1
|
Sen A, Sharma S, Rajaraman G. Bridging the Oxo Wall: A New Perspective on High-valent Metal-Oxo Species and Their Reactivity in Mn, Fe, and Co Complexes. Angew Chem Int Ed Engl 2025; 64:e202419953. [PMID: 39980408 DOI: 10.1002/anie.202419953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
The "oxo-wall" is a well-established concept in the area of bioinorganic chemistry, which refers to the instability of the terminal metal-oxo complexes in the +4 oxidation state, with tetragonal C4v symmetry beyond group 8 elements. This leads to a diverse and highly reactive chemistry of Co-oxo complexes, as evidenced in the literature, ranging from challenging C-H bond activation to efficient water oxidation. Despite extensive research on first-row terminal metal-oxo complexes and the "oxo-wall" concept, studies correlating the reactivity of these species across the periodic table remain scarce. In this work, using a combination of DFT and ab initio CASSCF calculations, we have explored the structure, bonding, and reactivity of [MIV/V(15-TMC)(O)(CH3CN)]m+ (M= Mn, Fe and Co) species. Our study reveals several intriguing outcomes: (i) while existing literature typically indicates the presence of either CoIV=O or CoIII-O• species beyond the wall, we propose a quantum mechanical mixture of these two species (termed as CoIV=O CoIII-O•), with the per cent of mixing dictated by ligand architecture and symmetry considerations; (ii) we observe that the oxyl radical character increases beyond the wall, correlating with larger Ntrans-M-O tilt angles; and (iii) we identify an inverse relationship between the percentage of M-O• character and the kinetic barriers for C-H bond activation. These findings offer a new perspective on the roles of oxidation states, spin states, and the nature of the metal ion in reactivity.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay IIT Bombay, Powai -, 400076, Mumbai, Maharashtra, India
| | - Sunita Sharma
- Department of Chemistry, Indian Institute of Technology Bombay IIT Bombay, Powai -, 400076, Mumbai, Maharashtra, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay IIT Bombay, Powai -, 400076, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Aydin AO, de Lichtenberg C, Liang F, Forsman J, Graça AT, Chernev P, Zhu S, Mateus A, Magnuson A, Cheah MH, Schröder WP, Ho F, Lindblad P, Debus RJ, Mamedov F, Messinger J. Probing substrate water access through the O1 channel of Photosystem II by single site mutations and membrane inlet mass spectrometry. PHOTOSYNTHESIS RESEARCH 2025; 163:28. [PMID: 40263146 PMCID: PMC12014804 DOI: 10.1007/s11120-025-01147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Light-driven water oxidation by photosystem II sustains life on Earth by providing the electrons and protons for the reduction of CO2 to carbohydrates and the molecular oxygen we breathe. The inorganic core of the oxygen evolving complex is made of the earth-abundant elements manganese, calcium and oxygen (Mn4CaO5 cluster), and is situated in a binding pocket that is connected to the aqueous surrounding via water-filled channels that allow water intake and proton egress. Recent serial crystallography and infrared spectroscopy studies performed with PSII isolated from Thermosynechococcus vestitus (T. vestitus) support that one of these channels, the O1 channel, facilitates water access to the Mn4CaO5 cluster during its S2→S3 and S3→S4→S0 state transitions, while a subsequent CryoEM study concluded that this channel is blocked in the cyanobacterium Synechocystis sp. PCC 6803, questioning the role of the O1 channel in water delivery. Employing site-directed mutagenesis we modified the two O1 channel bottleneck residues D1-E329 and CP43-V410 (T. vestitus numbering) and probed water access and substrate exchange via time resolved membrane inlet mass spectrometry. Our data demonstrates that water reaches the Mn4CaO5 cluster via the O1 channel in both wildtype and mutant PSII. In addition, the detailed analysis provides functional insight into the intricate protein-water-cofactor network near the Mn4CaO5 cluster that includes the pentameric, near planar 'water wheel' of the O1 channel.
