1
|
Stockert JC, Horobin RW. Prebiotic RNA self-assembling and the origin of life: Mechanistic and molecular modeling rationale for explaining the prebiotic origin and replication of RNA. Acta Histochem 2025; 127:152226. [PMID: 39788859 DOI: 10.1016/j.acthis.2024.152226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known. An antiparallel (inverted) stacking of purine nucleosides was reported in crystallographic studies. Molecular modeling also supports the inverted orientation of nucleosides. This preferential stacking can also appear when nucleosides are included in a montmorillonite clay matrix. Free-energy values and geometrical parameters show that D-ribose chirality is preferred for the formation of right-handed RNA molecules. Thus, a "zipper" model with antiparallel and auto-intercalated nucleosides linked by phosphate groups can be proposed to form single RNA chains. Unstacking with strand separation and base pairing by H-bonding, results in shortening and inclination of ribose-phosphate chains, leading to right-handed helicity and antiparallel duplexes. Incorporation of complementary precursors on the major groove template by a self-assembly mechanism provides a prebiotic (non-enzymatic) "tetris" replication model by formation of a transient RNA tetrad and tetraplex. Original hairpin motifs appear as simple building units that form typical RNA structures such as hammerheads, cloverleaves and dumbbells. They occur today in the circular viroids and virusoids, as well as in highly branched and complex rRNA molecules.
Collapse
Affiliation(s)
- Juan C Stockert
- Institute of Health and Environmental Sciences, Prosama Foundation, Paysandú 752, Buenos Aires, CABA CP1405, Argentina; Integrative Center of Biology and Applied Chemistry, University Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile.
| | | |
Collapse
|
2
|
Makowski JA, Kensinger AH, Cunningham CL, Frye CJ, Shine M, Lackey PE, Mihailescu MR, Evanseck JD. Delta SARS-CoV-2 s2m Structure, Dynamics, and Entropy: Consequences of the G15U Mutation. ACS PHYSICAL CHEMISTRY AU 2023; 3:434-443. [PMID: 37780540 PMCID: PMC10540284 DOI: 10.1021/acsphyschemau.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 10/03/2023]
Abstract
Bioinformatic analysis of the Delta SARS-CoV-2 genome reveals a single nucleotide mutation (G15U) in the stem-loop II motif (s2m) relative to ancestral SARS-CoV-2. Despite sequence similarity, unexpected differences between SARS-CoV-2 and Delta SARS-CoV-2 s2m homodimerization experiments require the discovery of unknown structural and thermodynamic changes necessary to rationalize the data. Using our reported SARS-CoV-2 s2m model, we induced the G15U substitution and performed 3.5 microseconds of unbiased molecular dynamics simulation at 283 and 310 K. The resultant Delta s2m adopted a secondary structure consistent with our reported NMR data, resulting in significant deviations in the tertiary structure and dynamics from our SARS-CoV-2 s2m model. First, we find differences in the overall three-dimensional structure, where the characteristic 90° L-shaped kink of the SARS-CoV-2 s2m did not form in the Delta s2m resulting in a "linear" hairpin with limited bending dynamics. Delta s2m helical parameters are calculated to align closely with A-form RNA, effectively eliminating a hinge point to form the L-shape kink by correcting an upper stem defect in SARS-CoV-2 induced by a noncanonical and dynamic G:A base pair. Ultimately, the shape difference rationalizes the migration differences in reported electrophoresis experiments. Second, increased fluctuation of the Delta s2m palindromic sequence, within the terminal loop, compared to SARS-CoV-2 s2m results in an estimated increase of entropy of 6.8 kcal/mol at 310 K relative to the SARS-CoV-2 s2m. The entropic difference offers a unique perspective on why the Delta s2m homodimerizes less spontaneously, forming fewer kissing dimers and extended duplexes compared to SARS-CoV-2. In this work, both the L-shape reduction and palindromic entropic penalty provides an explanation of our reported in vitro electrophoresis homodimerization results. Ultimately, the structural, dynamical, and entropic differences between the SARS-CoV-2 s2m and Delta s2m serve to establish a foundation for future studies of the s2m function in the viral lifecycle.
Collapse
Affiliation(s)
- Joseph A. Makowski
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Adam H. Kensinger
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Caylee L. Cunningham
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Caleb J. Frye
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Morgan Shine
- Department
of Biochemistry and Chemistry, Westminster
College, New Wilmington, Pennsylvania 16172, United States
| | - Patrick E. Lackey
- Department
of Biochemistry and Chemistry, Westminster
College, New Wilmington, Pennsylvania 16172, United States
| | - Mihaela Rita Mihailescu
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jeffrey D. Evanseck
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
3
|
Kensinger AH, Makowski JA, Pellegrene KA, Imperatore JA, Cunningham CL, Frye CJ, Lackey PE, Mihailescu MR, Evanseck JD. Structural, Dynamical, and Entropic Differences between SARS-CoV and SARS-CoV-2 s2m Elements Using Molecular Dynamics Simulations. ACS PHYSICAL CHEMISTRY AU 2023; 3:30-43. [PMID: 36711027 PMCID: PMC9578647 DOI: 10.1021/acsphyschemau.2c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The functional role of the highly conserved stem-loop II motif (s2m) in SARS-CoV and SARS-CoV-2 in the viral lifecycle remains enigmatic and an intense area of research. Structure and dynamics of the s2m are key to establishing a structure-function connection, yet a full set of atomistic resolution coordinates is not available for SARS-CoV-2 s2m. Our work constructs three-dimensional coordinates consistent with NMR solution phase data for SARS-CoV-2 s2m and provides a comparative analysis with its counterpart SARS-CoV s2m. We employed initial coordinates based on PDB ID 1XJR for SARS-CoV s2m and two models for SARS-CoV-2 s2m: one based on 1XJR in which we introduced the mutations present in SARS-CoV-2 s2m and the second based on the available SARS-CoV-2 NMR NOE data supplemented with knowledge-based methods. For each of the three systems, 3.5 μs molecular dynamics simulations were used to sample the structure and dynamics, and principal component analysis (PCA) reduced the ensembles to hierarchal conformational substates for detailed analysis. Dilute solution simulations of SARS-CoV s2m demonstrate that the GNRA-like terminal pentaloop is rigidly defined by base stacking uniquely positioned for possible kissing dimer formation. However, the SARS-CoV-2 s2m simulation did not retain the reported crystallographic SARS-CoV motifs and the terminal loop expands to a highly dynamic "nonaloop." Increased flexibility and structural disorganization are observed for the larger terminal loop, where an entropic penalty is computed to explain the experimentally observed reduction in kissing complex formation. Overall, both SARS-CoV and SARS-CoV-2 s2m elements have a similarly pronounced L-shape due to different motif interactions. Our study establishes the atomistic three-dimensional structure and uncovers dynamic differences that arise from s2m sequence changes, which sets the stage for the interrogation of different mechanistic pathways of suspected biological function.
