or pores in the cracked wall and a decrease in the beads’ size. In this study, the use of ultrasound during the encapsulation of citronella oil in Alg/Carr enhanced the encapsulation efficiency up to 95–97%. The kinetic evaluation of the oil release of the beads treated with ultrasound (UTS) showed a higher k1 value of the Ritger–Peppas model than that without ultrasonication (non-UTS), indicating that the oil release rate from the beads was faster. The R/F value from the Peppas–Sahlin model of the beads treated with UTS was smaller than that of the non-UTS model, revealing that the release of bioactive compounds from the UTS-treated beads was diffusion-controlled rather than due to a relaxation mechanism. This study suggests the potential utilization of UTS for controlling the bioactive compound release rate.
Collapse
|
3
|
Tan C, Zhu Y, Ahari H, Jafari SM, Sun B, Wang J. Sonochemistry: An emerging approach to fabricate biopolymer cross-linked emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 311:102825. [PMID: 36525841 DOI: 10.1016/j.cis.2022.102825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Sonochemistry shows remarkable potential in the synthesis or modification of new micro/nanomaterials, particularly the cross-linked emulsions for drug delivery. However, the trend of utilizing sonochemical emulsions for delivery of food-derived bioactive compounds has been just started. The extension of sonochemistry as a tool for engineering bioactive delivery systems will make the approach more universal and greatly increase its applications in the food industry. This review summarizes different types of biopolymeric cross-linked emulsions (CLEs) synthesized via sonochemical approach, including CLEs, surface-modified CLEs, cross-linked high internal phase emulsions, and some novel systems templated on CLEs. Special emphasis is directed toward the cross-linking mechanisms of biopolymers at the oil-water interfaces under acoustic cavitation and the physicochemical principles underlying sonochemical fabrication. We also highlight the advantages and challenges associated with the delivery performance of each system for bioactive compounds. The potential in delivering bioactives using sonochemical emulsions has not been fully reached. There are still a number of issues that need to be overcome, including low cross-linking degree of biopolymers, degradation of bioactives in sonochemical process, and unclear biological fate of encapsulated bioactive compounds. This review may guide future trends in exploring efficient sonochemical strategies and multifunctional delivery systems for food applications.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yuqian Zhu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Du B, Jeepipalli SPK, Xu B. Critical review on alterations in physiochemical properties and molecular structure of natural polysaccharides upon ultrasonication. ULTRASONICS SONOCHEMISTRY 2022; 90:106170. [PMID: 36183549 PMCID: PMC9526224 DOI: 10.1016/j.ultsonch.2022.106170] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Natural polymers, such as polysaccharides, cellulose, and starch, have been widely used in the chemical engineering, medicine, food, and cosmetics industries, which had a great many of biological activities. Natural polysaccharides origin from algae, fungi and plants were components of human diet since antique times. Ultrasonication achieved the breakage the polysaccharides reticulum in an ordered fashion. The factors of temperature, ratio of water/material, sonication frequency, time of exposure, pH of the sonication medium influenced the polysaccharide digestion. Sonication improved the enzyme catalysis over its substrate molecule. Positive health promoting slow digestive starch and resistant starch can be prepared quite easily by the sonication process. The aim of this review is to present the current status and scope of natural polymers as well as some emerging polymers with special characteristic. The physiochemical properties and molecular structure of natural carbohydrates under ultrasonic irradiation were also discussed. Moreover, Polysaccharide based films had industrial applications is formed by ultrasonication. Polysaccharide nanoparticles obtained by sonication had efficient water holding capacity. Sonication is an advanced method to improve the food quality. Hence, this review describes the effects of ultrasonication on physical, chemical, and molecular structure of natural polysaccharides.
