1
|
Jayachandran A, Parween S, Asthana A, Kar S. Microfluidics-Based Blood Typing Devices: An In-Depth Overview. ACS APPLIED BIO MATERIALS 2024; 7:59-79. [PMID: 38115212 DOI: 10.1021/acsabm.3c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Identification of correct blood types holds paramount importance in understanding the pathophysiological parameters of patients, therapeutic interventions, and blood transfusion. Considering the wide applications of blood typing, the requirement of centralized laboratory facilities is not well suited on many occasions. In this context, there has been a significant development of such blood typing devices on different microfluidic platforms. The advantages of these microfluidic devices offer easy, rapid test protocols, which could potentially be adapted in resource-limited settings and thereby can truly lead to the decentralization of testing facilities. The advantages of pump-free liquid transport (i.e., low power consumption) and biodegradability of paper substrates (e.g., reduction in medical wastes) make it a more preferred platform in comparison to other microfluidic devices. However, these devices are often coupled with some inherent challenges, which limit their potential to be used on a mass commercial scale. In this context, our Review offers a succinct summary of the recent development, especially to understand the importance of underlying facets for long-term sustainability. Our Review also delineates the role of integration with digital technologies to minimize errors in interpreting the readouts.
Collapse
Affiliation(s)
- Arjun Jayachandran
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shahila Parween
- MNR Foundation for Research & Innovations (MNR-FRI), MNR Medical College & Hospital, MNR Nagar, Narsapur Road, Sangareddy 502294, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shantimoy Kar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
2
|
Goswami K, Sen Sarma N. "Click" Reaction-Mediated Silk Fibroin-Functionalized Thiol-Branched Graphene Oxide Quantum Dots for Smart Sensing of Tetracycline. ACS OMEGA 2023; 8:21914-21928. [PMID: 37360495 PMCID: PMC10286249 DOI: 10.1021/acsomega.3c01753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The abuse of tetracycline (TC) antibiotics causes the accumulation of their residue in the environment, which has an irreversible impact on food safety and human health. In light of this, it is vital to offer a portable, quick, efficient, and selective sensing platform to detect TC instantly. Herein, we have successfully developed a sensor using silk fibroin-decorated thiol-branched graphene oxide quantum dots through a well-known thiol-ene click reaction. It is applied to ratiometric fluorescence sensing of TC in real samples in the linear range of 0-90 nM, with the detection limit of 49.69, 47.76, 55.25, 47.90, and 45.78 nM for deionized water, chicken sample, fish sample, human blood serum, and honey sample, respectively. With the gradual addition of TC to the liquid media, the sensor develops a synergetic luminous effect in which the fluorescence intensity of the nanoprobe steadily declines at 413 nm, while the intensity of a newly emerging peak increases at 528 nm, maintaining a ratio that is dependent on the analyte concentration. The increase of luminescence properties in the liquid media is clearly visible by naked eyes in the presence of 365 nm UV light. The result helps us in building a filter paper strip-based portable smart sensor using an electric circuit comprising a 365 nm LED (light-emitting diode) powered by a mobile phone battery which is attached just below the rear camera of a smartphone. The camera of the smartphone captures the color changes that occur throughout the sensing process and translates into readable RGB data. The dependency of color intensity with respect to the concentration of TC was evaluated by deducing a calibration curve from where the limit of detection was calculated and found to be 0.125 μM. These kinds of gadgets are important for the possible real-time, on-the-spot, quick detection of analytes in situations where high-end approaches are not easily accessible.
Collapse
Affiliation(s)
- Kangkan
Jyoti Goswami
- Advanced
Materials Laboratory, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelotpal Sen Sarma
- Advanced
Materials Laboratory, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Khosravi H, Mehrdel P, Martínez JAL, Casals-Terré J. Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors. MEMBRANES 2022; 12:1074. [PMID: 36363629 PMCID: PMC9699251 DOI: 10.3390/membranes12111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Microfluidic paper-based analytical devices (µPADs) are leading the field of low-cost, quantitative in-situ assays. However, understanding the flow behavior in cellulose-based membranes to achieve an accurate and rapid response has remained a challenge. Previous studies focused on commercial filter papers, and one of their problems was the time required to perform the test. This work studies the effect of different cellulose substrates on diffusion-based sensor performance. A diffusion-based sensor was laser cut on different cellulose fibers (Whatman and lab-made Sisal papers) with different structure characteristics, such as basis weight, density, pore size, fiber diameter, and length. Better sensitivity and faster response are found in papers with bigger pore sizes and lower basis weights. The designed sensor has been successfully used to quantify the ionic concentration of commercial wines with a 13.6 mM limit of detection in 30 s. The developed µPAD can be used in quantitative assays for agri-food applications without the need for any external equipment or trained personnel.