Collapse
Affiliation(s)
- Adam H. Kensinger
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joseph A. Makowski
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Kendy A. Pellegrene
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joshua A. Imperatore
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caylee L. Cunningham
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caleb J. Frye
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Patrick E. Lackey
- Department
of Biochemistry and Chemistry, Westminster
College, New Wilmington, Pennsylvania16172, United States
| | - Mihaela Rita Mihailescu
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Jeffrey D. Evanseck
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| |
Collapse
|
4
|
Watkins AM, Das R. RNA 3D Modeling with FARFAR2, Online. Methods Mol Biol 2023; 2586:233-249. [PMID: 36705908 DOI: 10.1007/978-1-0716-2768-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Understanding the three-dimensional structure of an RNA molecule is often essential to understanding its function. Sampling algorithms and energy functions for RNA structure prediction are improving, due to the increasing diversity of structural data available for training statistical potentials and testing structural data, along with a steady supply of blind challenges through the RNA-Puzzles initiative. The recent FARFAR2 algorithm enables near-native structure predictions on fairly complex RNA structures, including automated selection of final candidate models and estimation of model accuracy. Here, we describe the use of a publicly available webserver for RNA modeling for realistic scenarios using FARFAR2, available at https://rosie.rosettacommons.org/farfar2 . We walk through two cases in some detail: a simple model pseudoknot from the frameshifting element of beet western yellows virus modeled using the "basic interface" to the webserver and a replication of RNA-Puzzle 20, a metagenomic twister sister ribozyme, using the "advanced interface." We also describe example runs of FARFAR2 modeling including two kinds of experimental data: a c-di-GMP riboswitch modeled with low-resolution restraints from MOHCA-seq experiments and a tandem GA motif modeled with 1H NMR chemical shifts.
Collapse
Affiliation(s)
- Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Prescient Design, Genentech, South San Francisco, CA, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Biophysics Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Paloncýová M, Pykal M, Kührová P, Banáš P, Šponer J, Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204408. [PMID: 36216589 DOI: 10.1002/smll.202204408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Martin Pykal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Petra Kührová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Pavel Banáš
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Jiří Šponer
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
6
|
Lee AJ, Rackers JA, Bricker WP. Predicting accurate ab initio DNA electron densities with equivariant neural networks. Biophys J 2022; 121:3883-3895. [PMID: 36057785 PMCID: PMC9674991 DOI: 10.1016/j.bpj.2022.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
One of the fundamental limitations of accurately modeling biomolecules like DNA is the inability to perform quantum chemistry calculations on large molecular structures. We present a machine learning model based on an equivariant Euclidean neural network framework to obtain accurate ab initio electron densities for arbitrary DNA structures that are much too large for conventional quantum methods. The model is trained on representative B-DNA basepair steps that capture both base pairing and base stacking interactions. The model produces accurate electron densities for arbitrary B-DNA structures with typical errors of less than 1%. Crucially, the error does not increase with system size, which suggests that the model can extrapolate to large DNA structures with negligible loss of accuracy. The model also generalizes reasonably to other DNA structural motifs such as the A- and Z-DNA forms, despite being trained on only B-DNA configurations. The model is used to calculate electron densities of several large-scale DNA structures, and we show that the computational scaling for this model is essentially linear. We also show that this machine learning electron density model can be used to calculate accurate electrostatic potentials for DNA. These electrostatic potentials produce more accurate results compared with classical force fields and do not show the usual deficiencies at short range.
Collapse
Affiliation(s)
- Alex J Lee
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Joshua A Rackers
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico.
| | - William P Bricker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
7
|
Ekesan Ş, McCarthy E, Case DA, York DM. RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis. J Phys Chem B 2022; 126:5982-5990. [PMID: 35862934 PMCID: PMC9496635 DOI: 10.1021/acs.jpcb.2c03727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrostatic interactions are fundamental to RNA structure and function, and intimately influenced by solvation and the ion atmosphere. RNA enzymes, or ribozymes, are catalytic RNAs that are able to enhance reaction rates over a million-fold, despite having only a limited repertoire of building blocks and available set of chemical functional groups. Ribozyme active sites usually occur at junctions where negatively charged helices come together, and in many cases leverage this strained electrostatic environment to recruit metal ions in solution that can assist in catalysis. Similar strategies have been implicated in related artificially engineered DNA enzymes. Herein, we apply Poisson-Boltzmann, 3D-RISM, and molecular simulations to study a set of metal-dependent small self-cleaving ribozymes (hammerhead, pistol, and Varkud satellite) as well as an artificially engineered DNAzyme (8-17) to examine electrostatic features and their relation to the recruitment of monovalent and divalent metal ions important for activity. We examine several fundamental roles for these ions that include: (1) structural integrity of the catalytically active state, (2) pKa tuning of residues involved in acid-base catalysis, and (3) direct electrostatic stabilization of the transition state via Lewis acid catalysis. Taken together, these examples demonstrate how RNA electrostatics orchestrates the site-specific and territorial binding of metal ions to play important roles in catalysis.
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David A. Case
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Ekesan Ş, York DM. Who stole the proton? Suspect general base guanine found with a smoking gun in the pistol ribozyme. Org Biomol Chem 2022; 20:6219-6230. [PMID: 35452066 PMCID: PMC9378597 DOI: 10.1039/d2ob00234e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pistol ribozyme (Psr) is one among the most recently discovered classes of small nucleolytic ribozymes that catalyze site-specific RNA self-cleavage through 2'-O-transphosphorylation. The Psr contains a conserved guanine (G40) that in crystal structures is in a position suggesting it plays the role of the general base to abstract a proton from the nucleophile to activate the reaction. Although some functional data is consistent with this mechanistic role, a notable exception is 2-aminopurine (2AP) substitution which has no effect on the rate, unlike similar substitutions across other so-called "G + M" and "G + A" ribozyme classes. Herein we postulate that an alternate conserved guanine, G42, is the primary general base, and provide evidence from molecular simulations that the active site of Psr can undergo local refolding into a structure that is consistent with the common "L-platform/L-scaffold" architecture identified in G + M and G + A ribozyme classes with Psr currently the notable exception. We summarize the key currently available experimental data and present new classical and combined quantum mechanical/molecular mechanical simulation results that collectively suggest a new hypothesis. We hypothesize that there are two available catalytic pathways supported by different conformational states connected by a local refolding of the active site: (1) a primary pathway with an active site architecture aligned with the L-platform/L-scaffold framework where G42 acts as a general base, and (2) a secondary pathway with the crystallographic active site architecture where G40 acts as a general base. We go on to make several experimentally testable predictions, and suggest specific experiments that would ultimately bring closure to the mystery as to "who stole the proton in the pistol ribozyme?".