Collapse
Affiliation(s)
- Bin Du
- Hebei Key Laboratoryy of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, PR China
| | - Syam P K Jeepipalli
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, PR China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, PR China.
| |
Collapse
|
5
|
Bukreeva TV, Borodina TN, Trushina DB. Polyelectrolyte Microcapsules: On the Formation and Possibilities of Regulating Multilayer Structures. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Bahsi Kaya G, Kim Y, Callahan K, Kundu S. Microencapsulated phase change material via Pickering emulsion stabilized by cellulose nanofibrils for thermal energy storage. Carbohydr Polym 2022; 276:118745. [PMID: 34823777 DOI: 10.1016/j.carbpol.2021.118745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/15/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
A phase change material (PCM) has an ability to store and release a large amount of energy in a wide range of temperature by the latent heat of fusion upon melting and crystallization. Microencapsulation may protect PCM from undesirable reaction and leaching. Herein, we report the microencapsulation of n-hexadecane via oil-in-water Pickering emulsions stabilized by non-chemically modified cellulose nanofibrils (CNF). The maximum size of PCM-CNF microcapsules was 12 ± 3.4 μm in diameter. The surface coverage of the microcapsule by CNF was as high as 67%, consistent with porous morphology of the freeze-dried microcapsules. With 59% PCM loading, the PCM-CNF microcapsule exhibited 132.5 and 141.1 J/g as stored and released thermal energy, respectively. The microcapsule slurry showed a reversible change in storage modulus by one order of magnitude across the transition temperature of n-hexadecane. Combined results demonstrate the successful microencapsulation of PCM via CNF-based Pickering emulsions for a sustainable thermal energy storage material.
Collapse
Affiliation(s)
- Gulbahar Bahsi Kaya
- Department of Sustainable Bioproducts, Mississippi State University, 201 Locksley Way, Starkville, MS 39759, USA
| | - Yunsang Kim
- Department of Sustainable Bioproducts, Mississippi State University, 201 Locksley Way, Starkville, MS 39759, USA.
| | - Kyle Callahan
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, 323 Presidents Circle, Mississippi State, MS 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA
| | - Santanu Kundu
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, 323 Presidents Circle, Mississippi State, MS 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA
| |
Collapse
|
7
|
Liu F, Guan X, Liu X, McClements DJ, Ngai T. Bioinspired Eggosomes with Dual Stimuli-Responsiveness. ACS APPLIED BIO MATERIALS 2021; 4:7825-7835. [DOI: 10.1021/acsabm.1c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fuguo Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
8
|
Tunable high internal phase emulsions stabilized by cross-linking/ electrostatic deposition of polysaccharides for delivery of hydrophobic bioactives. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Borodina T, Gileva A, Akasov R, Trushina D, Burov S, Klyachko N, González-Alfaro Y, Bukreeva T, Markvicheva E. Fabrication and evaluation of nanocontainers for lipophilic anticancer drug delivery in 3D in vitro model. J Biomed Mater Res B Appl Biomater 2020; 109:527-537. [PMID: 32945122 DOI: 10.1002/jbm.b.34721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 11/06/2022]
Abstract
Presently, most of anticancer drugs are high toxic for normal cells and, and as a result, they have severe side effects. Moreover, most of the formulations are lipophilic and have poor selectivity. To overcome these limitations, various drug delivery systems could be proposed. The aim of the current study was to fabricate novel polysaccharide nanocontainers (NC) by one-step ultrasonication technique and to evaluate their accumulation efficacy and cytotoxicity in 2D (monolayer culture) and 3D (tumor spheroids) in vitro models. NC with mean sizes in a range of 340-420 nm with the core-shell structure are synthetized and characterized. The NC shell is composed from diethylaminoethyl dextran/xanthan gum polyelectrolyte complex, while the hydrophobic core was loaded with the lipophilic anticancer drug thymoquinone. To enhance NC accumulation in human breast adenocarcinoma MCF-7 cells, the NC surface was modified with poly-L-lysine (PLL) or polyethylene glycol. Cell uptake of the NC loaded with Nile Red into the tumor cells was investigated by laser scanning confocal microscopy, fluorescent flow cytometry and fluorimetry. Modification of the NC with PLL allowed to obtain the optimal drug delivery system with maximal cytotoxicity, which was tested by MTT-test. The developed NC are promising for lipophilic anticancer drug delivery.
