1
|
Tiwari A, Khanam A, Mandal PK. Organocatalyzed O-glycosylation of glycosyl trichloroacetimidates donors: l-prolinethioamide as brønsted acid catalyst. Carbohydr Res 2025; 552:109470. [PMID: 40174324 DOI: 10.1016/j.carres.2025.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
In this study, we present the utilization of l-proline-derived thioamide small organic molecules as an effective organocatalyst for the O-glycosylation of various glycosyl trichloroacetimidate donors, eliminating the need for any cocatalysts or additives. The catalytic process achieves high yields with a wide array of alcohol and sugar nucleophiles, demonstrating a broad substrate scope and operational simplicity under mild reaction conditions. Preliminary mechanistic investigations indicate that l-prolinethioamide facilitates the glycosylation reaction via Brønsted acid/base catalysis, involving the formation of a catalyst-acceptor adduct.
Collapse
Affiliation(s)
- Ashwani Tiwari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Liu T, Gu X, Qin Z, Zhang S, Yang R, Huang Y, Yan Y, Zhu P, Seeberger PH, Zhu Y. Novel Base-Labile Linkers for Convenient Purification and Functional Group Introduction in Solid-Phase Glycan Synthesis. Chemistry 2025; 31:e202500603. [PMID: 40035230 DOI: 10.1002/chem.202500603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Glycans are essential biomolecules across species, but their structure-property relationships remain poorly understood. Pure oligosaccharide samples are crucial for studying these properties, and their preparation heavily relies on chemical synthesis. The linker used for attaching the oligosaccharide to the solid support is essential during solid-phase glycan synthesis. Here, we present three base-labile linkers compatible with Merrifield resin. The first type of resin, containing a hydroxyhexanoic acid linker, can be prepared in a one-step synthesis and releases glycans with a terminal carboxylic acid after methanolysis and hydrolysis. Linkers on the second and third types of resin can be synthesized through simple chemical reactions and cleaved to reveal either a free reducing end of the oligosaccharide or a terminal amine with a C5-spacer. The phthalate structure in the second and third types of resin is sensitive to sodium methoxide and can also be cleaved during hydrazinolysis. Hydrazinolysis, rather than methanolysis, enables the isolation of oligosaccharide with pivaloyl ester protection and facilitates the purification process compared to partially protected compounds. Using these resins, we prepared nine tetrasaccharides and one octasaccharide, including α (1-6) mannan, α (1-4) glucan, β (1-4) glucan, and β (1-3) glucan. Glycans with terminal functional groups can be converted into glycoconjugates for further applications.
Collapse
Affiliation(s)
- Tan Liu
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Gu
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213003, China
| | - Zimiao Qin
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Size Zhang
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Runxin Yang
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yi Huang
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yishu Yan
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Pan Zhu
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yuntao Zhu
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Suri J, Gilmour R. Expediting Glycospace Exploration: Therapeutic Glycans via Automated Synthesis. Angew Chem Int Ed Engl 2025; 64:e202422766. [PMID: 39936247 PMCID: PMC11933530 DOI: 10.1002/anie.202422766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Glycans regulate a vast spectrum of disease-related processes, yet effectively leveraging these important mediators in a therapeutic context remains a frontier in contemporary medicine. Unlike many other classes of clinically important biopolymers, carbohydrates derive from discrete biosynthetic pathways and are not produced directly from genes. The conspicuous absence of a biological blueprint to achieve amplification creates a persistent challenge in obtaining well-defined glycostructures for therapeutic translation. Isolating purified sugars from biological sources is not without challenge, rendering synthetic organic chemistry the nexus of this advancing field. Chemical synthesis has proven to be an unfaltering pillar in the production of complex glycans, but laborious syntheses coupled with purification challenges frequently introduce reproducibility issues. In an effort to reconcile these preparative challenges with the societal importance of glycans, automated glycan synthesis was conceptualised at the start of the 21st century. This rapidly expanding, multifaceted field of scientific endeavor has effectively merged synthetic chemistry with technology and engineering to expedite the precision synthesis of target glycans. This minireview describes the structural diversity and function of glycans generated by automated glycan synthesis platforms over the last five years. The translational impact of these advances is discussed together with current limitations and future directions.
Collapse
Affiliation(s)
- James Suri
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| | - Ryan Gilmour
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| |
Collapse
|
4
|
Das R, Mukhopadhyay B. The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation. Beilstein J Org Chem 2025; 21:369-406. [PMID: 39996165 PMCID: PMC11849559 DOI: 10.3762/bjoc.21.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Stereoselective glycosylations are one of the most challenging tasks of synthetic glycochemists. The protecting building blocks on the glycosides contribute significantly in attaining the required stereochemistry of the resulting glycosides. Strategic installation of suitable protecting groups in the C-2 position, vicinal to the anomeric carbon, renders neighbouring group participation, whereas protecting groups in the distal C-3, C-4, and C-6 positions are often claimed to exhibit remote group participation with the anomeric carbon. Neighbouring group participation and remote group participation are being widely studied to help the glycochemists design the synthetic protocols for multistep synthesis of complex oligosaccharides and in turn, standardise the process of the glycosylation towards a particular stereochemical output. While neighbouring group participation has been quite effective in achieving the required stereochemistry of the produced glycosides, remote participation exhibits comparatively less efficacy in achieving complete stereoselectivity in the glycosylation reactions. Remote participation is a still highly debated topic in the scientific community. However, implementing the participating role of the remote groups in glycosylation reactions is widely practised to achieve better stereocontrol and to facilitate the formation of synthetically challenging glycosidic linkages.