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Srivastava R. Chemical reactivity and binding interactions in ribonucleic acid-peptide complexes. Proteins 2021; 90:765-775. [PMID: 34714954 DOI: 10.1002/prot.26272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The covalent and noncovalent backbone binding interactions in RNA-peptide complexes were studied by DFT methods. Four RNA structures R1(GGCUAGCC), R2(AAUCGAUU), R3(GGGAUCCC), and R4(AAAGCUUU) has been selected for eight protonated peptides (DR, ER, GR, KR, NGR, RR, tmeGnd (tme), and VR) interactions based on an experimental study (Anal Chem. 2019; 91:1659-1664). Chemical reactivity theory is used to study the reactivity of eight peptides with global descriptors. Lower hardness values reflected low stability and high reactivity for the protonated peptides. DR, ER, GR, KR, NGR, RR, and VR show lower value of ω, μ while tme has high value of ω, μ. Larger highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for ER, GR, and KR showed greater structural stability for peptides. AutoDock and PatchDock results indicated that R1, R2, and R4 retain hairpin structures while interacting with peptide complexes. The calculated binding energies of (R1-R4)-peptide complexes from AutoDock tools are (1.49-11.12) kcal/mol. Results showed that the noncovalent interactions are stronger than the covalent interactions for R1-peptide complexes. The reason might be the transfer of proton from protonated ligand to deprotonated RNA, which has initiated the loss of the ligand. Also it has been observed that proton transfer has become energetically unfavorable in presence of additional hydrogen bonds which is predicted in the experimental results.
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
10
|
Zaulet A, Nuez M, Sillanpää R, Teixidor F, Viñas C. Towards purely inorganic clusters in medicine: Biocompatible divalent cations as counterions of cobaltabis(dicarbollide) and its iodinated derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Melidis L, Styles IB, Hannon MJ. Targeting structural features of viral genomes with a nano-sized supramolecular drug. Chem Sci 2021; 12:7174-7184. [PMID: 34123344 PMCID: PMC8153246 DOI: 10.1039/d1sc00933h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
RNA targeting is an exciting frontier for drug design. Intriguing targets include functional RNA structures in structurally-conserved untranslated regions (UTRs) of many lethal viruses. However, computational docking screens, valuable in protein structure targeting, fail for inherently flexible RNA. Herein we harness MD simulations with Markov state modeling to enable nanosize metallo-supramolecular cylinders to explore the dynamic RNA conformational landscape of HIV-1 TAR untranslated region RNA (representative for many viruses) replicating experimental observations. These cylinders are exciting as they have unprecedented nucleic acid binding and are the first supramolecular helicates shown to have anti-viral activity in cellulo: the approach developed in this study provides additional new insight about how such viral UTR structures might be targeted with the cylinder binding into the heart of an RNA-bulge cavity, how that reduces the conformational flexibility of the RNA and molecular details of the insertion mechanism. The approach and understanding developed represents a new roadmap for design of supramolecular drugs to target RNA structural motifs across biology and nucleic acid nanoscience.
Collapse
Affiliation(s)
- Lazaros Melidis
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Iain B Styles
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
- School of Computer Science, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham The Midlands UK
- Alan Turing Institute London UK
| | - Michael J Hannon
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
12
|
Mráziková K, Mlýnský V, Kührová P, Pokorná P, Kruse H, Krepl M, Otyepka M, Banáš P, Šponer J. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. J Chem Theory Comput 2020; 16:7601-7617. [PMID: 33215915 DOI: 10.1021/acs.jctc.0c00801] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (ff's) remains far from satisfactory even after decades of development, as apparent from a problematic structural description of some important RNA motifs. Actually, some of the smallest RNA molecules belong to the most challenging systems for MD simulations and, among them, the UUCG tetraloop is saliently difficult. We report a detailed analysis of UUCG MD simulations, depicting the sequence of events leading to the loss of the UUCG native state during MD simulations. The total amount of MD simulation data analyzed in this work is close to 1.3 ms. We identify molecular interactions, backbone conformations, and substates that are involved in the process. Then, we unravel specific ff deficiencies using diverse quantum mechanical/molecular mechanical (QM/MM) and QM calculations. Comparison between the MM and QM methods shows discrepancies in the description of the 5'-flanking phosphate moiety and both signature sugar-base interactions. Our work indicates that poor behavior of the UUCG tetraloop in simulations is a complex issue that cannot be attributed to one dominant and straightforwardly correctable factor. Instead, there is a concerted effect of multiple ff inaccuracies that are coupled and amplifying each other. We attempted to improve the simulation behavior by some carefully tailored interventions, but the results were still far from satisfactory, underlying the difficulties in development of accurate nucleic acid ff's.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
13
|
Kumar D, Meena MK, Kumari K, Patel R, Jayaraj A, Singh P. In-silico prediction of novel drug-target complex of nsp3 of CHIKV through molecular dynamic simulation. Heliyon 2020; 6:e04720. [PMID: 32904235 PMCID: PMC7452467 DOI: 10.1016/j.heliyon.2020.e04720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
Literature reported that nsp3 of CHIKV is an important target for the designing of drug as it involves in the replication, survival etc. Herein, about eighteen million molecules available in the ZINC database are filtered against nsp3 using RASPD. Top five hit drug molecules were then taken from the total screened molecules (6988) from ZINC database. Then, a one pot-three components reaction is designed to get the pyrazolophthalazine and its formation was studied using DFT method. Authors created a library of 200 compounds using the product obtained in the reaction and filtered against nsp3 of CHIKV based on docking using iGEMDOCK, a computational tool. Authors have studied the best molecules after applying the the Lipinski's rule of five and bioactive score. Further, the authors took the best compound i.e. CMPD178 and performed the MD simulations and tdMD simulations with nsp3 protease using AMBER18. MD trajectories were studied to collect the information about the nsp3 of CHIKV with and without screened compound and then, MM-GBSA calculations were performed to calculate change in binding free energies for the formation of complex. The aim of the work is to find the potential candidate as promising inhibitor against nsp3 of CHIKV.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Mahendra Kumar Meena
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Deparment of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Rajan Patel
- CIRBS, Jamia Millia Islamia, New Delhi, India
| | | | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Bandyopadhyay A, Basu S. Criticality in the conformational phase transition among self-similar groups in intrinsically disordered proteins: Probed by salt-bridge dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140474. [PMID: 32579908 DOI: 10.1016/j.bbapap.2020.140474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
Intrinsically disordered proteins (IDP) serve as one of the key components in the global proteome. In contrast to globular proteins, they harbor an enormous amount of physical flexibility enforcing them to be retained in conformational ensembles rather than stable folds. Previous studies in an aligned direction have revealed the importance of transient dynamical phenomena like that of salt-bridge formation in IDPs to support their physical flexibility and have further highlighted their functional relevance. For this characteristic flexibility, IDPs remain amenable and accessible to different ordered binding partners, supporting their potential multi-functionality. The current study further addresses this complex structure-functional interplay in IDPs using phase transition dynamics to conceptualize the underlying (avalanche type) mechanism of their being distributed across and hopping around degenerate structural states (conformational ensembles). For this purpose, extensive molecular dynamics simulations have been done and the data analyzed from a statistical physics perspective. Investigation of the plausible scope of 'self-organized criticality' (SOC) to fit into the complex dynamics of IDPs was found to be assertive, relating the conformational degeneracy of these proteins to their functional multiplicity. In accordance with the transient nature of 'salt-bridge dynamics', the study further uses it as a probe to explain the structural basis of the proposed criticality in the conformational phase transition among self-similar groups in IDPs. The analysis reveal scale-invariant self-similar fractal geometries in the structural conformations of different IDPs. The insights from the study has the potential to be extended further to benefit structural tinkering of IDPs in their functional characterization and drugging.