Collapse
Affiliation(s)
- Tatiana Borodina
- Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninskiy Prospect, Moscow, 119333, Russia.,Department of Biomedical Engineering, Institute of Molecular Medicine Sechenov First Moscow State Medical University, Trubetskayа 8, Moscow, 119991, Russia
| | - Anastasia Gileva
- Laboratory of Biomedical Materials, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Roman Akasov
- Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninskiy Prospect, Moscow, 119333, Russia.,Department of Biomedical Engineering, Institute of Molecular Medicine Sechenov First Moscow State Medical University, Trubetskayа 8, Moscow, 119991, Russia.,Laboratory of Biomedical Materials, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.,Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», Leninskiy Prospect, 4, Moscow, 119049, Russia
| | - Daria Trushina
- Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninskiy Prospect, Moscow, 119333, Russia.,Department of Biomedical Engineering, Institute of Molecular Medicine Sechenov First Moscow State Medical University, Trubetskayа 8, Moscow, 119991, Russia
| | - Sergey Burov
- Laboratory of Novel Peptide Therapeutics, J.S.Co. Cytomed, 4th line of Vasilievsky Island, Saint-Petersburg, 199004, Russia
| | - Natalia Klyachko
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yorexis González-Alfaro
- Cuban Center for Advanced Studies, Centro de Estudios Avanzados de Cuba (CEAC), CITMA La Lisa, La Lisa, La Habana, 17100, Cuba
| | - Tatiana Bukreeva
- Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninskiy Prospect, Moscow, 119333, Russia.,Laboratory of Nanocapsules and Targeted Drug Delivery, National Research Centre "Kurchatov Institute", Pl. Akademika Kurchatova, 1, Moscow, 123182, Russia
| | - Elena Markvicheva
- Laboratory of Biomedical Materials, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| |
Collapse
|
10
|
Song B, Zhang E, Han X, Zhu H, Shi Y, Cao Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21330-21341. [PMID: 32011846 PMCID: PMC7534184 DOI: 10.1021/acsami.9b19992] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Infections, contaminations, and biofouling resulting from micro- and/or macro-organisms remained a prominent threat to the public health, food industry, and aqua-/marine-related applications. Considering environmental and drug resistance concerns as well as insufficient efficacy on biofilms associated with conventional disinfecting reagents, developing an antimicrobial surface potentially improved antimicrobial performance by directly working on the microbes surrounding the surface area. Here we provide an engineering perspective on the logic of choosing materials and strategies for designing antimicrobial surfaces, as well as an application perspective on their potential impacts. In particular, we analyze and discuss requirements and expectations for specific applications and provide insights on potential misconnection between the antimicrobial solution and its targeted applications. Given the high translational barrier for antimicrobial surfaces, future research would benefit from a comprehensive understanding of working mechanisms for potential materials/strategies, and challenges/requirements for a targeted application.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| |
Collapse
|
11
|
Dos Santos de Macedo B, de Almeida T, da Costa Cruz R, Netto ADP, da Silva L, Berret JF, Vitorazi L. Effect of pH on the Complex Coacervation and on the Formation of Layers of Sodium Alginate and PDADMAC. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2510-2523. [PMID: 32050754 DOI: 10.1021/acs.langmuir.9b03216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the thermodynamic features of a system based on oppositely charged polyelectrolytes, sodium alginate, and poly(diallyldimethylammonium chloride) (PDADMAC) at different pH values. Additionally, a comparison of the effects of the thermodynamic parameters on the growth of the layers based on the same polymers is presented. For this investigation, different techniques were combined to compare results from the association in solution and coassembled layers at the silicon surface. Dynamic light scattering (DLS) and isothermal titration calorimetry (ITC) were used for studies in solution, and the layer-by-layer technique was employed for the preparation of the polymer layers. Ellipsometry and atomic force microscopy (AFM) were used to characterize the layer thickness growth as a function of the solution pH, and interferometric confocal microscopy was employed to analyze the topography and roughness of the films. The titration of both polyelectrolytes in two different sequences of additions confirmed the mechanism; it involved a two-step process that was monitored by varying the enthalpy, as determined by ITC experiments, and the structural evolution of the aggregates into coacervates, according to DLS. The primary process is aggregation to form polyelectrolyte complexes having a smaller hydrodynamic diameter, which abruptly transit toward a secondary process because of the formation of coacervate particles that have a larger hydrodynamic diameter. Independent of pH and the sequence of addition, for the first process, both directions are entropically driven. However, the binding enthalpy (ΔHb) decreased with a decrease in the pH of the solution. The layers grown for the PDADMAC/sodium alginate system demonstrated pH sensitivity with either linear or exponential behavior, depending on the pH values of the polyelectrolyte solutions. The more endothermic process at pH 10 afforded layers with a smaller thickness and with linear growth according to the increase in the number of layers from 5 to 20. Decreases in the pH of the solution resulted in the layers growing exponentially; additionally, a decrease in the ΔHb of the association in the solution was observed. The layer thicknesses measured using ellipsometry and AFM data were in good agreement. Additionally, the influence of pH on the roughness and topography of the films was observed. Films from basic dipping solutions resulted in surfaces that were more homogeneous with less roughness; in contrast, films with more layers and those formed in a low-pH dipping solution were rougher and less homogeneous.