Collapse
Affiliation(s)
- Rituparna Das
- SWEET Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Balaram Mukhopadhyay
- SWEET Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
5
|
Hunt K, Miller A, Liias K, Jarg T, Kriis K, Kanger T. Interplay of Monosaccharide Configurations on the Deacetylation with Candida antarctica Lipase-B. J Org Chem 2025; 90:663-671. [PMID: 39791132 PMCID: PMC11731304 DOI: 10.1021/acs.joc.4c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Configurational differences in monosaccharides determine the products and selectivity of the transesterification reaction with Candida antarctica lipase-B (CAL-B). The β-anomers of peresterified pyranose monosaccharides tend to yield anomeric deprotection products, while the α-anomers preferentially react at the sixth or fourth position. CAL-B differentiates between enantiomers, either reacting more rapidly with d-enantiomers of monosaccharides or having a different selectivity based on the enantiomer. Pivaloylated and benzoylated saccharides are the limits of the CAL-B transesterification reaction, while lower boiling point alcohols such as MeOH and EtOH can replace n-BuOH as the nucleophilic reagent. Finally, CAL-B can be successfully recycled in both long and short reaction time reactions.
Collapse
Affiliation(s)
- Kaarel
Erik Hunt
- Department of Chemistry and
Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Annette Miller
- Department of Chemistry and
Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Kristin Liias
- Department of Chemistry and
Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tatsiana Jarg
- Department of Chemistry and
Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Kadri Kriis
- Department of Chemistry and
Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tõnis Kanger
- Department of Chemistry and
Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
6
|
Li H, Zhang D, Li C, Yin L, Jiang Z, Luo Y, Xu H. Stereoselective Glycosylation for 1,2- cis-Aminoglycoside Assembly by Cooperative Atom Transfer Catalysis. J Am Chem Soc 2024; 146:33316-33323. [PMID: 39584459 PMCID: PMC12100638 DOI: 10.1021/jacs.4c15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We report here a new catalytic method for exclusively 1,2-cis-α-selective glycosylation that assembles a wide variety of 1,2-cis-aminoglycosidic linkages in complex glycans and glycoconjugates. Mechanistic studies revealed a unique glycosylation mechanism in which the iron catalyst activates a glycosyl acceptor and an oxidant when it facilitates the cooperative atom transfer of both moieties to a glycosyl donor in an exclusively cis-selective manner. This catalytic approach is effective for a broad range of glycosyl donors and acceptors, and it can be operated in a reiterative fashion and scaled up to the multigram scale.
Collapse
Affiliation(s)
- Hongze Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Dakang Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Chong Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Le Yin
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Zixiang Jiang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yunxuan Luo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Hao Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
7
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Khorami-Sarvestani S, Hanash SM, Fahrmann JF, León-Letelier RA, Katayama H. Glycosylation in cancer as a source of biomarkers. Expert Rev Proteomics 2024; 21:345-365. [PMID: 39376081 DOI: 10.1080/14789450.2024.2409224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Dang QD, Deng YH, Sun TY, Zhang Y, Li J, Zhang X, Wu YD, Niu D. Catalytic glycosylation for minimally protected donors and acceptors. Nature 2024; 632:313-319. [PMID: 38885695 DOI: 10.1038/s41586-024-07695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Oligosaccharides have myriad functions throughout biological processes1,2. Chemical synthesis of these structurally complex molecules facilitates investigation of their functions. With a dense concentration of stereocentres and hydroxyl groups, oligosaccharide assembly through O-glycosylation requires simultaneous control of site, stereo- and chemoselectivities3,4. Chemists have traditionally relied on protecting group manipulations for this purpose5-8, adding considerable synthetic work. Here we report a glycosylation platform that enables selective coupling between unprotected or minimally protected donor and acceptor sugars, producing 1,2-cis-O-glycosides in a catalyst-controlled, site-selective manner. Radical-based activation9 of allyl glycosyl sulfones forms glycosyl bromides. A designed aminoboronic acid catalyst brings this reactive intermediate close to an acceptor through a network of non-covalent hydrogen bonding and reversible covalent B-O bonding interactions, allowing precise glycosyl transfer. The site of glycosylation can be switched with different aminoboronic acid catalysts by affecting their interaction modes with substrates. The method accommodates a wide range of sugar types, amenable to the preparation of naturally occurring sugar chains and pentasaccharides containing 11 free hydroxyls. Experimental and computational studies provide insights into the origin of selectivity outcomes.
Collapse
Affiliation(s)
- Qiu-Di Dang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yi-Hui Deng
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tian-Yu Sun
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yun-Dong Wu
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Kashiwagi GA, Petrosilli L, Escopy S, Lay L, Stine KJ, De Meo C, Demchenko AV. HPLC-Based Automated Synthesis and Purification of Carbohydrates. Chemistry 2024; 30:e202401214. [PMID: 38684455 PMCID: PMC11586687 DOI: 10.1002/chem.202401214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Reported herein is a new HPLC-based automated synthesizer (HPLC-A) capable of a temperature-controlled synthesis and purification of carbohydrates. The developed platform allows to perform various protecting group manipulations as well as the synthesis of O- and N-glycosides. A fully automated synthesis and purification was showcased in application to different carbohydrate derivatives including glycosides, oligosaccharides, glycopeptides, glycolipids, and nucleosides.