Collapse
Affiliation(s)
- Abhirup Bandyopadhyay
- Theoretical Neurosciences Group, Institute De Neurosciences Des Systems, Aix-Marseille University, France
| | - Sankar Basu
- Department of Microbiology, Asutosh College (affiliated to University of Calcutta), Kolkata 700026, India.
| |
Collapse
|
15
|
Common Secondary and Tertiary Structural Features of Aptamer-Ligand Interaction Shared by RNA Aptamers with Different Primary Sequences. Molecules 2019; 24:molecules24244535. [PMID: 31835789 PMCID: PMC6943582 DOI: 10.3390/molecules24244535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Aptamer selection can yield many oligonucleotides with different sequences and affinities for the target molecule. Here, we have combined computational and experimental approaches to understand if aptamers with different sequences but the same molecular target share structural and dynamical features. NEO1A, with a known NMR-solved structure, displays a flexible loop that interacts differently with individual aminoglycosides, its ligand affinities and specificities are responsive to ionic strength, and it possesses an adenosine in the loop that is critical for high-affinity ligand binding. NEO2A was obtained from the same selection and, although they are only 43% identical in overall sequence, NEO1A and NEO2A share similar loop sequences. Experimental analysis by 1D NMR and 2-aminopurine reporters combined with molecular dynamics modeling revealed similar structural and dynamical characteristics in both aptamers. These results are consistent with the hypothesis that the target ligand drives aptamer structure and also selects relevant dynamical characteristics for high-affinity aptamer-ligand interaction. Furthermore, they suggest that it might be possible to “migrate” structural and dynamical features between aptamer group members with different primary sequences but with the same target ligand.
Collapse
|
16
|
Suddala KC, Price IR, Dandpat SS, Janeček M, Kührová P, Šponer J, Banáš P, Ke A, Walter NG. Local-to-global signal transduction at the core of a Mn 2+ sensing riboswitch. Nat Commun 2019; 10:4304. [PMID: 31541094 PMCID: PMC6754395 DOI: 10.1038/s41467-019-12230-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 01/01/2023] Open
Abstract
The widespread Mn2+-sensing yybP-ykoY riboswitch controls the expression of bacterial Mn2+ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch aptamer from Xanthomonas oryzae at 2.96 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated metal ions. In >100 µs of MD simulations, we observe that loss of divalents from the core triggers local structural perturbations in the adjacent docking interface, laying the foundation for signal transduction to the regulatory switch helix. Using single-molecule FRET, we unveil a previously unobserved extended 4WJ conformation that samples transient docked states in the presence of Mg2+. Only upon adding sub-millimolar Mn2+, however, can the 4WJ dock stably, a feature lost upon mutation of an adenosine contacting Mn2+ in the core. These observations illuminate how subtly differing ligand preferences of competing metal ions become amplified by the coupling of local with global RNA dynamics.
Collapse
Affiliation(s)
- Krishna C Suddala
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian R Price
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Shiba S Dandpat
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michal Janeček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Petra Kührová
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Kumar D, Kumari K, Jayaraj A, Singh P. Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles. J Biomol Struct Dyn 2019; 38:3018-3034. [PMID: 31366291 DOI: 10.1080/07391102.2019.1650830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chikungunya virus (CHIKV) causes Chikungunya fever (CHIKF) and till date no effective medicine for its cure is available in market. Different research groups find various possible interactions between small molecules and non-structural proteins, viz. nsP3, one of the most important viral elements in CHIKV. In this work, authors have studied the interactions of nsP3 protease of CHIKV with pyranooxazoles. Initially, a one-pot three-component reaction was designed using oxazolidine-2,4-dione, benzaldehyde and cyanoethylacetate to get a proposed biological active molecule, i.e. based on pyranooxazoles. The mechanism for the synthesis of the product based on pyranooxazole was studied through density functional theory (DFT) using Gaussian. Then, a library of the obtained pyranooxazole was created through computational tools by varying the substituents. Further, virtual screening of the designed library of pyranooxazoles (200 compounds) against nsP3 protease of CHIKV was performed. Herein, CMPD 104 showed strongest binding affinity toward the targeted nsP3 protease of CHIKV, based on the least binding energy obtained from docking. Based on docking results, the pharmacological, toxicity, biological score and Lipinski's filters were studied. Further, DFT studies of top five compounds were done using Gaussian. Molecular dynamics (MD) simulation of nsP3 protease of CHIKV with and without 104 was performed using AMBER18 utilizing ff14SB force field in three steps (minimization, equilibration and production). This work is emphasized to designing of one-pot three-component synthesis and to develop a theoretical model to inhibit the nsP3 protease of CHIKV. AbbreviationsCHIKFChikungunya feverCHIKVChikungunya virusDFTdensity functional theoryDSDiscovery StudioMDmolecular dynamicsMM-GBSAmolecular mechanics-generalized born surface areaMMVMolegro molecular viewerCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, D.D.U. College, University of Delhi, New Delhi, India
| | | | - Prashant Singh
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| |
Collapse
|
18
|
Abstract
The three-dimensional structures of RNA molecules provide rich and often critical information for understanding their functions, including how they recognize small molecule and protein partners. Computational modeling of RNA 3D structure is becoming increasingly accurate, particularly with the availability of growing numbers of template structures already solved experimentally and the development of sequence alignment and 3D modeling tools to take advantage of this database. For several recent "RNA puzzle" blind modeling challenges, we have successfully identified useful template structures and achieved accurate structure predictions through homology modeling tools developed in the Rosetta software suite. We describe our semi-automated methodology here and walk through two illustrative examples: an adenine riboswitch aptamer, modeled from a template guanine riboswitch structure, and a SAM I/IV riboswitch aptamer, modeled from a template SAM I riboswitch structure.
Collapse
Affiliation(s)
- Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA, United States
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States; Biophysics Program, Stanford University, Stanford, CA, United States.
| |
Collapse
|
19
|
Kührová P, Mlýnský V, Zgarbová M, Krepl M, Bussi G, Best RB, Otyepka M, Šponer J, Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J Chem Theory Comput 2019; 15:3288-3305. [PMID: 30896943 PMCID: PMC7491206 DOI: 10.1021/acs.jctc.8b00955] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least two salient problems contribute to difficulties in the description of free-energy landscapes of small RNA motifs: (i) excessive stabilization of the unfolded single-stranded RNA ensemble by intramolecular base-phosphate and sugar-phosphate interactions and (ii) destabilization of the native folded state by underestimation of stability of base pairing. Here, we introduce a general ff term (gHBfix) that can selectively fine-tune nonbonding interaction terms in RNA ffs, in particular, the H bonds. The gHBfix potential affects the pairwise interactions between all possible pairs of the specific atom types, while all other interactions remain intact; i.e., it is not a structure-based model. In order to probe the ability of the gHBfix potential to refine the ff nonbonded terms, we performed an extensive set of folding simulations of RNA tetranucleotides and tetraloops. On the basis of these data, we propose particular gHBfix parameters to modify the AMBER RNA ff. The suggested parametrization significantly improves the agreement between experimental data and the simulation conformational ensembles, although our current ff version still remains far from being flawless. While attempts to tune the RNA ffs by conventional reparametrizations of dihedral potentials or nonbonded terms can lead to major undesired side effects, as we demonstrate for some recently published ffs, gHBfix has a clear promising potential to improve the ff performance while avoiding introduction of major new imbalances.