Collapse
Affiliation(s)
- Bruno Dos Santos de Macedo
- Laboratório de Quı́mica Analı́tica Fundamental e Aplicada, Instituto de Quı́mica - Universidade Federal Fluminense, R. Outeiro de São João Batista, s/n, Niterói, RJ CEP 24020-141, Brazil
| | - Tamiris de Almeida
- Programa de Pós-Graduação em Engenharia Metalúrgica, EEIMVR, Universidade Federal Fluminense, Avenida dos Trabalhadores, 420, Volta Redonda RJ CEP 27225-125, Brazil
| | | | - Annibal Duarte Pereira Netto
- Laboratório de Quı́mica Analı́tica Fundamental e Aplicada, Instituto de Quı́mica - Universidade Federal Fluminense, R. Outeiro de São João Batista, s/n, Niterói, RJ CEP 24020-141, Brazil
| | - Ladário da Silva
- Programa de Pós-Graduação em Engenharia Metalúrgica, EEIMVR, Universidade Federal Fluminense, Avenida dos Trabalhadores, 420, Volta Redonda RJ CEP 27225-125, Brazil
- Laboratório Multiusuários de Caracterização de Materiais, Instituto de Ciências Exatas - Universidade Federal Fluminense, R. Des. Ellis Hermydio Figueira, 783, Volta Redonda RJ CEP 27213-145, Brazil
| | - Jean-François Berret
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
| | - Letícia Vitorazi
- Programa de Pós-Graduação em Engenharia Metalúrgica, EEIMVR, Universidade Federal Fluminense, Avenida dos Trabalhadores, 420, Volta Redonda RJ CEP 27225-125, Brazil
| |
Collapse
|
12
|
Mironov EP, Borodina TN, Yurina DG, Trushina DB, Bukreeva TV. Enzymatic degradation of the polymer capsules with a hydrophobic core in the presence of Langmuir lipid monolayer as a model of the cellular membrane. Colloids Surf B Biointerfaces 2019; 184:110464. [DOI: 10.1016/j.colsurfb.2019.110464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
13
|
Tan C, Arshadi M, Lee MC, Godec M, Azizi M, Yan B, Eskandarloo H, Deisenroth TW, Darji RH, Pho TV, Abbaspourrad A. A Robust Aqueous Core-Shell-Shell Coconut-like Nanostructure for Stimuli-Responsive Delivery of Hydrophilic Cargo. ACS NANO 2019; 13:9016-9027. [PMID: 31343860 DOI: 10.1021/acsnano.9b03049] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional delivery systems for hydrophilic material still face critical challenges toward practical applications, including poor retention abilities, lack of stimulus responsiveness, and low bioavailability. Here, we propose a robust encapsulation strategy for hydrophilic cargo to produce a wide class of aqueous core-shell-shell coconut-like nanostructures featuring excellent stability and multifunctionality. The numerous active groups (-SH, -NH2, and -COOH) of the protein-polysaccharide wall material enable the formation of shell-cross-linked nanocapsules enclosing a liquid water droplet during acoustic cavitation. A subsequent pH switch can trigger the generation of an additional shell through the direct deposition of non-cross-linked protein back onto the cross-linked surface. Using anthocyanin as a model hydrophilic bioactive, these nanocapsules show high encapsulation efficiency, loading content, tolerance to environmental stresses, biocompatibility, and high cellular uptake. Moreover, the composite double shells driven by both covalent bonding and electrostatics provide the nanocapsules with pH/redox dual stimuli-responsive behavior. Our approach is also feasible for any shell material that can be cross-linked via ultrasonication, offering the potential to encapsulate diverse hydrophilic functional components, including bioactive molecules, nanocomplexes, and water-dispersible inorganic nanomaterials. Further development of this strategy should hold promise for designing versatile nanoengineered core-shell-shell nanoplatforms for various applications, such as the oral absorption of hydrophilic drugs/nutraceuticals and the smart delivery of therapeutics.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Mohammad Arshadi