Collapse
Affiliation(s)
- Hamid Khosravi
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| | - Pouya Mehrdel
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| | - Joan Antoni López Martínez
- Department of Mining, Industrial and ICT Engineering (EMIT), Universitat Politècnica de Catalunya (UPC), AV. Bases de Manresa 61-73, 08240 Manresa, Barcelona, Spain
| | - Jasmina Casals-Terré
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
4
|
Ratajczak K, Sklodowska-Jaros K, Kalwarczyk E, Michalski JA, Jakiela S, Stobiecka M. Effective Optical Image Assessment of Cellulose Paper Immunostrips for Blood Typing. Int J Mol Sci 2022; 23:ijms23158694. [PMID: 35955835 PMCID: PMC9369064 DOI: 10.3390/ijms23158694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Novel high-performance biosensing devices, based on a microporous cellulose matrix, have been of great interest due to their high sensitivity, low cost, and simple operation. Herein, we report on the design and testing of portable paper-based immunostrips (IMS) for in-field blood typing in emergencies requiring blood transfusion. Cellulose fibrils of a paper membrane were functionalized with antibodies via supramolecular interactions. The formation of hydrogen bonds between IgM pentamer and cellulose fibers was corroborated using quantum mechanical calculations with a model cellulose chain and a representative amino acid sequence. In the proposed immunostrips, paper with a pore size of 3 µm dia. was used to enable functionalization of its channels with antibody molecules while blocking the red blood cells (RBC) from channel entering. Under the optimized test conditions, all blood types of AB0 and Rh system could be determined by naked eye examination, requiring only a small blood sample (3.5 µL). The durability of IgM immunostrips against storing has been tested. A new method of statistical evaluation of digitized blood agglutination images, compatible with a clinical five-level system, has been proposed. Critical parameters of the agglutination process have been established to enable future development of automatic blood typing with machine vision and digital data processing.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Karolina Sklodowska-Jaros
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Ewelina Kalwarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Jacek A. Michalski
- Faculty of Civil Engineering, Mechanics and Petrochemistry, Institute of Chemistry, Warsaw University of Technology, Ignacego Łukasiewicza 17, 09400 Plock, Poland
- Correspondence: (J.A.M.); (S.J.); (M.S.); Tel.: +48-24-367-2193 (J.A.M.); +48-22-593-8626 (S.J.); +48-22-593-8614 (M.S.)
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland
- Correspondence: (J.A.M.); (S.J.); (M.S.); Tel.: +48-24-367-2193 (J.A.M.); +48-22-593-8626 (S.J.); +48-22-593-8614 (M.S.)
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland
- Correspondence: (J.A.M.); (S.J.); (M.S.); Tel.: +48-24-367-2193 (J.A.M.); +48-22-593-8626 (S.J.); +48-22-593-8614 (M.S.)
| |
Collapse
|
5
|
Laha S, Bandopadhyay A, Chakraborty S. Smartphone-Integrated Label-Free Rapid Screening of Anemia from the Pattern Formed by One Drop of Blood on a Wet Paper Strip. ACS Sens 2022; 7:2028-2036. [PMID: 35802863 DOI: 10.1021/acssensors.2c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Screening of anemic patients poses demanding challenges in extreme point-of-care settings where the gold standard diagnostic technologies are not pragmatic and the alternative point-of-care technologies suffer from compromised accuracy, prohibitive cost, process complexity, or reagent stability issues. As a disruption to this paradigm, here, we report the development of a smartphone-based sensor for rapid screening of anemic patients by exploiting the patterns formed by a spreading drop of blood on a wet paper strip wherein blood attempts to displace a more viscous fluid, on the porous matrix of a paper, leading to "finger-like" projections at the interface. We analyze the topological features of the pattern via smartphone-enabled image analytics and map the same with the relative occupancy of the red blood cells in the blood sample, allowing for label-free screening and classification of blood samples corresponding to moderate to severe anemic conditions. The accuracy of detection is verified by comparing with gold standard reports of hematology analyzer, showing a strong correlation coefficient (R2) of 0.975. This technique is likely to provide a crucial decision-making tool that obviates delicate reagents and skilled technicians for supreme functionality in resource-limited settings.