Collapse
Affiliation(s)
- Gustavo A Kashiwagi
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Laura Petrosilli
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
- Department of Chemistry, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Samira Escopy
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Cristina De Meo
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois, 62025, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
11
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
12
|
Lin MH, Kuo YT, Danglad-Flores J, Sletten ET, Seeberger PH. Parametric Analysis of Donor Activation for Glycosylation Reactions. Chemistry 2024; 30:e202400479. [PMID: 38545936 DOI: 10.1002/chem.202400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 04/18/2024]
Abstract
The chemical synthesis of complex oligosaccharides relies on efficient and highly reproducible glycosylation reactions. The outcome of a glycosylation is contingent upon several environmental factors, such as temperature, acidity, the presence of residual moisture, as well as the steric, electronic, and conformational aspects of the reactants. Each glycosylation proceeds rapidly and with a high yield within a rather narrow temperature range. For better control over glycosylations and to ensure fast and reliable reactions, a systematic analysis of 18 glycosyl donors revealed the effect of reagent concentration, water content, protecting groups, and structure of the glycosyl donors on the activation temperature. With these insights, we parametrize the first step of the glycosylation reaction to be executed reliably and efficiently.
Collapse
Affiliation(s)
- Mei-Huei Lin
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yan-Ting Kuo
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
- GlycoUniverseGmbH&Co.KGaA, Am Mühlenberg 11, 14476, Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
13
|
Liu H, Laporte AG, Gónzalez Pinardo D, Fernández I, Hazelard D, Compain P. An Unexpected Lewis Acid-Catalyzed Cascade during the Synthesis of the DEF-Benzoxocin Ring System of Nogalamycin and Menogaril: Mechanistic Elucidation by Intermediate Trapping Experiments and Density Functional Theory Studies. J Org Chem 2024; 89:5634-5649. [PMID: 38554093 DOI: 10.1021/acs.joc.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
An unexpected Lewis acid-catalyzed carbohydrate rearrangement of a 1,5-bis-glycopyranoside to the product of a formal intramolecular C-aryl glycosylation reaction is reported. Mechanistic studies based mainly on intermediate trapping experiments and density functional theory (DFT) calculations reveal a cascade process involving three transient (a)cyclic oxocarbenium cations, the breaking of three single C(sp3)-O bonds, and the formation of three single bonds (i.e., exo-, endo-, and C-glycosidic bonds), leading to the 2,6-epoxybenzoxocine skeleton of bioactive natural glycoconjugates related to serjanione A and mimocaesalpin E. DFT calculations established that the generation of the pyran moiety embedded in the bridged benzoxocin ring system is likely to proceed through an unusual ring-closure of an ortho-quinone methide intermediate in which the attacking nucleophile is a carbonyl oxygen.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Daniel Gónzalez Pinardo
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
14
|
Ye F, Li C, Liu FL, Liu X, Xu P, Luo RH, Song W, Zheng YT, Ying T, Yu B, Wang P. Semisynthesis of homogeneous spike RBD glycoforms from SARS-CoV-2 for profiling the correlations between glycan composition and function. Natl Sci Rev 2024; 11:nwae030. [PMID: 38333067 PMCID: PMC10852988 DOI: 10.1093/nsr/nwae030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 02/10/2024] Open
Abstract
Vaccines have been the primary remedy in the global fight against coronavirus disease 2019 (COVID-19). The receptor-binding domain (RBD) of the spike protein, a critical viral immunogen, is affected by the heterogeneity of its glycan structures and relatively low immunogenicity. Here, we describe a scalable synthetic platform that enables the precise synthesis of homogeneously glycosylated RBD, facilitating the elucidation of carbohydrate structure-function relationships. Five homogeneously glycosylated RBDs bearing biantennary glycans were prepared, three of which were conjugated to T-helper epitope (Tpep) from tetanus toxoid to improve their weak immune response. Relative to natural HEK293-derived RBD, synthetic RBDs with biantennary N-glycan elicited a higher level of neutralising antibodies against SARS-CoV-2 in mice. Furthermore, RBDs containing Tpep elicited significant immune responses in transgenic mice expressing human angiotensin-converting enzyme 2. Our collective data suggest that trimming the N-glycans and Tpep conjugation of RBD could potentially serve as an effective strategy for developing subunit vaccines providing efficient protection.
Collapse
Affiliation(s)
- Farong Ye
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xinliang Liu
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenping Song
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Wang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen 518057, China
| |
Collapse
|
15
|
Wang X, Xiao G. Recent chemical synthesis of plant polysaccharides. Curr Opin Chem Biol 2023; 77:102387. [PMID: 37716049 DOI: 10.1016/j.cbpa.2023.102387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
Here, chemical syntheses of long, branched and complex glycans over 10-mer from plants are summarized, which highlights amylopectin 20-mer from starch, 17-mer from carthamus tinctorius, α-glucan 30-mer from Longan, 19-mer from psidium guajava and 11-mer from dendrobium huoshanense. The glycans assembly strategies, protecting groups utilization and glycosylation methods discussed here will inspire the efficient synthesis of diverse complex glycans with many 1,2-cis glycosidic linkages.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| |
Collapse
|
16
|
Duong T, Valenzuela EA, Ragains JR. Benzyne-Promoted, 1,2- cis-Selective O-Glycosylation with Benzylchalcogenoglycoside Donors. Org Lett 2023; 25:8526-8529. [PMID: 37970840 PMCID: PMC10696609 DOI: 10.1021/acs.orglett.3c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Here, we show that the reaction of benzylchalcogenoglycosides with benzyne in the presence of alcohols results in highly 1,2-cis-selective O-glycosylation in a solvent-dependent manner. Thioglycosides, selenoglycosides, and alcohols with a range of nucleophilicities lead to a productive reaction, and unusual protecting groups, auxiliary groups, and additives are avoided.