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Michelle C Lee
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Mary Godec
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Morteza Azizi
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Bing Yan
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Hamed Eskandarloo
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Ted W Deisenroth
- BASF Corporation , 500 White Plains Road , Tarrytown , New York 10591 , United States
| | - Rupa Hiremath Darji
- BASF Corporation , 500 White Plains Road , Tarrytown , New York 10591 , United States
| | - Toan Van Pho
- BASF Corporation , 500 White Plains Road , Tarrytown , New York 10591 , United States
| | - Alireza Abbaspourrad
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| |
Collapse
|
14
|
Tan C, Pajoumshariati S, Arshadi M, Abbaspourrad A. A simple route to renewable high internal phase emulsions (HIPEs) strengthened by successive cross-linking and electrostatics of polysaccharides. Chem Commun (Camb) 2019; 55:1225-1228. [DOI: 10.1039/c8cc09683j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel renewable and processable HIPE was synthesized by a simple strategy without using any surfactants or synthetic particles.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science
- Cornell University
- Stocking Hall
- Ithaca
- USA
| | | | - Mohammad Arshadi
- Department of Food Science
- Cornell University
- Stocking Hall
- Ithaca
- USA
| | | |
Collapse
|
15
|
Michailidis M, Sorzabal-Bellido I, Adamidou EA, Diaz-Fernandez YA, Aveyard J, Wengier R, Grigoriev D, Raval R, Benayahu Y, D'Sa RA, Shchukin D. Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38364-38372. [PMID: 29022348 DOI: 10.1021/acsami.7b14642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Application of mesoporous silica nanoparticles (MSNs) as antifouling/antibacterial carriers is limited and specifically with a dual synergetic effect. In the present work, MSNs modified with quaternary ammonium salts (QASs) and loaded with the biocide Parmetol S15 were synthesized as functional fillers for antifouling/antibacterial coatings. From the family of the MSNs, MCM-48 was selected as a carrier because of its cubic pore structure, high surface area, and high specific pore volume. The QASs used for the surface modification of MCM-48 were dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride and dimethyltetradecyl[3-(triethoxysilyl)propyl]ammonium chloride. The QAS-modified MCM-48 reveals strong covalent bonds between the QAS and the surface of the nanoparticles. The surface functionalization was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and ζ-potential measurements. Additional loading of the QAS-modified MCM-48 with a commercially available biocide (Parmetol S15) resulted in a synergetic dual antibacterial/antifouling effect. Either loaded or unloaded QAS-modified MSNs exhibited high antibacterial performance confirming their dual activity. The QAS-modified MCM-48 loaded with the biocide Parmetol S15 killed all exposed bacteria after 3 h of incubation and presented 100% reduction at the antibacterial tests against Gram-negative and Gram-positive bacteria. Furthermore, the QAS-modified MCM-48 without Parmetol S15 presented 77-89% reduction against the exposed Gram-negative bacteria and 78-94% reduction against the exposed Gram-positive bacteria. In addition, the modified MCM-48 was mixed with coating formulations, and its antifouling performance was assessed in a field test trial in northern Red Sea. All synthesized paints presented significant antifouling properties after 5 months of exposure in real seawater conditions, and the dual antifouling effect of the nanoparticles was confirmed.