Collapse
Affiliation(s)
- Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
6
|
Chomean S, Ingkananth S, Kiatchaipar M, Kaset C. Portable paper-based device for ABO and RhD typing using smartphone interpretation: Optical answer sheet reading concept. Anal Chim Acta 2021; 1180:338884. [PMID: 34538314 DOI: 10.1016/j.aca.2021.338884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
The slide method for ABO blood group typing is commonly used for mobile blood donation and field applications because the test is easy, cost-effective, can be completed in a few minutes and requires a small volume of reagents. However, the reaction must be observed by an individual with expertise within 2 min; otherwise, drying of the reagent will give a false positive result. Moreover, the blood typing reagents must be stored at 4 °C. The present study aimed to create a paper-based device for ABO and RhD blood typing and combine an optical answer sheet reading concept to read and interpret the results with Android smartphones. The invention of this device involved the use of simple filter paper and conjugate pads that were treated with anti-A, -B and -D antibodies. Blood type can be visually identified from the detection zone at the end of the filter paper. An Android smart phone was designed to read the detection zone, interpret the data and subsequently report the results on the user's smartphone. A helpful color chart was also designed for blood typing interpretation by the naked eye. The use of smartphones can reduce human error in data reading and interpretation. In conclusion, ABO and RhD typing with paper-based devices using a smartphone interpretation may provide further advantages for home-based users, mobile blood donation sites and field applications.
Collapse
Affiliation(s)
- Sirinart Chomean
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Suparada Ingkananth
- Blood Bank, Department of Pathology, Police General Hospital, Bangkok, Thailand
| | - Methasit Kiatchaipar
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Chollanot Kaset
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University (Rangsit Campus), Pathumthani, Thailand.
| |
Collapse
|
7
|
Paper based analytical devices for blood grouping: a comprehensive review. Biomed Microdevices 2021; 23:34. [PMID: 34213635 DOI: 10.1007/s10544-021-00569-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The clinical importance of blood group (BG) antigens is related to their ability to induce immune antibodies that can cause hemolysis. Yet, ABO and D (Rh) are still considered to be the key antigens for healthy blood transfusion and secondary antigens are the next priority. Serological typing is the most widely used typing method. Rapid and accurate blood grouping plays an important role in some clinical conditions, rather than conventional techniques. Hence, developing a simple and economical model for rapid blood grouping would facilitate these tests. In recent decades, paper-based microfluidics such as μPADs has gained much interest in wide application areas such as point-of-care diagnostic. In this study, we evaluated μPADs that are performed for blood grouping and its recent progress. A comprehensive literature search was performed using databases including PUBMED, SCOPUS, Web of Science and Google Scholar. Keywords were blood grouping or typing, paper analytical device, rapid test, etc. After investigation of search results, 16 papers from 2010 to 2020 were included. Further information in detail was classified in Table 1. Generally, two principles for blood typing μPADs are introduced. The lateral chromatographic flow method and the vertical flow-through method that detects BG in a visual-based manner. To detect results with acceptable clarity many factors and challenges like paper, blood sample, buffer, Ab and RBC interaction and also μPADs stability need to be considered, which are discussed. In conclusion, the simplicity, stability, cheapness, portability and biocompatibility of μPADs for blood grouping confirming its utility and also they have the capability to robust, universal blood-grouping platform. Table 1 Summary of blood grouping tests using paper-based analytical devices Antigens Type of diagnosis Validation method Sample No Accuracy Action time Paper type Stability Sample dilution Buffer Ref A, B, Rh Forward volunteers records 5 - - Whatman No. 4 - 1/2 PBS* (Khan et al. 2010) A, B, Rh Forward gel assay test and conventional slide test 100 100% 1 min Whatman No. 4 and Kleeenex paper towel 7 Days in 4 °C 1/1 NSS (Al-Tamimi et al. 2012) A, B, Rh Forward gel card assay 99 100% 20 Sec + Washing Kleeenex paper towel - 1/1 NSS (Li et al. 2012) A, B, Rh Forward - - - - Kleeenex paper towel - 45/100 PSS (Li et al. 2013) A, B, Rh Forward gel card assay 98 100% 1.5 min Kleeenex paper towel - 85/100 PBS (Guan et al. 2014b) C, E, c, e, K, Jka, Jkb, M, N, S, P1, and Lea Forward gel card assay 266 100% - Kleeenex paper towel - 1/1 NSS (Li et al. 2014b) A, B, Rh Forward and Reverse conventional slide test 96 ≈ 91% 10 min Whatman No. 1 21 Days in 4 °C 1/2 NSS (Noiphung et al. 2015) C, c, E, e, K, k, Fya, Fyb, Jka, Jkb, M, N, S and s, P1, Lea and Leb Forward - 478 - - Kleeenex paper towel - 1/1 NSS, PBS (Then et al. 2015) A, B Forward and Reverse conventional slide test 76 100% 5-8 min Whatman No. 4 38 Days in 4 °C 1/4, 1/1 NSS (Songjaroen and Laiwattanapaisal 2016) D, K Forward volunteers records 210 - 7.5 min Kleenex paper towel - 1/1 NSS (Yeow et al. 2016) A, B, c, e, D, C, E, M, N, S, s, P1, Jka, Jkb, Lea, Leb, Fya, and Fyb Forward and Reverse gel card assay 3550 ≈100% 30 s Fiber glass and cotton linter 180 Days in 25 °C 45/100, 1/1 PBS (Zhang et al. 2017) A, B Forward conventional slide test 598 100% 3 min Whatman No. 113 14 Day in 4 °C 1/1 NSS (Songjaroen et al. 2018) A, B, Rh Forward conventional slide test - - 30 Sec + Washing Unrefined sisal paper - 1/2 NSS (Casals-Terré et al. 2019) A, B, Rh Forward - - - - Whatman No.1 - 1/1 NSS (Ansari et al. 2020) ABO & Rh Forward and Reverse conventional slide test - 100% Unrefined Eucalyptus papers - 1/2 NSS, PBS (Casals-Terré et al. 2020) A, B, Rh Forward - - - 30 Sec + Washing Whatman No. 4 modified with chitosan ≥ 100 days in 25 °C 1/1 NSS (Parween et al. 2020) *phosphate buffer saline, normal saline solution.