Collapse
Affiliation(s)
- Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Miroslav Krepl
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
20
|
Hrivnák T, Budzák Š, Reis H, Zaleśny R, Carbonnière P, Medveď M. Electric properties of hydrated uracil: From micro- to macrohydration. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gülbakan B, Barylyuk K, Schneider P, Pillong M, Schneider G, Zenobi R. Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer–Ligand Interactions: From Mechanism to Binding Constants. J Am Chem Soc 2018; 140:7486-7497. [DOI: 10.1021/jacs.7b13044] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Basri Gülbakan
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
- Hacettepe University Institute of Child Health, Ihsan Dogramaci Children’s Hospital, Sıhhiye Square, 06100 Ankara, Turkey
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Petra Schneider
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Max Pillong
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
22
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
23
|
Berger KD, Kennedy SD, Schroeder SJ, Znosko BM, Sun H, Mathews DH, Turner DH. Surprising Sequence Effects on GU Closure of Symmetric 2 × 2 Nucleotide RNA Internal Loops. Biochemistry 2018; 57:2121-2131. [PMID: 29570276 PMCID: PMC5963885 DOI: 10.1021/acs.biochem.7b01306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GU base pairs are important RNA structural motifs and often close loops. Accurate prediction of RNA structures relies upon understanding the interactions determining structure. The thermodynamics of some 2 × 2 nucleotide internal loops closed by GU pairs are not well understood. Here, several self-complementary oligonucleotide sequences expected to form duplexes with 2 × 2 nucleotide internal loops closed by GU pairs were investigated. Surprisingly, nuclear magnetic resonance revealed that many of the sequences exist in equilibrium between hairpin and duplex conformations. This equilibrium is not observed with loops closed by Watson-Crick pairs. To measure the thermodynamics of some 2 × 2 nucleotide internal loops closed by GU pairs, non-self-complementary sequences that preclude formation of hairpins were designed. The measured thermodynamics indicate that some internal loops closed by GU pairs are unusually unstable. This instability accounts for the observed equilibria between duplex and hairpin conformations. Moreover, it suggests that future three-dimensional structures of loops closed by GU pairs may reveal interactions that unexpectedly destabilize folding.
Collapse
Affiliation(s)
- Kyle D. Berger
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | | | - Brent M. Znosko
- Department of Chemistry, Saint Louis University, St. Louis MO 63103
| | - Hongying Sun
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - David H. Mathews
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Douglas H. Turner
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Department of Chemistry, University of Rochester, Rochester, NY 14627
| |
Collapse
|
24
|
Smith LG, Zhao J, Mathews DH, Turner DH. Physics-based all-atom modeling of RNA energetics and structure. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 8. [PMID: 28815951 DOI: 10.1002/wrna.1422] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/03/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
The database of RNA sequences is exploding, but knowledge of energetics, structures, and dynamics lags behind. All-atom computational methods, such as molecular dynamics, hold promise for closing this gap. New algorithms and faster computers have accelerated progress in improving the reliability and accuracy of predictions. Currently, the methods can facilitate refinement of experimentally determined nuclear magnetic resonance and x-ray structures, but are 'unreliable' for predictions based only on sequence. Much remains to be discovered, however, about the many molecular interactions driving RNA folding and the best way to approximate them quantitatively. The large number of parameters required means that a wide variety of experimental results will be required to benchmark force fields and different approaches. As computational methods become more reliable and accessible, they will be used by an increasing number of biologists, much as x-ray crystallography has expanded. Thus, many fundamental physical principles underlying the computational methods are described. This review presents a summary of the current state of molecular dynamics as applied to RNA. It is designed to be helpful to students, postdoctoral fellows, and faculty who are considering or starting computational studies of RNA. WIREs RNA 2017, 8:e1422. doi: 10.1002/wrna.1422.
Collapse
Affiliation(s)
- Louis G Smith
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Jianbo Zhao
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Douglas H Turner
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
25
|
Šponer JE, Szabla R, Góra RW, Saitta AM, Pietrucci F, Saija F, Di Mauro E, Saladino R, Ferus M, Civiš S, Šponer J. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys 2018; 18:20047-66. [PMID: 27136968 DOI: 10.1039/c6cp00670a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The origin of life on Earth is one of the most fascinating questions of contemporary science. Extensive research in the past decades furnished diverse experimental proposals for the emergence of first informational polymers that could form the basis of the early terrestrial life. Side by side with the experiments, the fast development of modern computational chemistry methods during the last 20 years facilitated the use of in silico modelling tools to complement the experiments. Modern computations can provide unique atomic-level insights into the structural and electronic aspects as well as the energetics of key prebiotic chemical reactions. Many of these insights are not directly obtainable from the experimental techniques and the computations are thus becoming indispensable for proper interpretation of many experiments and for qualified predictions. This review illustrates the synergy between experiment and theory in the origin of life research focusing on the prebiotic synthesis of various nucleic acid building blocks and on the self-assembly of nucleotides leading to the first functional oligonucleotides.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | - Robert W Góra
- Theoretical Chemistry Group, Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - A Marco Saitta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Fabio Pietrucci
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Ernesto Di Mauro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
26
|
Kolev SK, Petkov PS, Rangelov MA, Trifonov DV, Milenov TI, Vayssilov GN. Interaction of Na+, K+, Mg2+ and Ca2+ counter cations with RNA. Metallomics 2018; 10:659-678. [DOI: 10.1039/c8mt00043c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Data on the location of alkaline and alkaline earth ions at RNA from crystallography, spectroscopy and computational modeling are reviewed.