Collapse
Affiliation(s)
- Tiffany Duong
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Erik Alvarez Valenzuela
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Justin R. Ragains
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
17
|
Rodrigues Reis CE, Milessi TS, Ramos MDN, Singh AK, Mohanakrishna G, Aminabhavi TM, Kumar PS, Chandel AK. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications. Biotechnol Adv 2023; 68:108209. [PMID: 37467868 DOI: 10.1016/j.biotechadv.2023.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Glycoconjugates are the ubiquitous components of mammalian cells, mainly synthesized by covalent bonds of carbohydrates to other biomolecules such as proteins and lipids, with a wide range of potential applications in novel vaccines, therapeutic peptides and antibodies (Ab). Considering the emerging developments in glycoscience, renewable production of glycoconjugates is of importance and lignocellulosic biomass (LCB) is a potential source of carbohydrates to produce synthetic glycoconjugates in a sustainable pathway. In this review, recent advances in glycobiology aiming on glycoconjugates production is presented together with the recent and cutting-edge advances in the therapeutic properties and application of glycoconjugates, including therapeutic glycoproteins, glycosaminoglycans (GAGs), and nutraceuticals, emphasizing the integral role of glycosylation in their function and efficacy. Special emphasis is given towards the potential exploration of carbon neutral feedstocks, in which LCB has an emerging role. Techniques for extraction and recovery of mono- and oligosaccharides from LCB are critically discussed and influence of the heterogeneous nature of the feedstocks and different methods for recovery of these sugars in the development of the customized glycoconjugates is explored. Although reports on the use of LCB for the production of glycoconjugates are scarce, this review sets clear that the potential of LCB as a source for the production of valuable glycoconjugates cannot be underestimated and encourages that future research should focus on refining the existing methodologies and exploring new approaches to fully realize the potential of LCB in glycoconjugate production.
Collapse
Affiliation(s)
| | - Thais Suzane Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Márcio Daniel Nicodemos Ramos
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil.
| |
Collapse
|
18
|
Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Kadri MS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharides production from algal sources and potential applications. Biotechnol Adv 2023; 67:108195. [PMID: 37315876 DOI: 10.1016/j.biotechadv.2023.108195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
In recent years, algal-derived glycans and oligosaccharides have become increasingly important in health applications due to higher bioactivities than plant-derived oligosaccharides. The marine organisms have complex, and highly branched glycans and more reactive groups to elicit greater bioactivities. However, complex and large molecules have limited use in broad commercial applications due to dissolution limitations. In comparison to these, oligosaccharides show better solubility and retain their bioactivities, hence, offering better applications opportunity. Accordingly, efforts are being made to develop a cost-effective method for enzymatic extraction of oligosaccharides from algal polysaccharides and algal biomass. Yet detailed structural characterization of algal-derived glycans is required to produce and characterize the potential biomolecules for improved bioactivity and commercial applications. Some macroalgae and microalgae are being evaluated as in vivo biofactories for efficient clinical trials, which could be very helpful in understanding the therapeutic responses. This review discusses the recent advancements in the production of oligosaccharides from microalgae. It also discusses the bottlenecks of the oligosaccharides research, technological limitations, and probable solutions to these problems. Furthermore, it presents the emerging bioactivities of algal oligosaccharides and their promising potential for possible biotherapeutic application.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804201, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
19
|
Kirupakaran S, Arago G, Hirschhäuser C. A unified strategy for the synthesis of aldohexoses by boronate assisted assembly of CH 2X 2 derived C 1-building blocks. Chem Sci 2023; 14:9838-9842. [PMID: 37736647 PMCID: PMC10510816 DOI: 10.1039/d3sc03778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 09/23/2023] Open
Abstract
A synthetic strategy for all aldohexoses with individually addressable protecting groups from dihalomethane C1-units is reported. The underlying synthesis of C6-sugar alcohols relies on three consecutive Matteson sequences, vinylation and bishydroxylation. Erythro and threo isomers have been realized for every glycol motif by strategic variation of the sequence.
Collapse
Affiliation(s)
| | - Glib Arago
- University of Duisburg-Essen Universitätsstr. 5-7 45117 Essen Germany
| | | |
Collapse
|
20
|
Streety X, Obike JC, Townsend SD. A Hitchhiker's Guide to Problem Selection in Carbohydrate Synthesis. ACS CENTRAL SCIENCE 2023; 9:1285-1296. [PMID: 37521800 PMCID: PMC10375882 DOI: 10.1021/acscentsci.3c00507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 08/01/2023]
Abstract
Oligosaccharides are ubiquitous in molecular biology and are used for functions ranging from governing protein folding to intercellular communication. Perhaps paradoxically, the exact role of the glycan in most of these settings is not well understood. One reason for this contradiction concerns the fact that carbohydrates often appear in heterogeneous form in nature. These mixtures complicate the isolation of pure material and characterization of structure-activity relationships. As a result, a major bottleneck in glycoscience research is the synthesis and modification of pure materials. While synthetic and chemoenzymatic methods have enabled access to homogeneous tool compounds, a central problem, particularly for newer synthetic chemists, is the matter of problem selection. This outlook aims to provide an entry level overview of fundamental principles in carbohydrate chemistry with an eye toward enabling solutions to frontier challenges.
Collapse
|
21
|
Teschers CS, Gilmour R. Fluorine-Directed Automated Mannoside Assembly. Angew Chem Int Ed Engl 2023; 62:e202213304. [PMID: 36331042 PMCID: PMC10108063 DOI: 10.1002/anie.202213304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Automated glycan assembly (AGA) on solid support has become invaluable in reconciling the biological importance of complex carbohydrates with the persistent challenges associated with reproducible synthesis. Whilst AGA platforms have transformed the construction of many natural sugars, validation in the construction of well-defined (site-selectively modified) glycomimetics is in its infancy. Motivated by the importance of fluorination in drug discovery, the biomedical prominence of 2-fluoro sugars and the remarkable selectivities observed in fluorine-directed glycosylation, fluorine-directed automated glycan assembly (FDAGA) is disclosed. This strategy leverages the fluorine atom for stereocontrolled glycosylation on solid support, thereby eliminating the reliance on O-based directing groups. The logical design of C2-fluorinated mannose building blocks, and their application in the fully (α-)stereocontrolled automated assembly of linear and branched fluorinated oligomannosides, is disclosed. This operationally simple strategy can be integrated into existing AGA and post-AGA protocols to augment the scope of programmed carbohydrate synthesis.