Collapse
|
8
|
Mahmud MA, Blondeel EJM, MacDonald BD. Counting-based microfluidic paper-based devices capable of analyzing submicroliter sample volumes. BIOMICROFLUIDICS 2020; 14:014107. [PMID: 31966347 PMCID: PMC6954107 DOI: 10.1063/1.5131751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we report the development of semiquantitative counting-based lateral flow assay (LFA)-type microfluidic paper-based analytical devices ( μ PADs) to analyze samples at submicroliter volumes. The ability to use submicroliter sample volumes is a significant advantage for μ PADs since it enables enhanced multiplexing, reduces cost, and increases user-friendliness since small sample volumes can be collected using methods that do not require trained personnel, such as finger pricking and microneedles. The challenge of accomplishing a semiquantitative test readout using submicroliter sample volumes was overcome with a counting-based approach. In order to use submicroliter sample volumes, we developed a flow strategy with a running liquid to facilitate flow through the assay. The efficacy of the devices was confirmed with glucose and total human immunoglobulin E (IgE) tests using 0.5 μ l and 1 μ l of sample solutions, respectively. Semiquantitative results were generated to predict glucose concentrations in the range of 0-12 mmol/l and IgE concentrations in the range of 0-400 ng/ml. The counting-based approach correlates the number of dots that exhibited a color change to the concentration of the analyte, which provides a more user-friendly method as compared with interpreting the intensity of a color change. The devices reported herein are the first counting-based LFA-type μ PADs capable of semiquantitative testing using submicroliter sample volumes.
Collapse
Affiliation(s)
- Md Almostasim Mahmud
- Faculty of Engineering and Applied Science, Ontario Tech University (UOIT), 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Eric J M Blondeel
- ExVivo Labs Inc., 3 Regina Street North, Suite A, Waterloo, Ontario N2J 2Z7, Canada
| | - Brendan D MacDonald
- Faculty of Engineering and Applied Science, Ontario Tech University (UOIT), 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
9
|
Raghuwanshi VS, Garnier G. Cellulose Nano-Films as Bio-Interfaces. Front Chem 2019; 7:535. [PMID: 31417896 PMCID: PMC6682661 DOI: 10.3389/fchem.2019.00535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cellulose, the most abundant polymer on earth, has enormous potential in developing bio-friendly, and sustainable technological products. In particular, cellulose films of nanoscale thickness (1-100 nm) are transparent, smooth (roughness <1 nm), and provide a large surface area interface for biomolecules immobilization and interactions. These attractive film properties create many possibilities for both fundamental studies and applications, especially in the biomedical field. The three liable-OH groups on the monomeric unit of the cellulose chain provide schemes to chemically modify the cellulose interface and engineer its properties. Here, the cellulose thin film serves as a substrate for biomolecules interactions and acts as a support for bio-diagnostics. This review focuses on the challenges and opportunities provided by engineering cellulose thin films for controlling biomolecules interactions. The first part reviews the methods for preparing cellulose thin films. These are by dispersing or dissolving pure cellulose or cellulose derivatives in a solvent to coat a substrate using the spin coating, Langmuir-Blodgett, or Langmuir-Schaefer method. It is shown how different cellulose sources, preparation, and coating methods and substrate surface pre-treatment affect the film thickness, roughness, morphology, crystallinity, swelling in water, and homogeneity. The second part analyses the bio-macromolecules interactions with the cellulose thin film interfaces. Biomolecules, such as antibodies and enzymes, are adsorbed at the cellulose-liquid interface, and analyzed dry and wet. This highlights the effect of film surface morphology, thickness, crystallinity, water intake capacity, and surface pre-treatment on biomolecule adsorption, conformation, coverage, longevity, and activity. Advance characterization of cellulose thin film interface morphology and adsorbed biomolecules interactions are next reviewed. X-ray and neutron scattering/reflectivity combined with atomic force microscopy (AFM), quartz crystal microbalance (QCM), microscopy, and ellipsometer allow visualizing, and quantifying the structural morphology of cellulose-biomolecule interphase and the respective biomolecules conformations, kinetics, and sorption mechanisms. This review provides a novel insight on the advantages and challenges of engineering cellulose thin films for biomedical applications. This is to foster the exploration at the molecular level of the interaction mechanisms between a cellulose interface and adsorbed biomolecules with respect to adsorbed molecules morphology, surface coverage, and quantity. This knowledge is to engineer a novel generation of efficient and functional biomedical devices.