Collapse
Affiliation(s)
- Stefan K. Kolev
- Acad. E. Djakov Institute of Electronics
- Bulgarian Academy of Sciences
- 1784 Sofia
- Bulgaria
| | - Petko St. Petkov
- Faculty of Chemistry and Pharmacy
- University of Sofia
- 1126 Sofia
- Bulgaria
| | - Miroslav A. Rangelov
- Laboratory of BioCatalysis
- Institute of Organic Chemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | - Teodor I. Milenov
- Acad. E. Djakov Institute of Electronics
- Bulgarian Academy of Sciences
- 1784 Sofia
- Bulgaria
| | | |
Collapse
|
27
|
Effect of single-residue bulges on RNA double-helical structures: crystallographic database analysis and molecular dynamics simulation studies. J Mol Model 2017; 23:311. [DOI: 10.1007/s00894-017-3480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
|
28
|
White NA, Hoogstraten CG. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme. Biophys Chem 2017; 228:62-68. [PMID: 28710920 PMCID: PMC5572644 DOI: 10.1016/j.bpc.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022]
Abstract
The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Krepl M, Blatter M, Cléry A, Damberger FF, Allain FH, Sponer J. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Res 2017; 45:8046-8063. [PMID: 28505313 PMCID: PMC5737849 DOI: 10.1093/nar/gkx418] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023] Open
Abstract
The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Markus Blatter
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Present address: Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel CH-4002, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Fred F. Damberger
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Frédéric H.T. Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
30
|
Harikrishna S, Pradeepkumar PI. Probing the Binding Interactions between Chemically Modified siRNAs and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations. J Chem Inf Model 2017; 57:883-896. [DOI: 10.1021/acs.jcim.6b00773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S. Harikrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai−400076, India
| | - P. I. Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai−400076, India
| |
Collapse
|
31
|
Theoretical study of a proton wire mechanism for the peptide bond formation in the ribosome. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Sharma C, Mohanty D. Molecular Dynamics Simulations for Deciphering the Structural Basis of Recognition of Pre-let-7 miRNAs by LIN28. Biochemistry 2017; 56:723-735. [PMID: 28076679 DOI: 10.1021/acs.biochem.6b00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LIN28 protein inhibits biogenesis of miRNAs belonging to the let-7 family by binding to precursor forms of miRNAs. Overexpression of LIN28 and low levels of let-7 miRNAs are associated with several forms of cancer cells. We have performed multiple explicit solvent molecular dynamics simulations ranging from 200 to 500 ns in length on different isoforms of preE-let-7 in complex with LIN28 and also in isolation to identify structural features and key specificity-determining residues (SDRs) that are important for the inhibitory role of LIN28. Our simulations suggest that a conserved structural feature of the loop regions of preE-let-7 miRNAs is more important for LIN28 recognition than sequence conservation among members of the let-7 family or the presence of the GGAG motif in the 3' region. The loop region consisting of a minimum of five nucleotides helps pre-miRNAs to acquire a conformation ideal for binding to LIN28, but pre-let-7c-2 prefers a conformation with a three-nucleotide loop. Thus, our simulations provide a theoretical rationale for the recent experimental observation of the escape of LIN28-mediated repression by pre-let-7c-2. The essential structural and sequence features highlighted in this study might aid in designing synthetic small molecule inhibitors for modulating LIN28-let-7 interaction in malignant cells. We have also identified crucial SDRs of the LIN28-preE-let-7 complex involving 13 residues of LIN28 and 10 residues of the pre-miRNA. On the basis of the conservation profile of these 13 SDRs, we have identified 10 novel proteins that are not annotated as LIN28 like but are similar in sequence, domain, or fold level to LIN28.
Collapse
Affiliation(s)
- Chhaya Sharma
- Bioinformatics Center, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
33
|
Casalino L, Palermo G, Abdurakhmonova N, Rothlisberger U, Magistrato A. Development of Site-Specific Mg(2+)-RNA Force Field Parameters: A Dream or Reality? Guidelines from Combined Molecular Dynamics and Quantum Mechanics Simulations. J Chem Theory Comput 2016; 13:340-352. [PMID: 28001405 DOI: 10.1021/acs.jctc.6b00905] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vital contribution of Mg2+ ions to RNA biology is challenging to dissect at the experimental level. This calls for the integrative support of atomistic simulations, which at the classical level are plagued by limited accuracy. Indeed, force fields intrinsically neglect nontrivial electronic effects that Mg2+ exerts on its surrounding ligands in varying RNA coordination environments. Here, we present a combined computational study based on classical molecular dynamics (MD) and Density Functional Theory (DFT) calculations, aimed at characterizing (i) the performance of five Mg2+ force field (FF) models in RNA systems and (ii) how charge transfer and polarization affect the binding of Mg2+ ions in different coordination motifs. As a result, a total of ∼2.5 μs MD simulations (100/200 ns for each run) for two prototypical Mg2+-dependent ribozymes showed remarkable differences in terms of populations of inner-sphere coordination site types. Most importantly, complementary DFT calculations unveiled that differences in charge transfer and polarization among recurrent Mg2+-RNA coordination motifs are surprisingly small. In particular, the charge of the Mg2+ ions substantially remains constant through different coordination sites, suggesting that the common philosophy of developing site-specific Mg2+ ion parameters is not in line with the physical origin of the Mg2+-RNA MD simulations inaccuracies. Overall, this study constitutes a guideline for an adept use of current Mg2+ models and provides novel insights for the rational development of next-generation Mg2+ FFs to be employed for atomistic simulations of RNA.
Collapse
Affiliation(s)
- Lorenzo Casalino
- International School for Advanced Studies (SISSA) , Trieste, Italy
| | - Giulia Palermo
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Nodira Abdurakhmonova
- International School for Advanced Studies (SISSA) , Trieste, Italy.,Università degli Studi di Trieste , Trieste, Italy
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o SISSA , via Bonomea 265, Trieste, Italy
| |
Collapse
|
34
|
Šponer J, Krepl M, Banáš P, Kührová P, Zgarbová M, Jurečka P, Havrila M, Otyepka M. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes? WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863061 DOI: 10.1002/wrna.1405] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
Abstract
We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
35
|
Ochieng PO, White NA, Feig M, Hoogstraten CG. Intrinsic Base-Pair Rearrangement in the Hairpin Ribozyme Directs RNA Conformational Sampling and Tertiary Interface Formation. J Phys Chem B 2016; 120:10885-10898. [PMID: 27701852 DOI: 10.1021/acs.jpcb.6b05606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dynamic fluctuations in RNA structure enable conformational changes that are required for catalysis and recognition. In the hairpin ribozyme, the catalytically active structure is formed as an intricate tertiary interface between two RNA internal loops. Substantial alterations in the structure of each loop are observed upon interface formation, or docking. The very slow on-rate for this relatively tight interaction has led us to hypothesize a double conformational capture mechanism for RNA-RNA recognition. We used extensive molecular dynamics simulations to assess conformational sampling in the undocked form of the loop domain containing the scissile phosphate (loop A). We observed several major accessible conformations with distinctive patterns of hydrogen bonding and base stacking interactions in the active-site internal loop. Several important conformational features characteristic of the docked state were observed in well-populated substates, consistent with the kinetic sampling of docking-competent states by isolated loop A. Our observations suggest a hybrid or multistage binding mechanism, in which initial conformational selection of a docking-competent state is followed by induced-fit adjustment to an in-line, chemically reactive state only after formation of the initial complex with loop B.
Collapse
Affiliation(s)
- Patrick O Ochieng
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
36
|
Christian T, Sakaguchi R, Perlinska AP, Lahoud G, Ito T, Taylor EA, Yokoyama S, Sulkowska JI, Hou YM. Methyl transfer by substrate signaling from a knotted protein fold. Nat Struct Mol Biol 2016; 23:941-948. [PMID: 27571175 PMCID: PMC5429141 DOI: 10.1038/nsmb.3282] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Proteins with knotted configurations, in comparison with unknotted proteins, are restricted in conformational space. Little is known regarding whether knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. TrmD is a bacterial methyltransferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product, m1G37-tRNA, is essential for life and maintains protein-synthesis reading frames. Using an integrated approach of structural, kinetic, and computational analysis, we show that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot undergoes complex internal movements that respond to AdoMet binding and signaling. Most of the signaling propagates the free energy of AdoMet binding, thereby stabilizing tRNA binding and allowing assembly of the active site. This work demonstrates new principles of knots as organized structures that capture the free energies of substrate binding and facilitate catalysis.