Collapse
Affiliation(s)
- Charlotte S. Teschers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstr. 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstr. 3648149MünsterGermany
| |
Collapse
|
22
|
Ruprecht C, Blaukopf M, Pfrengle F. Synthetic fragments of plant polysaccharides as tools for cell wall biology. Curr Opin Chem Biol 2022; 71:102208. [PMID: 36108403 DOI: 10.1016/j.cbpa.2022.102208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
A sustainable bioeconomy that includes increased agricultural productivity and new technologies to convert renewable biomass to value-added products may help meet the demands of a growing world population for food, energy and materials. The potential use of plant biomass is determined by the properties of the cell walls, consisting of polysaccharides, proteins, and the polyphenolic polymer lignin. Comprehensive knowledge of cell wall glycan structure and biosynthesis is therefore essential for optimal utilization. However, several areas of plant cell wall research are hampered by a lack of available pure oligosaccharide samples that represent structural features of cell wall glycans. Here, we provide an update on recent chemical syntheses of plant cell wall oligosaccharides and their application in characterizing plant cell wall-directed antibodies and carbohydrate-active enzymes including glycosyltransferases and glycosyl hydrolases, with a particular focus on glycan array technology.
Collapse
Affiliation(s)
- Colin Ruprecht
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Markus Blaukopf
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Fabian Pfrengle
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
23
|
Tsouka A, Dallabernardina P, Mende M, Sletten ET, Leichnitz S, Bienert K, Le Mai Hoang K, Seeberger PH, Loeffler FF. VaporSPOT: Parallel Synthesis of Oligosaccharides on Membranes. J Am Chem Soc 2022; 144:19832-19837. [PMID: 36269942 DOI: 10.1021/jacs.2c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Automated chemical synthesis has revolutionized synthetic access to biopolymers in terms of simplicity and speed. While automated oligosaccharide synthesis has become faster and more versatile, the parallel synthesis of oligosaccharides is not yet possible. Here, a chemical vapor glycosylation strategy (VaporSPOT) is described that enables the simultaneous synthesis of oligosaccharides on a cellulose membrane solid support. Different linkers allow for flexible and straightforward cleavage, purification, and characterization of the target oligosaccharides. This method is the basis for the development of parallel automated glycan synthesis platforms.
Collapse
Affiliation(s)
- Alexandra Tsouka
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Pietro Dallabernardina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Marco Mende
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sabrina Leichnitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Klaus Bienert
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Kim Le Mai Hoang
- GlycoUniverse GmbH & Co. KGaA, Am Muehlenberg 11, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Felix F Loeffler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
24
|
Chaube MA, Trattnig N, Lee D, Belkhadir Y, Pfrengle F. Synthesis of Fungal Cell Wall Oligosaccharides and Their Ability to Trigger Plant Immune Responses. European J Org Chem 2022; 2022:e202200313. [PMID: 36035813 PMCID: PMC9401017 DOI: 10.1002/ejoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and β-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) β-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.
Collapse
Affiliation(s)
- Manishkumar A. Chaube
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Nino Trattnig
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| | - Du‐Hwa Lee
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
25
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
26
|
Escopy S, Singh Y, Stine KJ, Demchenko AV. HPLC-Based Automated Synthesis of Glycans in Solution. Chemistry 2022; 28:e202201180. [PMID: 35513346 PMCID: PMC9403992 DOI: 10.1002/chem.202201180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/09/2022]
Abstract
As the 21st century unfolds with rapid changes, new challenges in research and development emerge. These new challenges prompted us to repurpose our HPLC-A platform that was previously used in solid phase glycan synthesis to a solution phase batch synthesis described herein. The modular character of HPLC allows for implementing new attachments. To enable sequential synthesis of multiple oligosaccharides with the single press of a button, we supplemented our system with a four-way split valve and an automated fraction collector. This enabled the operator to load all reagents and all reactants in the autosampler, press the button to start the repetitive automation sequence, leave the lab, and upon return find products of multiple reactions ready for purification, analysis, and subsequent application.
Collapse
Affiliation(s)
- Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
27
|
Affiliation(s)
- Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
28
|
Zhang C, Zuo H, Lee GY, Zou Y, Dang QD, Houk KN, Niu D. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat Chem 2022; 14:686-694. [DOI: 10.1038/s41557-022-00918-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
29
|
Wang J, Feng Y, Sun T, Zhang Q, Chai Y. Photolabile 2-(2-Nitrophenyl)-propyloxycarbonyl (NPPOC) for Stereoselective Glycosylation and Its Application in Consecutive Assembly of Oligosaccharides. J Org Chem 2022; 87:3402-3421. [PMID: 35171610 DOI: 10.1021/acs.joc.1c03006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A photolabile protecting group (PPG) 2-(2-nitrophenyl)-propyloxycarbonyl (NPPOC) was explored in glycosylation and applied in the consecutive synthesis of oligosaccharides. NPPOC displays a strong neighboring group participation (NGP) effect to facilitate the construction of 1,2-trans glycosides in excellent yield. Notably, NPPOC could be efficiently removed by photolysis, and the deprotection conditions are friendly to typical protecting groups. A branched and asymmetric oligomannose Man6 was rapidly prepared, and the consecutive assembly of oligosaccharides without intermediate purification was further investigated owing to the compatibility conditions between NPPPOC's photolysis and glycosylation.