Collapse
Affiliation(s)
- Vikram Singh Raghuwanshi
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, VIC, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Casals‐Terré J, Farré‐Lladós J, López JA, Vidal T, Roncero MB. Enhanced fully cellulose based forward and reverse blood typing assay. J Biomed Mater Res B Appl Biomater 2019; 108:439-450. [DOI: 10.1002/jbm.b.34400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jasmina Casals‐Terré
- Microtech Lab, Mechanical Engineering DepartmentTechnical University of Catalonia Terrassa Spain
| | - Josep Farré‐Lladós
- Microtech Lab, Mechanical Engineering DepartmentTechnical University of Catalonia Terrassa Spain
| | - Joan A. López
- CELBIOTECH Paper Engineering Research GroupTechnical University of Catalonia Terrassa Spain
| | - Teresa Vidal
- CELBIOTECH Paper Engineering Research GroupTechnical University of Catalonia Terrassa Spain
| | - Maria Blanca Roncero
- CELBIOTECH Paper Engineering Research GroupTechnical University of Catalonia Terrassa Spain
| |
Collapse
|
11
|
Casals‐Terré J, Farré‐Lladós J, Zuñiga A, Roncero MB, Vidal T. Novel applications of nonwood cellulose for blood typing assays. J Biomed Mater Res B Appl Biomater 2018; 107:1533-1541. [DOI: 10.1002/jbm.b.34245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jasmina Casals‐Terré
- Mechanical Engineering Department, MicroTech LabTechnical University of Catalonia Terrassa Spain
| | - Josep Farré‐Lladós
- Mechanical Engineering Department, MicroTech LabTechnical University of Catalonia Terrassa Spain
| | - Allinson. Zuñiga
- Mechanical Engineering Department, MicroTech LabTechnical University of Catalonia Terrassa Spain
- CELBIOTECH Paper Engineering Research GroupTechnical University of Catalonia Terrassa Spain
| | - Maria Blanca Roncero
- CELBIOTECH Paper Engineering Research GroupTechnical University of Catalonia Terrassa Spain
| | - Teresa Vidal
- CELBIOTECH Paper Engineering Research GroupTechnical University of Catalonia Terrassa Spain
| |
Collapse
|
12
|
Wang H, Zhou C, Sun X, Jian Y, Kong Q, Cui K, Ge S, Yu J. Polyhedral-AuPd nanoparticles-based dual-mode cytosensor with turn on enable signal for highly sensitive cell evalution on lab-on-paper device. Biosens Bioelectron 2018; 117:651-658. [DOI: 10.1016/j.bios.2018.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
13
|
Mahmud MA, Blondeel EJM, Kaddoura M, MacDonald BD. Features in Microfluidic Paper-Based Devices Made by Laser Cutting: How Small Can They Be? MICROMACHINES 2018; 9:E220. [PMID: 30424153 PMCID: PMC6187457 DOI: 10.3390/mi9050220] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022]
Abstract
In this paper, we determine the smallest feature size that enables fluid flow in microfluidic paper-based analytical devices (µPADs) fabricated by laser cutting. The smallest feature sizes fabricated from five commercially available paper types: Whatman filter paper grade 50 (FP-50), Whatman 3MM Chr chromatography paper (3MM Chr), Whatman 1 Chr chromatography paper (1 Chr), Whatman regenerated cellulose membrane 55 (RC-55) and Amershan Protran 0.45 nitrocellulose membrane (NC), were 139 ± 8 µm, 130 ± 11 µm, 103 ± 12 µm, 45 ± 6 µm, and 24 ± 3 µm, respectively, as determined experimentally by successful fluid flow. We found that the fiber width of the paper correlates with the smallest feature size that has the capacity for fluid flow. We also investigated the flow speed of Allura red dye solution through small-scale channels fabricated from different paper types. We found that the flow speed is significantly slower through microscale features and confirmed the similar trends that were reported previously for millimeter-scale channels, namely that wider channels enable quicker flow speed.