Collapse
Affiliation(s)
- A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Casper de Lichtenberg
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Feiyan Liang
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Jack Forsman
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden
| | - André T Graça
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, 38042, France
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Shaochun Zhu
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
| | - André Mateus
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, 907 36, Sweden
| | - Ann Magnuson
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Wolfgang P Schröder
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Peter Lindblad
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden.
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden.
| |
Collapse
|
3
|
Guo Y, Kloo L, Sun L. Quantum Chemical Understanding of the O 2 Release Process from Nature's Water Splitting Cofactor. Angew Chem Int Ed Engl 2025; 64:e202421383. [PMID: 39963749 DOI: 10.1002/anie.202421383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Natural photosynthesis plays a vital role in the supply of energy and oxygen necessary for the survival of biological organisms. The current leading proposal of the O-O bond formation in photosystem II suggests the coupling between the central μ-oxo (O5) and the additional oxygenic ligand (Ox) of the manganese-calcium oxide cofactor. However, the subsequent process through which molecular dioxygen is formed and released remains elusive. In this report, quantum chemical calculations reveal that the O2 release process is initiated by the cleavage of the Mn-O5 bond, without a preliminary conformational change of the peroxide [O5-Ox]2- group. Subsequently, the [O5-Ox] moiety is converted from the superoxide to the weakly bound quasi-O2 where the Mn-Ox bond is cleaved, and after a twist of the quasi-O2 unit, the free O2 is ultimately released. Alternative pathways display significantly slower kinetics, due to the lower structural stabilities of the rate-limiting transition states. The cause of the difference is associated with the Jahn-Teller axial orientation and the local ring strain within the Mn cluster. These findings contribute to unravelling the intricate mechanism involved in an important step of photosynthetic oxygen evolution for a deeper understanding of nature's water oxidation catalysis.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
4
|
Ishikita H, Saito K. Photosystem II: Probing Protons and Breaking Barriers. Biochemistry 2025. [PMID: 40193597 DOI: 10.1021/acs.biochem.5c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Photosystem II (PSII) is a multisubunit protein-pigment complex that drives the oxidation of water, producing molecular oxygen essential for life. At the core of PSII, the oxygen-evolving complex (OEC) facilitates sequential four-electron oxidation steps following the Kok cycle. Despite significant progress in structural and spectroscopic studies, fundamental questions remain regarding the precise mechanisms of substrate water incorporation, deprotonation pathways, and oxygen-oxygen bond formation. A key challenge is determining the protonation states of water ligands and oxo bridges in the OEC, as incorrect assignments can eventually lead to misinterpretation of reaction energetics and mechanisms. This Review examines recent structural, spectroscopic, and theoretical studies, with a particular focus on proton transfer pathways and the role of key residues in regulating OEC deprotonation, emphasizing the importance of systematically establishing protonation states at lower S-states before modeling higher oxidation states. By integrating structural data with fundamental chemical principles, we outline essential considerations for constructing a physically meaningful and mechanistically coherent model of water oxidation in PSII.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Siegbahn PEM. The Mechanism of Nitrite Reductase. J Comput Chem 2025; 46:e70088. [PMID: 40127040 PMCID: PMC11932435 DOI: 10.1002/jcc.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
Cytochrome c nitrite reductase (CcNiR) activates nitrite and produces ammonia. It is one of several enzymes that use a redox-active cofactor to perform its reaction. In this case, the cofactor has a heme with a lysine as the proximal ligand and a charged nearby arginine. The role of a tyrosine, which is also close, has been less clear. There are also four bis-histidine-ligated hemes involved in the electron transfers. CcNiR has been studied before, using essentially the same methods as here. However, the mechanism is very complicated, involving six reductions, and quite different results for the mechanism have been obtained here. For example, the tyrosine has here been found to be redox active in the final step when ammonia is produced. Also, the arginine has here been found to stay protonated throughout the mechanism, which is different from what was found in the previous study. The present results are in very good agreement with experimental findings and are, therefore, another case where the methodology has been shown to work very well. Previous examples include Photosystem II and Nitrogenase, normally considered to be the most important enzymes in nature for the development of life.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius LaboratoryStockholm UniversityStockholmSweden