Collapse
Affiliation(s)
- Jincai Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yingle Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Taotao Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
30
|
Ogawa Y, Putaux JL. Recent Advances in Electron Microscopy of Carbohydrate Nanoparticles. Front Chem 2022; 10:835663. [PMID: 35242740 PMCID: PMC8886399 DOI: 10.3389/fchem.2022.835663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 01/09/2023] Open
Abstract
Carbohydrate nanoparticles, both naturally derived and synthetic ones, have attracted scientific and industrial attention as high-performance renewable building blocks of functional materials. Electron microscopy (EM) has played a central role in investigations of their morphology and molecular structure, although the intrinsic radiation sensitivity of carbohydrate crystals has often hindered the in-depth characterization with EM techniques. This contribution reviews the recent advances in the electron microscopy of the carbohydrate nanoparticles. In particular, we highlight the recent efforts made to understand the three-dimensional shape and structural heterogeneity of nanoparticles using low-dose electron tomography and electron diffraction techniques coupled with cryogenic transmission electron microscopy.
Collapse
Affiliation(s)
- Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
31
|
Nielsen MM, Holmstrøm T, Pedersen CM. Stereoselective
O
‐Glycosylations by Pyrylium Salt Organocatalysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Martin Nielsen
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen O Denmark
| | - Thomas Holmstrøm
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen O Denmark
| | | |
Collapse
|
32
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
33
|
Zhong X, Zhao X, Ao J, Huang Y, Liu Y, Zhou S, Li B, Ishiwata A, Fang Q, Yang C, Cai H, Ding F. An experimental and theoretical study on stereocontrolled glycosylations by a “one-pot” procedure. Org Chem Front 2022. [DOI: 10.1039/d2qo00727d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a “one-pot” strategy to install the stereoselectivity of both α- and β-glycosides by changing reaction conditions.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bizhi Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | | | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
34
|
Cai L, Chen Q, Guo J, Liang Z, Fu D, Meng L, Zeng J, Wan Q. Recyclable Fluorous-Tag Assisted Two-Directional Oligosaccharide Synthesis Enabled by Interrupted Pummerer Reaction Mediated Glycosylation. Chem Sci 2022; 13:8759-8765. [PMID: 35975149 PMCID: PMC9350600 DOI: 10.1039/d2sc01700h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a novel fluorous-tag assisted two-directional oligosaccharide assembly strategy, which combines the advantages of solution-phase synthesis and solid-phase synthesis. A well-designed fluorous-tag was decorated on the latent anomeric...
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qi Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jian Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Zhihua Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Dengxian Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
35
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
36
|
Aoki K, Kumagai T, Ranzinger R, Bergmann C, Camus A, Tiemeyer M. Serum N-Glycome Diversity in Teleost and Chondrostrean Fishes. Front Mol Biosci 2021; 8:778383. [PMID: 34859056 PMCID: PMC8631502 DOI: 10.3389/fmolb.2021.778383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in carbohydrate chemistry, chemical biology, and mass spectrometric techniques have opened the door to rapid progress in uncovering the function and diversity of glycan structures associated with human health and disease. These strategies can be equally well applied to advance non-human health care research. To date, the glycomes of only a handful of non-human, non-domesticated vertebrates have been analyzed in depth due to the logistic complications associated with obtaining or handling wild-caught or farm-raised specimens. In contrast, the last 2 decades have seen advances in proteomics, glycoproteomics, and glycomics that have significantly advanced efforts to identify human serum/plasma biomarkers for various diseases. In this study, we investigated N-glycan structural diversity in serum harvested from five cultured fish species. This biofluid is a useful starting point for glycomic analysis because it is rich in glycoproteins, can be acquired in a sustainable fashion, and its contents reflect dynamic physiologic changes in the organism. Sera acquired from two chondrostrean fish species, the Atlantic sturgeon and shortnose sturgeon, and three teleost fish species, the Atlantic salmon, Arctic char, and channel catfish, were delipidated by organic extraction and the resulting protein-rich preparations sequentially treated with trypsin and PNGaseF to generate released N-glycans for structural analysis. Released N-glycans were analyzed as their native or permethylated forms by nanospray ionization mass spectrometry in negative or positive mode. While the basic biosynthetic pathway that initiates the production of glycoprotein glycan core structures is well-conserved across the teleost fish species examined in this study, species-specific structural differences were detected across the five organisms in terms of their monosaccharide composition, sialylation pattern, fucosylation, and degree of O-acetylation. Our methods and results provide new contributions to a growing library of datasets describing fish N-glycomes that can eventually establish species-normative baselines for assessing N-glycosylation dynamics associated with pathogen invasion, environmental stress, and fish immunologic responses.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Tadahiro Kumagai
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Procter & Gamble, Takasaki, Japan
| | - René Ranzinger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Carl Bergmann
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Alvin Camus
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
37
|
Nielsen MM, Holmstrøm T, Pedersen CM. Stereoselective O-Glycosylations by Pyrylium Salt Organocatalysis. Angew Chem Int Ed Engl 2021; 61:e202115394. [PMID: 34847269 DOI: 10.1002/anie.202115394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 01/06/2023]
Abstract
Despite many years of invention, the field of carbohydrate chemistry remains rather inaccessible to non-specialists, which limits the scientific impact and reach of the discoveries made in the field. Aiming to increase the availability of stereoselective glycosylation chemistry for non-specialists, we have discovered that several commercially available pyrylium salts catalyze stereoselective O-glycosylations of a wide range of phenols and alkyl alcohols. This catalytic reaction utilizes trichloroacetimidates, an easily accessible and synthetically proven electrophile, takes place under air and only initiates when all three reagents are mixed, which should provide better reproducibility by non-specialists. The reaction exhibits varying degrees of stereospecificity, resulting in β-selective glycosylations from α-trichloroacetimidates, whilst an α-selective glycosylation proceeds from β-trichloroacetimidates. A mechanistic study revealed that the reaction likely proceeds via an SN 2-like substitution on the protonated electrophile.