Collapse
Affiliation(s)
- Md Almostasim Mahmud
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada.
| | - Eric J M Blondeel
- ExVivo Labs Inc., 3 Regina Street North, Suite A, Waterloo, ON N2J 2Z7, Canada.
| | - Moufeed Kaddoura
- ExVivo Labs Inc., 3 Regina Street North, Suite A, Waterloo, ON N2J 2Z7, Canada.
| | - Brendan D MacDonald
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada.
| |
Collapse
|
14
|
Li H, Zhang H, Zhang F, Li X, Legere S, Ni Y. Determination of Interfiber Bonded Area Based on the Confocal Laser Scanning Microscopy Technique. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hailong Li
- Tianjin Key Lab of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Hongjie Zhang
- Tianjin Key Lab of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
- Shandong Huatai Paper Industry Co. Ltd., Huatai Group, Dongying, Shandong 257335, China
| | - Fengshan Zhang
- Shandong Huatai Paper Industry Co. Ltd., Huatai Group, Dongying, Shandong 257335, China
| | - Xiaoliang Li
- Shandong Huatai Paper Industry Co. Ltd., Huatai Group, Dongying, Shandong 257335, China
| | - Sarah Legere
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Yonghao Ni
- Tianjin Key Lab of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
15
|
Bhattacharya S, Agarwal AK, Chanda N, Pandey A, Sen AK. Low-cost Paper Analytical Devices for Environmental and Biomedical Sensing Applications. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [PMCID: PMC7123150 DOI: 10.1007/978-981-10-7751-7_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, the fabrication of analytical devices utilizing microfluidic structures and lab-on-a-chip platforms has shown breakthrough advancements, both for environmental and biological applications. The ASSURED criteria (affordable, sensitive, specific, user-friendly, robust, equipment-free, delivered), developed by the WHO for diagnostics devices, point towards the need of paper-based analytical devices (PAD) for diagnostics. On the other hand, cost-effective PADs owing the great advantage of affordable applicability in both resource-rich and -limited settings are recently employed for on-site environmental monitoring. In this book chapter, we will discuss about the brief history of paper analytical devices, fabrications, need, and its environmental and biomedical applications.
Collapse
Affiliation(s)
- Shantanu Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology Kanp Mechanical Engineering, Kanpur, Uttar Pradesh India
| | - Avinash Kumar Agarwal
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh India
| | - Nripen Chanda
- Microsystem Technology Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal India
| | - Ashok Pandey
- Department of Biotechnology, CSIR-Indian Institute of Toxicology Research, Mohali, Punjab India
| | - Ashis Kumar Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras Department of Mechanical Engineering, Chennai, Tamil Nadu India
| |
Collapse
|
16
|
Laser carved micro-crack channels in paper-based dilution devices. Talanta 2017; 175:289-296. [DOI: 10.1016/j.talanta.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 12/12/2022]
|
17
|
Lan F, Liang L, Zhang Y, Li L, Ren N, Yan M, Ge S, Yu J. Internal Light Source-Driven Photoelectrochemical 3D-rGO/Cellulose Device Based on Cascade DNA Amplification Strategy Integrating Target Analog Chain and DNA Mimic Enzyme. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37839-37847. [PMID: 28994582 DOI: 10.1021/acsami.7b12338] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a chemiluminescence-driven collapsible greeting card-like photoelectrochemical lab-on-paper device (GPECD) with hollow channel was demonstrated, in which target-triggering cascade DNA amplification strategy was ingeniously introduced. The GPECD had the functions of reagents storage and signal collection, and the change of configuration could control fluidic path, reaction time and alterations in electrical connectivity. In addition, three-dimentional reduced graphene oxide affixed Au flower was in situ grown on paper cellulose fiber for achieving excellent conductivity and biocompatibility. The cascade DNA amplification strategy referred to the cyclic formation of target analog chain and its trigger action to hybridization chain reaction (HCR), leading to the formation of numerous hemin/G-quadruplex DNA mimic enzyme with the presence of hemin. Subjected to the catalysis of hemin/G-quadruplex, the strong chemiluminiscence of luminol-H2O2 system was obtained, which then was used as internal light source to excite photoactive materials realizing the simplification of instrument. In this analyzing process, thrombin served as proof-of-concept, and the concentration of target was converted into the DNA signal output by the specific recognition of aptamer-protein and target analog chain recycling. The target analog chain was produced in quantity with the presence of target, which further triggered abundant HCR and introduced hemin/G-quadruplex into the system. The photocurrent signal was obtained after the nitrogen-doped carbon dots sensitized ZnO was stimulated by chemiluminescence. The proposed GPECD exhibited excellent specificity and sensitivity toward thrombin with a detection limit of 16.7 fM. This judiciously engineered GPECD paved a luciferous way for detecting other protein with trace amounts in bioanalysis and clinical biomedicine.