Collapse
Affiliation(s)
- Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Reiko Sakaguchi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Agata P Perlinska
- Center of New Technologies, University of Warsaw, Warsaw, Poland
- Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Takuhiro Ito
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Graduate School of Science, University of Tokyo, Tokyo, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Erika A Taylor
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Graduate School of Science, University of Tokyo, Tokyo, Japan
- RIKEN Structural Biology Laboratory, Yokohama, Japan
| | - Joanna I Sulkowska
- Center of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Casalino L, Magistrato A. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Kührová P, Best RB, Bottaro S, Bussi G, Šponer J, Otyepka M, Banáš P. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J Chem Theory Comput 2016; 12:4534-48. [PMID: 27438572 PMCID: PMC6169534 DOI: 10.1021/acs.jctc.6b00300] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.
Collapse
Affiliation(s)
- Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic,
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Sandro Bottaro
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic,
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic,
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic,
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
39
|
Rebič M, Laaksonen A, Šponer J, Uličný J, Mocci F. Molecular Dynamics Simulation Study of Parallel Telomeric DNA Quadruplexes at Different Ionic Strengths: Evaluation of Water and Ion Models. J Phys Chem B 2016; 120:7380-91. [PMID: 27379924 DOI: 10.1021/acs.jpcb.6b06485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most molecular dynamics (MD) simulations of DNA quadruplexes have been performed under minimal salt conditions using the Åqvist potential parameters for the cation with the TIP3P water model. Recently, this combination of parameters has been reported to be problematic for the stability of quadruplex DNA, especially caused by the ion interactions inside or near the quadruplex channel. Here, we verify how the choice of ion parameters and water model can affect the quadruplex structural stability and the interactions with the ions outside the channel. We have performed a series of MD simulations of the human full-parallel telomeric quadruplex by neutralizing its negative charge with K(+) ions. Three combinations of different cation potential parameters and water models have been used: (a) Åqvist ion parameters, TIP3P water model; (b) Joung and Cheatham ion parameters, TIP3P water model; and (c) Joung and Cheatham ion parameters, TIP4Pew water model. For the combinations (b) and (c), the effect of the ionic strength has been evaluated by adding increasing amounts of KCl salt (50, 100, and 200 mM). Two independent simulations using the Åqvist parameters with the TIP3P model show that this combination is clearly less suited for the studied quadruplex with K(+) as counterions. In both simulations, one ion escapes from the channel, followed by significant deformation of the structure, leading to deviating conformation compared to that in the reference crystallographic data. For the other combinations of ion and water potentials, no tendency is observed for the channel ions to escape from the quadruplex channel. In addition, the internal mobility of the three loops, torsion angles, and counterion affinity have been investigated at varied salt concentrations. In summary, the selection of ion and water models is crucial as it can affect both the structure and dynamics as well as the interactions of the quadruplex with its counterions. The results obtained with the TIP4Pew model are found to be closest to the experimental data at all of the studied ion concentrations.
Collapse
Affiliation(s)
- Matúš Rebič
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden.,Science for Life Laboratory (SciLifelab) , 17121 Solna, Sweden
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden.,Science for Life Laboratory (SciLifelab) , 17121 Solna, Sweden.,Stellenbosch Institute of Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , 7600 Stellenbosch, South Africa.,Department of Chemical and Geological Sciences, University of Cagliari , I-09042 Monserrato, Italy
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic (AVČR) , Kralovopolska 135, 612 65 Brno, Czech Republic.,Central European Institute of Technology (CEITEC) , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Francesca Mocci
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden.,Science for Life Laboratory (SciLifelab) , 17121 Solna, Sweden.,Department of Chemical and Geological Sciences, University of Cagliari , I-09042 Monserrato, Italy
| |
Collapse
|
40
|
Li W, Kotsis K, Manzhos S. Comparative density functional theory and density functional tight binding study of arginine and arginine-rich cell penetrating peptide TAT adsorption on anatase TiO2. Phys Chem Chem Phys 2016; 18:19902-17. [DOI: 10.1039/c6cp02671k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparative DFT-DFTB study of geometries and electronic structures of arginine, arginine dipeptide, and arginine-rich cell penetrating peptide TAT on the surface of TiO2.
Collapse
Affiliation(s)
- Wenxuan Li
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| | - Konstantinos Kotsis
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| | - Sergei Manzhos
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
41
|
Madan B, Kasprzak JM, Tuszynska I, Magnus M, Szczepaniak K, Dawson WK, Bujnicki JM. Modeling of Protein-RNA Complex Structures Using Computational Docking Methods. Methods Mol Biol 2016; 1414:353-372. [PMID: 27094302 DOI: 10.1007/978-1-4939-3569-7_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A significant part of biology involves the formation of RNA-protein complexes. X-ray crystallography has added a few solved RNA-protein complexes to the repertoire; however, it remains challenging to capture these complexes and often only the unbound structures are available. This has inspired a growing interest in finding ways to predict these RNA-protein complexes. In this study, we show ways to approach this problem by computational docking methods, either with a fully automated NPDock server or with a workflow of methods for generation of many alternative structures followed by selection of the most likely solution. We show that by introducing experimental information, the structure of the bound complex is rendered far more likely to be within reach. This study is meant to help the user of docking software understand how to grapple with a typical realistic problem in RNA-protein docking, understand what to expect in the way of difficulties, and recognize the current limitations.
Collapse
Affiliation(s)
- Bharat Madan
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Joanna M Kasprzak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland
| | - Irina Tuszynska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
- Institute of Informatics, University of Warsaw, ul. Banacha 2, 02-097, Warsaw, Poland
| | - Marcin Magnus
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Krzysztof Szczepaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Wayne K Dawson
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland.
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
42
|
Kührová P, Otyepka M, Šponer J, Banáš P. Are Waters around RNA More than Just a Solvent? - An Insight from Molecular Dynamics Simulations. J Chem Theory Comput 2015; 10:401-11. [PMID: 26579919 DOI: 10.1021/ct400663s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydrating water molecules are believed to be an inherent part of the RNA structure and have a considerable impact on RNA conformation. However, the magnitude and mechanism of the interplay between water molecules and the RNA structure are still poorly understood. In principle, such hydration effects can be studied by molecular dynamics (MD) simulations. In our recent MD studies, we observed that the choice of water model has a visible impact on the predicted structure and structural dynamics of RNA and, in particular, has a larger effect than type, parametrization, and concentration of the ions. Furthermore, the water model effect is sequence dependent and modulates the sequence dependence of A-RNA helical parameters. Clearly, the sensitivity of A-RNA structural dynamics to the water model parametrization is a rather spurious effect that complicates MD studies of RNA molecules. These results nevertheless suggest that the sequence dependence of the A-RNA structure, usually attributed to base stacking, might be driven by the structural dynamics of specific hydration. Here, we present a systematic MD study that aimed to (i) clarify the atomistic mechanism of the water model sensitivity and (ii) discover whether and to what extent specific hydration modulates the A-RNA structural variability. We carried out an extended set of MD simulations of canonical A-RNA duplexes with TIP3P, TIP4P/2005, TIP5P, and SPC/E explicit water models and found that different water models provided a different extent of water bridging between 2'-OH groups across the minor groove, which in turn influences their distance and consequently also inclination, roll, and slide parameters. Minor groove hydration is also responsible for the sequence dependence of these helical parameters. Our simulations suggest that TIP5P is not optimal for RNA simulations.