Collapse
Affiliation(s)
- Marios Michailidis
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| | - Ioritz Sorzabal-Bellido
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre, University of Liverpool , Oxford Street, L69 3BX Liverpool, U.K
| | - Evanthia A Adamidou
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, M1 7DN Manchester, U.K
| | - Yuri Antonio Diaz-Fernandez
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre, University of Liverpool , Oxford Street, L69 3BX Liverpool, U.K
| | - Jenny Aveyard
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool , Liverpool L69 3GH, U.K
| | - Reut Wengier
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Dmitry Grigoriev
- Fraunhofer Institute for Applied Polymer Research IAP Functional Protein Systems/Biotechnology , Geiselbergstrasse 69, 14476 Potsdam-Golm, Germany
| | - Rasmita Raval
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre, University of Liverpool , Oxford Street, L69 3BX Liverpool, U.K
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Raechelle A D'Sa
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool , Liverpool L69 3GH, U.K
| | - Dmitry Shchukin
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| |
Collapse
|
16
|
Kamtsikakis A, Kavetsou E, Chronaki K, Kiosidou E, Pavlatou E, Karana A, Papaspyrides C, Detsi A, Karantonis A, Vouyiouka S. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles. Bioengineering (Basel) 2017; 4:bioengineering4040081. [PMID: 28952560 PMCID: PMC5746748 DOI: 10.3390/bioengineering4040081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022] Open
Abstract
The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification–solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide–polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.
Collapse
Affiliation(s)
- Aristotelis Kamtsikakis
- Laboratory of Polymer Technology, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Eleni Kavetsou
- Laboratory of Organic Chemistry, NTUA, Zografou Campus, 15780 Athens, Greece.
| | - Konstantina Chronaki
- Laboratory of Polymer Technology, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Evangelia Kiosidou
- Shipbuilding Technology Laboratory, School of Naval Architecture and Marine Engineering, NTUA, Zografou Campus, 15780 Athens, Greece.
| | - Evangelia Pavlatou
- Laboratory of General Chemistry, NTUA, Zografou Campus, 15780 Athens, Greece.
| | - Alexandra Karana
- Department of Wood and Two Pack Coatings, CHROTEX S.A. Hellenic Industry of Paints & Varnishes 19th Km National Road Athens-Corinth, 19300 Aspropyrgos, Greece.
| | - Constantine Papaspyrides
- Laboratory of Polymer Technology, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, NTUA, Zografou Campus, 15780 Athens, Greece.
| | - Antonis Karantonis
- Department of Materials Science and Engineering, School of Chemical Engineering, NTUA, Zografou Campus, 15780 Athens, Greece.