Collapse
Affiliation(s)
- Feifei Lan
- Institute for Advanced Interdisciplinary Research, University of Jinan , Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Linlin Liang
- Institute for Advanced Interdisciplinary Research, University of Jinan , Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Yan Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan , Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Li Li
- Institute for Advanced Interdisciplinary Research, University of Jinan , Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Na Ren
- Institute for Advanced Interdisciplinary Research, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Mei Yan
- Institute for Advanced Interdisciplinary Research, University of Jinan , Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Jinghua Yu
- Institute for Advanced Interdisciplinary Research, University of Jinan , Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 250022, P. R. China
| |
Collapse
|
18
|
Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into “sticky” superhydrophobic paper. Carbohydr Polym 2017; 174:95-102. [DOI: 10.1016/j.carbpol.2017.06.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 11/23/2022]
|
19
|
Ge S, Zhang L, Zhang Y, Lan F, Yan M, Yu J. Nanomaterials-modified cellulose paper as a platform for biosensing applications. NANOSCALE 2017; 9:4366-4382. [PMID: 28155933 DOI: 10.1039/c6nr08846e] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, paper substrates have attracted tremendous interest from both academia and industry. Not only is paper highly abundant and portable, it is lightweight, disposable, easy-to-use, and can be rolled or folded into 3D configurations. More importantly, with a unique porous bulk structure and rough and absorptive surface properties, the construction of nanomaterials-functionalized cellulose has enabled cellulose paper to be applied for point-of-care (POC) paper devices with reasonably good performance at low cost. In this review, the latest advances in the modification of nanomaterials on paper cellulose are summed up. To begin with, the attractive properties of paper-based analytical devices are described. Then, fabricating methods for the functionalization of cellulose with diverse materials, including noble metals, bimetals, metal oxides, carbon nanomaterials, and molecular imprinting polymer nanoparticles, as well as their applications, are introduced in detail. Finally, the current critical issues, challenges, and future prospectives for exploring a paper-based analytical system based on nanomaterials-modified cellulose are discussed. It is believed that more strategies will be developed in the future to construct nanomaterials-functionalized cellulose, paving the way for the mass production of POC paper devices with a satisfactory performance.
Collapse
Affiliation(s)
- Shenguang Ge
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yan Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Feifei Lan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Mei Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
20
|
Nilghaz A, Guan L, Tan W, Shen W. Advances of Paper-Based Microfluidics for Diagnostics—The Original Motivation and Current Status. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00578] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Azadeh Nilghaz
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Liyun Guan
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Weirui Tan
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wei Shen
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Berry SB, Fernandes SC, Rajaratnam A, DeChiara NS, Mace CR. Measurement of the hematocrit using paper-based microfluidic devices. LAB ON A CHIP 2016; 16:3689-94. [PMID: 27604182 DOI: 10.1039/c6lc00895j] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The quantification of blood cells provides critical information about a patient's health status. Sophisticated analytical equipment, such as hematology analyzers, have been developed to perform these measurements, but limited-resource settings often lack the infrastructure required to purchase, operate, and maintain instrumentation. To address these practical challenges, paper-based microfluidic devices have emerged as a platform to develop diagnostic assays specifically for use at the point-of-care. To date, paper-based microfluidic devices have been used broadly in diagnostic assays that apply immunoassay, clinical chemistry, and electrochemistry techniques. The analysis of cells, however, has been largely overlooked. In this communication, we demonstrate a paper-based microfluidic device that enables the controlled transport of red blood cells (RBCs) and the measurement of the hematocrit-the ratio of RBC packed cell volume to total volume of whole blood. The properties of paper, device treatment, and device geometry affect the overall extent and reproducibility of transport of RBCs. Ultimately, we developed an inexpensive (US$0.03 per device) thermometer-styled device where the distance traveled by RBCs is proportional to the hematocrit. These results provide a foundation for the design of paper-based microfluidic devices that enable the separation and detection of cells in limited-resource settings.
Collapse
Affiliation(s)
- Samuel B Berry
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA.
| | | | | | | | | |
Collapse
|
22
|
Chen R, Zhang L, Zang D, Shen W. Blood drop patterns: Formation and applications. Adv Colloid Interface Sci 2016; 231:1-14. [PMID: 26988066 DOI: 10.1016/j.cis.2016.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/01/2016] [Accepted: 01/27/2016] [Indexed: 01/25/2023]
Abstract
The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis.