| |
Collapse
|
6
|
Sharma S, Rajaraman G. Diiron(IV)-Oxo Species and Water Oxidation: How Crucial is Electronic Cooperativity? Chemistry 2025; 31:e202404684. [PMID: 39967402 DOI: 10.1002/chem.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Indexed: 02/20/2025]
Abstract
Water splitting, crucial for generating oxygen and hydrogen, remains a central challenge in chemistry due to its importance in developing sustainable energy sources and addressing environmental concerns. Consequently, numerous complexes have been developed to split water and release oxygen and hydrogen, albeit typically requiring external sources such as thermal, photo, or electrochemical methods. In this context, the discovery of a (μ-oxo)bis(μ-carboxamido) diiron(IV) complex, [FeIV₂O(L)₂]2+ (L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane), which activates both C-H and O-H bonds without external stimuli, has attracted significant attention. Notably, this complex generates hydroxyl radicals (⋅OH) without O₂ evolution and displays termolecular kinetics, presenting a rare and intriguing mechanistic puzzle. In this work, we explore the catalytic mechanism of water oxidation by this diiron(IV) complex using DFT methods. Our computational findings validate experimental observations regarding the necessity of a second water molecule in the reaction, revealing a bifurcated electron-proton transfer (BEPT) pathway driven by termolecular reactivity. Moreover, we highlight the crucial role of excess water molecules in stabilising the reaction intermediates, particularly via interaction with the -OMe groups to form a water cluster model. The inclusion of explicit water molecules was found to reduce the activation barrier to 23.5 kJ/mol from the reactant and 62.7 kJ/mol from the reactant complex, whereas, with only one water molecule present, the barrier was 344.3 kJ/mol, highlighting the critical role of the adventitious water molecule at the active site. Our study underscores the importance of metal-metal cooperativity, ligand design, spin-state modulation, and second-sphere effects in shaping the catalytic behaviour. These insights provide a detailed understanding of the electronic structure and reactivity, offering valuable guidelines for future catalyst design in water oxidation and beyond.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, IIT Bombay, Powai, 400076, Mumbai, Maharashtra, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, IIT Bombay, Powai, 400076, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Ariafard A, Longhurst M, Swiegers GF, Stranger R. On the Mechanism of Light-Driven O 2 Evolution by the Mn(III) Complex [Mn(salpd)(OH 2)] + and Quinone. Inorg Chem 2025; 64:1821-1832. [PMID: 39835749 DOI: 10.1021/acs.inorgchem.4c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In this study, we apply TD-DFT and DFT calculations to explore the mechanistic details of O2 evolution in an artificial system that closely resembles Photosystem II (PSII). The reaction involves mononuclear Mn(III) complex [Mn(salpd)(OH2)]+ and p-benzoquinone under light-driven conditions. Our calculations reveal that the Schiff-base ligand salpd plays a crucial role in several key steps of the reaction, including the light-mediated oxidation of [Mn(salpd)(OH2)]+ to [Mn(salpd)(OH)]+ by p-benzoquinone, the subsequent oxidation of [Mn(salpd)(OH)]+ to the key Mn(V) intermediate [Mn(salpd)(O)]+, and the critical O-O bond formation step. This role is primarily due to the high propensity of the salpd ligand to undergo oxidation by one unit. This characteristic allows the salpd ligand to reduce Mn(IV) in the intermediate [Mn(salpd)(OH)]+ to Mn(III), triggering a Jahn-Teller effect that increases the ionic character of the hydroxide ligand. This transformation makes the resulting complex a strong nucleophile, facilitating O-O bond formation through a reaction between [Mn(salpd)(OH)]+ and [Mn(salpd)(O)]+ with a moderate overall activation free energy of 18.6 kcal/mol. The mechanistic insights presented in this study may provide a useful foundation for developing novel systems that catalyze water oxidation under light-driven conditions, mimicking Photosystem II, and could potentially contribute to advancements in sustainable energy generation.