Collapse
Affiliation(s)
- Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. Listopadu 12, 771 46, Olomouc, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. Listopadu 12, 771 46, Olomouc, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
43
|
Havrila M, Zgarbová M, Jurečka P, Banáš P, Krepl M, Otyepka M, Šponer J. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. J Phys Chem B 2015; 119:15176-90. [DOI: 10.1021/acs.jpcb.5b08876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marek Havrila
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
44
|
Somarowthu S. Progress and Current Challenges in Modeling Large RNAs. J Mol Biol 2015; 428:736-747. [PMID: 26585404 DOI: 10.1016/j.jmb.2015.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/21/2022]
Abstract
Recent breakthroughs in next-generation sequencing technologies have led to the discovery of several classes of non-coding RNAs (ncRNAs). It is now apparent that RNA molecules are not only just carriers of genetic information but also key players in many cellular processes. While there has been a rapid increase in the number of ncRNA sequences deposited in various databases over the past decade, the biological functions of these ncRNAs are largely not well understood. Similar to proteins, RNA molecules carry out a function by forming specific three-dimensional structures. Understanding the function of a particular RNA therefore requires a detailed knowledge of its structure. However, determining experimental structures of RNA is extremely challenging. In fact, RNA-only structures represent just 1% of the total structures deposited in the PDB. Thus, computational methods that predict three-dimensional RNA structures are in high demand. Computational models can provide valuable insights into structure-function relationships in ncRNAs and can aid in the development of functional hypotheses and experimental designs. In recent years, a set of diverse RNA structure prediction tools have become available, which differ in computational time, input data and accuracy. This review discusses the recent progress and challenges in RNA structure prediction methods.
Collapse
Affiliation(s)
- Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, Kline Biology Tower, New Haven, CT 06511, USA.
| |
Collapse
|
45
|
Sripathi KN, Banáš P, Réblová K, Šponer J, Otyepka M, Walter NG. Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Phys Chem Chem Phys 2015; 17:5887-900. [PMID: 25631765 DOI: 10.1039/c4cp05083e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.
Collapse
Affiliation(s)
- Kamali N Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | | | | | |
Collapse
|
46
|
Dubecký M, Walter NG, Šponer J, Otyepka M, Banáš P. Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage. Biopolymers 2015; 103:550-62. [PMID: 25858644 PMCID: PMC4553064 DOI: 10.1002/bip.22657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 01/28/2023]
Abstract
In numerous Gram-positive bacteria, the glmS ribozyme or catalytic riboswitch regulates the expression of glucosamine-6-phosphate (GlcN6P) synthase via site-specific cleavage of its sugar-phosphate backbone in response to GlcN6P ligand binding. Biochemical data have suggested a crucial catalytic role for an active site guanine (G40 in Thermoanaerobacter tengcongensis, G33 in Bacillus anthracis). We used hybrid quantum chemical/molecular mechanical (QM/MM) calculations to probe the mechanism where G40 is deprotonated and acts as a general base. The calculations suggest that the deprotonated guanine G40(-) is sufficiently reactive to overcome the thermodynamic penalty arising from its rare protonation state, and thus is able to activate the A-1(2'-OH) group toward nucleophilic attack on the adjacent backbone. Furthermore, deprotonation of A-1(2'-OH) and nucleophilic attack are predicted to occur as separate steps, where activation of A-1(2'-OH) precedes nucleophilic attack. Conversely, the transition state associated with the rate-determining step corresponds to concurrent nucleophilic attack and protonation of the G1(O5') leaving group by the ammonium moiety of the GlcN6P cofactor. Overall, our calculations help to explain the crucial roles of G40 (as a general base) and GlcN6P (as a general acid) during glmS ribozyme self-cleavage. In addition, we show that the QM/MM description of the glmS ribozyme self-cleavage reaction is significantly more sensitive to the size of the QM region and the quality of the QM-MM coupling than that of other small ribozymes.
Collapse
Affiliation(s)
- Matúš Dubecký
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
47
|
Stefaniak F, Chudyk EI, Bodkin M, Dawson WK, Bujnicki JM. Modeling of ribonucleic acid-ligand interactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2015. [DOI: 10.1002/wcms.1226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw Poland
| | - Ewa I. Chudyk
- Research Informatics; Evotec (UK) Ltd; Milton Park UK
| | | | - Wayne K. Dawson
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| |
Collapse
|
48
|
Islam B, Stadlbauer P, Krepl M, Koca J, Neidle S, Haider S, Sponer J. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res 2015; 43:8673-93. [PMID: 26245347 PMCID: PMC4605300 DOI: 10.1093/nar/gkv785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023] Open
Abstract
The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.
Collapse
Affiliation(s)
- Barira Islam
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jaroslav Koca
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic National Center for Biomolecular Research, Faculty of Science, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiri Sponer
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
49
|
Condon D, Kennedy SD, Mort BC, Kierzek R, Yildirim I, Turner DH. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J Chem Theory Comput 2015; 11:2729-2742. [PMID: 26082675 PMCID: PMC4463549 DOI: 10.1021/ct501025q] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/31/2022]
Abstract
Molecular dynamics (MD) simulations for RNA tetramers r(AAAA), r(CAAU), r(GACC), and r(UUUU) are benchmarked against 1H-1H NOESY distances and 3J scalar couplings to test effects of RNA torsion parametrizations. Four different starting structures were used for r(AAAA), r(CAAU), and r(GACC), while five starting structures were used for r(UUUU). On the basis of X-ray structures, criteria are reported for quantifying stacking. The force fields, AMBER ff99, parmbsc0, parm99χ_Yil, ff10, and parmTor, all predict experimentally unobserved stacks and intercalations, e.g., base 1 stacked between bases 3 and 4, and incorrect χ, ϵ, and sugar pucker populations. The intercalated structures are particularly stable, often lasting several microseconds. Parmbsc0, parm99χ_Yil, and ff10 give similar agreement with NMR, but the best agreement is only 46%. Experimentally unobserved intercalations typically are associated with reduced solvent accessible surface area along with amino and hydroxyl hydrogen bonds to phosphate nonbridging oxygens. Results from an extensive set of MD simulations suggest that recent force field parametrizations improve predictions, but further improvements are necessary to provide reasonable agreement with NMR. In particular, intramolecular stacking and hydrogen bonding interactions may not be well balanced with the TIP3P water model. NMR data and the scoring method presented here provide rigorous benchmarks for future changes in force fields and MD methods.
Collapse
Affiliation(s)
- David
E. Condon
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Scott D. Kennedy
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14642, United States
| | - Brendan C. Mort
- University
of Rochester Center for Integrated Research Computing, Rochester, New York 14627, United States
| | - Ryszard Kierzek
- Institute
of Bioorganic Chemistry, Polish Academy
of Sciences, 60-704 Poznan, Poland
| | - Ilyas Yildirim
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Douglas H. Turner
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
50
|
Jin L, Liu K, Aoki Y. Interaction of OH− with xylan and its hydrated complexes: structures and molecular dynamics study using elongation method. J Mol Model 2015; 21:117. [DOI: 10.1007/s00894-015-2666-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
|