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
17
|
Mironov EP, Borodina TN, Bukreeva TV. Interaction between polymer capsules with hydrophobic cores and a model cellular membrane at an air–water interface. COLLOID JOURNAL 2017. [DOI: 10.1134/s1061933x17040093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Demina PA, Grigoriev DO, Kuz’micheva GM, Bukreeva TV. Preparation of pickering-emulsion-based capsules with shells composed of titanium dioxide nanoparticles and polyelectrolyte layers. COLLOID JOURNAL 2017. [DOI: 10.1134/s1061933x1702003x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wang X, Zhu S, Liu L, Li L. Flexible Antibacterial Film Based on Conjugated Polyelectrolyte/Silver Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9051-9058. [PMID: 28233485 DOI: 10.1021/acsami.7b00885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we report a flexible film based on conjugated polyelectrolyte/silver nanocomposites with efficient antibacterial activity. A flexible poly(dimethylsiloxane) film served as a substrate for deposition of nanostructured silver. A light-activated antibacterial agent, based on the cationic conjugated polyelectrolyte poly({9,9-bis[6'-(N,N-trimethylamino)hexyl]-2,7-fluorenyleneethynylene}-alt-co-1,4-(2,5-dimethoxy)phenylene)dibromide (PFEMO) was self-assembled on the negatively charged substrate. By changing the thickness of the poly(l-lysine)/poly(acrylic acid) multilayers between the metal substrate and PFEMO, we obtained concomitant enhancement of PFEMO fluorescence, phosphorescence, and reactive oxygen species generation. These enhancements were induced by surface plasmon resonance effects of the Ag nanoparticles, which overlapped the PFEMO absorption band. Owing to the combination of enhanced bactericidal effects and good flexibility, these films have great potential for use as novel biomaterials for preventing bacterial infections.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China
| |
Collapse
|
20
|
Formulation for Oral Delivery of Lactoferrin Based on Bovine Serum Albumin and Tannic Acid Multilayer Microcapsules. Sci Rep 2017; 7:44159. [PMID: 28281573 PMCID: PMC5344998 DOI: 10.1038/srep44159] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022] Open
Abstract
Lactoferrin (Lf) has considerable potential as a functional ingredient in food, cosmetic and pharmaceutical applications. However, the bioavailability of Lf is limited as it is susceptible to digestive enzymes in gastrointestinal tract. The shells comprising alternate layers of bovine serum albumin (BSA) and tannic acid (TA) were tested as Lf encapsulation system for oral administration. Lf absorption by freshly prepared porous 3 μm CaCO3 particles followed by Layer-by-Layer assembly of the BSA-TA shells and dissolution of the CaCO3 cores was suggested as the most efficient and harmless Lf loading method. The microcapsules showed high stability in gastric conditions and effectively protected encapsulated proteins from digestion. Protective efficiency was found to be 76 ± 6% and 85 ± 2%, for (BSA-TA)4 and (BSA-TA)8 shells, respectively. The transit of Lf along the gastrointestinal tract (GIT) of mice was followed in vivo and ex vivo using NIR luminescence. We have demonstrated that microcapsules released Lf in small intestine allowing 6.5 times higher concentration than in control group dosed with the same amount of free Lf. Significant amounts of Lf released from microcapsules were then absorbed into bloodstream and accumulated in liver. Suggested encapsulation system has a great potential for functional foods providing lactoferrin.
Collapse
|
21
|
Benzaqui M, Semino R, Menguy N, Carn F, Kundu T, Guigner JM, McKeown NB, Msayib KJ, Carta M, Malpass-Evans R, Le Guillouzer C, Clet G, Ramsahye NA, Serre C, Maurin G, Steunou N. Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27311-27321. [PMID: 27600279 DOI: 10.1021/acsami.6b08954] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A study integrating advanced experimental and modeling tools was undertaken to characterize the microstructural and interfacial properties of mixed matrix membranes (MMMs) composed of the zeolitic imidazolate framework ZIF-8 nanoparticles (NPs) and two polymers of intrinsic microporosity (PIM-1 and PIM-EA-TB). Analysis probed both the initial ZIF-8/PIM-1 colloidal suspensions and the final hybrid membranes. By combination of dynamic light scattering (DLS) and transmission electron microscopy (TEM) analytical and imaging techniques with small-angle X-ray scattering (SAXS), the colloidal suspensions were shown to consist mainly of two distinct kinds of particles, namely, polymer aggregates of about 200 nm in diameter and densely packed ZIF-8-NP aggregates of a few 100 nm in diameter with a 3 nm thick polymer top-layer. Such aggregates are likely to impart the granular texture of ZIF-8/PIMs MMMs as shown by SEM-XEDS analysis. At the molecular scale, modeling studies showed that the surface coverage of ZIF-8 NPs by both polymers appears not to be optimal with the presence of microvoids at the interfaces that indicates only a moderate compatibility between the polymer and ZIF-8. This study shows that the microstructure of MMMs results from a complex interplay between the ZIF-8/PIM compatibility, solvent, surface chemistry of the ZIF-8 NPs, and the physicochemical properties of the polymers such as molecular structure and rigidity.