Collapse
Affiliation(s)
- Michael Martin Nielsen
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| | - Thomas Holmstrøm
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| | - Christian Marcus Pedersen
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| |
Collapse
|
38
|
Dallabernardina P, Benazzi V, Laman JD, Seeberger PH, Loeffler FF. Automated glycan assembly of peptidoglycan backbone fragments. Org Biomol Chem 2021; 19:9829-9832. [PMID: 34734957 DOI: 10.1039/d1ob01987b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report the automated glycan assembly (AGA) of different oligosaccharide fragments of the bacterial peptidoglycan (PGN) backbone. Iterative addition on a solid support of an acetyl glucosamine and a new muramic acid building block is followed by cleavage from the solid support and final deprotection providing 10 oligosaccharides up to six units.
Collapse
Affiliation(s)
- Pietro Dallabernardina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| | - Valentina Benazzi
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany. .,University of Pavia, Department of Organic Chemistry, V.le Torquato Taramelli, 10, 27100 Pavia, Italy
| | - Jon D Laman
- Department of Pathology & Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany. .,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Felix F Loeffler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
39
|
Njeri DK, Valenzuela EA, Ragains JR. Leveraging Trifluoromethylated Benzyl Groups toward the Highly 1,2- Cis-Selective Glucosylation of Reactive Alcohols. Org Lett 2021; 23:8214-8218. [PMID: 34677075 PMCID: PMC8576833 DOI: 10.1021/acs.orglett.1c02947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we demonstrate that substitution of the benzyl groups of glucosyl imidate donors with trifluoromethyl results in a substantial increase in 1,2-cis-selectivity when activated with TMS-I in the presence of triphenylphosphine oxide. Stereoselectivity is dependent on the number of trifluoromethyl groups (4-trifluoromethylbenzyl vs 3,5-bis-trifluoromethylbenzyl). Particularly encouraging is that we observe high 1,2-cis-selectivity with reactive alcohol acceptors.
Collapse
Affiliation(s)
- Dancan K Njeri
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, Louisiana 70806, United States
| | - Erik Alvarez Valenzuela
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, Louisiana 70806, United States
| | - Justin R Ragains
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
40
|
Yang R, He H, Chen Z, Huang Y, Xiao G. A One-Pot Synthesis of Glycans and Nucleosides Based on ortho-(1-Phenylvinyl)benzyl Glycosides. Org Lett 2021; 23:8257-8261. [PMID: 34676757 DOI: 10.1021/acs.orglett.1c02998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One-pot synthesis of both glycans and nucleosides remains rare and challenging. Herein, we report a one-pot glycosylation strategy for glycans and nucleosides synthesis based on ortho-(1-phenylvinyl)benzyl glycosides, which has several advantages, including no aglycon transfers, no undesired interference of departing species, no unpleasant odor, and up to the construction of four different glycosidic linkages.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
41
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
42
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
43
|
Zhou S, Zhong X, Guo A, Xiao Q, Ao J, Zhu W, Cai H, Ishiwata A, Ito Y, Liu XW, Ding F. ZnI 2-Directed Stereocontrolled α-Glucosylation. Org Lett 2021; 23:6841-6845. [PMID: 34411478 DOI: 10.1021/acs.orglett.1c02405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report a glucosylation strategy mediated by ZnI2, a cheap and mild Lewis acid, for the highly stereoselective construction of 1,2-cis-O-glycosidic linkages using easily accessible and common 4,6-O-tethered glucosyl donors. The versatility and effectiveness of the α-glucosylation strategy were demonstrated successfully with various acceptors, including complex alcohols. This approach demonstrates the feasibility of the modular synthesis of various α-glucans with both linear and branched backbone structures.