Collapse
Affiliation(s)
- Ruoyang Chen
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton Campus, Victoria 3800, Australia
| | - Liyuan Zhang
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton Campus, Victoria 3800, Australia
| | - Duyang Zang
- Functional Soft Matter and Materials Group (FS2M), Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, Shaanxi 710129, China
| | - Wei Shen
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton Campus, Victoria 3800, Australia.
| |
Collapse
|
23
|
Dutta S, Mandal N, Bandyopadhyay D. Paper-based α- amylase detector for point-of-care diagnostics. Biosens Bioelectron 2016; 78:447-453. [DOI: 10.1016/j.bios.2015.11.075] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/10/2015] [Accepted: 11/24/2015] [Indexed: 01/06/2023]
|
24
|
Wallace MAG, Kormos TM, Pleil JD. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:380-409. [PMID: 27759495 PMCID: PMC6147038 DOI: 10.1080/10937404.2016.1215772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- a Exposure Methods and Measurement Division, National Exposure Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| | | | - Joachim D Pleil
- a Exposure Methods and Measurement Division, National Exposure Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| |
Collapse
|
25
|
Guan L, Li L, Huang X, Ji J, Tian J, Nilghaz A, Shen W. REMOVED: Bioactive Paper Design for Human Blood Analysis: Paper Property Suitable for Large-scale Sensor Production. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Dou M, Sanjay ST, Benhabib M, Xu F, Li X. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta 2015; 145:43-54. [PMID: 26459442 PMCID: PMC4607929 DOI: 10.1016/j.talanta.2015.04.068] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/05/2023]
Abstract
Low-cost assays have broad applications ranging from human health diagnostics and food safety inspection to environmental analysis. Hence, low-cost assays are especially attractive for rural areas and developing countries, where financial resources are limited. Recently, paper-based microfluidic devices have emerged as a low-cost platform which greatly accelerates the point of care (POC) analysis in low-resource settings. This paper reviews recent advances of low-cost bioanalysis on paper-based microfluidic platforms, including fully paper-based and paper hybrid microfluidic platforms. In this review paper, we first summarized the fabrication techniques of fully paper-based microfluidic platforms, followed with their applications in human health diagnostics and food safety analysis. Then we highlighted paper hybrid microfluidic platforms and their applications, because hybrid platforms could draw benefits from multiple device substrates. Finally, we discussed the current limitations and perspective trends of paper-based microfluidic platforms for low-cost assays.
Collapse
Affiliation(s)
- Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Sharma Timilsina Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | | | - Feng Xu
- The MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center, Xi' an Jiaotong University, Xi' an 710049, PR China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA; Department of Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA; Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA.
| |
Collapse
|
27
|
Liana DD, Raguse B, Gooding JJ, Chow E. Toward Paper-Based Sensors: Turning Electrical Signals into an Optical Readout System. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19201-9. [PMID: 26329490 DOI: 10.1021/acsami.5b04941] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Paper-based sensors are gaining increasing attention for their potential applications in resource-limited settings and for point-of-care analysis. However, chemical analysis of paper-based electronic sensors is frequently interpreted using complex software and electronic displays which compromise the advantages of using paper. In this work, we present two semiquantitative paper-based readout systems that can visually measure a change in resistance of a resistive-based sensor. The readout systems use electrochromic Prussian blue/polyaniline as an electrochromic indicator on a resistive gold nanoparticle film that is fabricated on paper. When the readout system is integrated with a resistive sensor in an electrical circuit, and a voltage is applied, the voltage drop along the readout system varies depending on the sensor's resistance. Due to the voltage gradient formed along the gold nanoparticle film, the overlaying Prussian blue/polyaniline will change color at voltages greater than its reduction voltage (green/blue for oxidized state and transparent for reduced state). Thus, the changes in resistances of a sensor can be semiquantified through color visualization by either measuring the length of the transparent film (analog readout system) or by counting the number of transparent segments (digital readout system). The work presented herein can potentially serve as an alternative paper-based display system for resistive sensors in instances where cost and weight is a premium.
Collapse
Affiliation(s)
- Devi D Liana
- CSIRO Manufacturing Flagship , P. O. Box 218, Lindfield, New South Wales 2070, Australia
- School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Burkhard Raguse
- CSIRO Manufacturing Flagship , P. O. Box 218, Lindfield, New South Wales 2070, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Edith Chow
- CSIRO Manufacturing Flagship , P. O. Box 218, Lindfield, New South Wales 2070, Australia
| |
Collapse
|