Collapse
Affiliation(s)
- Marvin Benzaqui
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Rocio Semino
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Nicolas Menguy
- Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS UPMC, Université Paris 06 MNHN IRD, Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Florent Carn
- Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Diderot, Bât. Condorcet, 10 Rue A. Domon et L. Duquet, 75013 Paris, France
| | - Tanay Kundu
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Jean-Michel Guigner
- Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS UPMC, Université Paris 06 MNHN IRD, Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Neil B McKeown
- EastChem School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3JF, U.K
| | - Kadhum J Msayib
- EastChem School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3JF, U.K
| | - Mariolino Carta
- EastChem School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3JF, U.K
| | - Richard Malpass-Evans
- EastChem School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3JF, U.K
| | - Clément Le Guillouzer
- Laboratoire Catalyse et Spectrochimie, Université de Caen Basse-Normandie, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Guillaume Clet
- Laboratoire Catalyse et Spectrochimie, Université de Caen Basse-Normandie, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Naseem A Ramsahye
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Christian Serre
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Nathalie Steunou
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
22
|
Radziuk D, Möhwald H. Ultrasonically treated liquid interfaces for progress in cleaning and separation processes. Phys Chem Chem Phys 2016; 18:21-46. [DOI: 10.1039/c5cp05142h] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cleaning and separation processes of liquids can be advanced by acoustic cavitation through bubbles with unique physico-chemical properties.
Collapse
Affiliation(s)
- Darya Radziuk
- Max-Planck Institute of Colloids and Interfaces
- D-14476 Potsdam
- Germany
| | - Helmuth Möhwald
- Max-Planck Institute of Colloids and Interfaces
- D-14476 Potsdam
- Germany
| |
Collapse
|
23
|
Akasov R, Borodina T, Zaytseva E, Sumina A, Bukreeva T, Burov S, Markvicheva E. Ultrasonically Assisted Polysaccharide Microcontainers for Delivery of Lipophilic Antitumor Drugs: Preparation and in Vitro Evaluation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16581-16589. [PMID: 26158302 DOI: 10.1021/acsami.5b04141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High toxicity, poor selectivity, and severe side effects are major drawbacks of anticancer drugs. Various drug delivery systems could be proposed to overcome these limitations. The aim of this study was to fabricate polysaccharide microcontainers (MCs) loaded with thymoquinone (TQ) by a one-step ultrasonication technique and to study their cellular uptake and cytotoxicity in vitro. Two MC fractions with a mean size of 500 nm (MC-0.5) and 2 μM (MC-2) were prepared and characterized. Uptake of the MCs by mouse melanoma M-3 cells was evaluated in both 2D (monolayer culture) and 3D (multicellular tumor spheroids) models by confocal microscopy, flow cytometry, and fluorimetry. The higher cytotoxicity of the TQ-MC-0.5 sample than the TQ-MC-2 fraction was in good correlation with higher MC-0.5 accumulation in the cells. The MC-0.5 beads were more promising than the MC-2 particles because of a higher cellular uptake in both 2D and 3D models, an enhanced antitumor effect, and a lower nonspecific toxicity.
Collapse
Affiliation(s)
- Roman Akasov
- †Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- ‡Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of the Russian Academy of Sciences, 119333, Leninskii Prospekt 59, Moscow, Russia
| | - Tatiana Borodina
- ‡Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of the Russian Academy of Sciences, 119333, Leninskii Prospekt 59, Moscow, Russia
| | - Ekaterina Zaytseva
- †Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | - Anastasia Sumina
- †Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | - Tatiana Bukreeva
- ‡Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of the Russian Academy of Sciences, 119333, Leninskii Prospekt 59, Moscow, Russia
- §National Research Centre, Kurchatov Institute, 123182, Akademika Kurchatova Ploshchad 1, Moscow, Russia
| | - Sergey Burov
- ∥Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoy Prospekt 31, Saint-Petersburg, Russia
| | - Elena Markvicheva
- †Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| |
Collapse
|
24
|
Emulsion-based techniques for encapsulation in biomedicine, food and personal care. Curr Opin Pharmacol 2014; 18:47-55. [DOI: 10.1016/j.coph.2014.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022]
|