Collapse
Affiliation(s)
- Siai Zhou
- School of Pharmaceutical Sciences-Shenzhen, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuemei Zhong
- School of Pharmaceutical Sciences-Shenzhen, Sun Yat-sen University, Shenzhen 518107, China
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371 Singapore
| | - Qian Xiao
- School of Pharmaceutical Sciences-Shenzhen, Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences-Shenzhen, Sun Yat-sen University, Shenzhen 518107, China
| | - Wanmeng Zhu
- School of Pharmaceutical Sciences-Shenzhen, Sun Yat-sen University, Shenzhen 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences-Shenzhen, Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan.,Graduate School of Science, Osaka University, Toyonaka, Osaka 5600043, Japan
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371 Singapore
| | - Feiqing Ding
- School of Pharmaceutical Sciences-Shenzhen, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
44
|
Yamamoto T, Chang TC, Tanaka K. Epoc group: transformable protecting group with gold(iii)-catalyzed fluorene formation. Chem Sci 2021; 12:10703-10709. [PMID: 34476055 PMCID: PMC8372321 DOI: 10.1039/d1sc03125b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
This study presents the novel concept of a transformable protecting group, which changes its properties through structural transformation. Based on this concept, we developed a 2-(2-ethynylphenyl)-2-(5-methylfuran-2-yl)-ethoxycarbonyl (Epoc) group. The Epoc group was transformed into an Fmoc-like structure with gold(iii)-catalyzed fluorene formation and was removable under Fmoc-like mild basic conditions post-transformation even though it was originally stable under strongly basic conditions. As an application for organic synthesis, the Epoc group provides the novel orthogonality of gold(iii)-labile protecting groups in solid-phase peptide synthesis. In addition, the high turnover number of fluorene formation in aqueous media is suggestive of the applicability of the Epoc group to biological systems. A protecting group removable with gold(iii)-catalyzed fluorene formation and the subsequent addition of piperidine was developed.![]()
Collapse
Affiliation(s)
- Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan .,Department of Chemical Science and Engineering, School of Materials and Chemical Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan.,Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russian Federation
| |
Collapse
|
45
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
46
|
Luong P, Dube DH. Dismantling the bacterial glycocalyx: Chemical tools to probe, perturb, and image bacterial glycans. Bioorg Med Chem 2021; 42:116268. [PMID: 34130219 DOI: 10.1016/j.bmc.2021.116268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
The bacterial glycocalyx is a quintessential drug target comprised of structurally distinct glycans. Bacterial glycans bear unusual monosaccharide building blocks whose proper construction is critical for bacterial fitness, survival, and colonization in the human host. Despite their appeal as therapeutic targets, bacterial glycans are difficult to study due to the presence of rare bacterial monosaccharides that are linked and modified in atypical manners. Their structural complexity ultimately hampers their analytical characterization. This review highlights recent advances in bacterial chemical glycobiology and focuses on the development of chemical tools to probe, perturb, and image bacterial glycans and their biosynthesis. Current technologies have enabled the study of bacterial glycosylation machinery even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
47
|
Pongener I, Pepe DA, Ruddy JJ, McGarrigle EM. Stereoselective β-mannosylations and β-rhamnosylations from glycosyl hemiacetals mediated by lithium iodide. Chem Sci 2021; 12:10070-10075. [PMID: 34377400 PMCID: PMC8317664 DOI: 10.1039/d1sc01300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Stereoselective β-mannosylation is one of the most challenging problems in the synthesis of oligosaccharides. Herein, a highly selective synthesis of β-mannosides and β-rhamnosides from glycosyl hemi-acetals is reported, following a one-pot chlorination, iodination, glycosylation sequence employing cheap oxalyl chloride, phosphine oxide and LiI. The present protocol works excellently with a wide range of glycosyl acceptors and with armed glycosyl donors. The method doesn't require conformationally restricted donors or directing groups; it is proposed that the high β-selectivities observed are achieved via an SN2-type reaction of α-glycosyl iodide promoted by lithium iodide.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Dionissia A Pepe
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Joseph J Ruddy
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
48
|
Cañada FJ, Canales Á, Valverde P, de Toro BF, Martínez-Orts M, Phillips PO, Pereda A. Conformational and Structural characterization of carbohydrates and their interactions studied by NMR. Curr Med Chem 2021; 29:1147-1172. [PMID: 34225601 DOI: 10.2174/0929867328666210705154046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Carbohydrates, either free or as glycans conjugated with other biomolecules, participate in many essential biological processes. Their apparent simplicity in terms of chemical functionality hides an extraordinary diversity and structural complexity. Deeply deciphering at the atomic level their structures is essential to understand their biological function and activities, but it is still a challenging task in need of complementary approaches and no generalized procedures are available to address the study of such complex, natural glycans. The versatility of Nuclear Magnetic Resonance spectroscopy (NMR) often makes it the preferred choice to study glycans and carbohydrates in solution media. The most basic NMR parameters, namely chemical shifts, coupling constants and nuclear Overhauser effects, allow defining short or repetitive chain sequences and characterize their structures and local geometries either in the free state or when interacting with other biomolecules, rendering additional information on the molecular recognition processes. The increased accessibility to carbohydrate molecules extensively or selectively labeled with 13C boosts the resolution and detail that analyzed glycan structures can reach. In turn, structural information derived from NMR, complemented with molecular modeling and theoretical calculations can also provide dynamic information on the conformational flexibility of carbohydrate structures. Furthermore, using partially oriented media or paramagnetic perturbations, it has been possible to introduce additional long-range observables rendering structural information on longer and branched glycan chains. In this review, we provide examples of these studies and an overview of the recent and most relevant NMR applications in the glycobiology field.
Collapse
Affiliation(s)
- Francisco Javier Cañada
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Ángeles Canales
- Departamento de Química Orgánica I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Pablo Valverde
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Beatriz Fernández de Toro
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Mónica Martínez-Orts
- Departamento de Química Orgánica I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Paola Oquist Phillips
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Amaia Pereda
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
49
|
Abstract
![]()
Polysaccharides are
Nature’s most abundant biomaterials
essential for plant cell wall construction and energy storage. Seemingly
minor structural differences result in entirely different functions:
cellulose, a β (1–4) linked glucose polymer, forms fibrils
that can support large trees, while amylose, an α (1–4)
linked glucose polymer forms soft hollow fibers used for energy storage.
A detailed understanding of polysaccharide structures requires pure
materials that cannot be isolated from natural sources. Automated
Glycan Assembly provides quick access to trans-linked
glycans analogues of cellulose, but the stereoselective installation
of multiple cis-glycosidic linkages present in amylose
has not been possible to date. Here, we identify thioglycoside building
blocks with different protecting group patterns that, in concert with
temperature and solvent control, achieve excellent stereoselectivity
during the synthesis of linear and branched α-glucan polymers
with up to 20 cis-glycosidic linkages. The molecules
prepared with the new method will serve as probes to understand the
biosynthesis and the structure of α-glucans.
Collapse
Affiliation(s)
- Yuntao Zhu
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
50
|
Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Synthetic Homogeneous Glycoforms of the SARS‐CoV‐2 Spike Receptor‐Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Jing Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Wei Shangguan
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Cheng Li
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Tianlei Ying
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
- Institutes for Life Sciences School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangdong 510006 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|