Collapse
Affiliation(s)
- Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew Longhurst
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Yamaguchi K, Miyagawa K, Shoji M, Kawakami T, Isobe H, Yamanaka S, Nakajima T. Theoretical elucidation of the structure, bonding, and reactivity of the CaMn 4O x clusters in the whole Kok cycle for water oxidation embedded in the oxygen evolving center of photosystem II. New molecular and quantum insights into the mechanism of the O-O bond formation. PHOTOSYNTHESIS RESEARCH 2024; 162:291-330. [PMID: 37945776 PMCID: PMC11614991 DOI: 10.1007/s11120-023-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
This paper reviews our historical developments of broken-symmetry (BS) and beyond BS methods that are applicable for theoretical investigations of metalloenzymes such as OEC in PSII. The BS hybrid DFT (HDFT) calculations starting from high-resolution (HR) XRD structure in the most stable S1 state have been performed to elucidate structure and bonding of whole possible intermediates of the CaMn4Ox cluster (1) in the Si (i = 0 ~ 4) states of the Kok cycle. The large-scale HDFT/MM computations starting from HR XRD have been performed to elucidate biomolecular system structures which are crucial for examination of possible water inlet and proton release pathways for water oxidation in OEC of PSII. DLPNO CCSD(T0) computations have been performed for elucidation of scope and reliability of relative energies among the intermediates by HDFT. These computations combined with EXAFS, XRD, XFEL, and EPR experimental results have elucidated the structure, bonding, and reactivity of the key intermediates, which are indispensable for understanding and explanation of the mechanism of water oxidation in OEC of PSII. Interplay between theory and experiments have elucidated important roles of four degrees of freedom, spin, charge, orbital, and nuclear motion for understanding and explanation of the chemical reactivity of 1 embedded in protein matrix, indicating the participations of the Ca(H2O)n ion and tyrosine(Yz)-O radical as a one-electron acceptor for the O-O bond formation. The Ca-assisted Yz-coupled O-O bond formation mechanisms for water oxidation are consistent with recent XES and very recent time-resolved SFX XFEL and FTIR results.
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.
- SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| | - Koichi Miyagawa
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takashi Kawakami
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shusuke Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
9
|
Chernev P, Aydin AO, Messinger J. On the simulation and interpretation of substrate-water exchange experiments in photosynthetic water oxidation. PHOTOSYNTHESIS RESEARCH 2024; 162:413-426. [PMID: 38512410 PMCID: PMC11639282 DOI: 10.1007/s11120-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Water oxidation by photosystem II (PSII) sustains most life on Earth, but the molecular mechanism of this unique process remains controversial. The ongoing identification of the binding sites and modes of the two water-derived substrate oxygens ('substrate waters') in the various intermediates (Si states, i = 0, 1, 2, 3, 4) that the water-splitting tetra-manganese calcium penta-oxygen (Mn4CaO5) cluster attains during the reaction cycle provides central information towards resolving the unique chemistry of biological water oxidation. Mass spectrometric measurements of single- and double-labeled dioxygen species after various incubation times of PSII with H218O provide insight into the substrate binding modes and sites via determination of exchange rates. Such experiments have revealed that the two substrate waters exchange with different rates that vary independently with the Si state and are hence referred to as the fast (Wf) and the slow (WS) substrate waters. New insight for the molecular interpretation of these rates arises from our recent finding that in the S2 state, under special experimental conditions, two different rates of WS exchange are observed that appear to correlate with the high spin and low spin conformations of the Mn4CaO5 cluster. Here, we reexamine and unite various proposed methods for extracting and assigning rate constants from this recent data set. The analysis results in a molecular model for substrate-water binding and exchange that reconciles the expected non-exchangeability of the central oxo bridge O5 when located between two Mn(IV) ions with the experimental and theoretical assignment of O5 as WS in all S states. The analysis also excludes other published proposals for explaining the water exchange kinetics.
Collapse
Affiliation(s)
- Petko Chernev
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden
| | - A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden.
| |
Collapse
|
10
|
Bury G, Pushkar Y. Insights from Ca 2+→Sr 2+ substitution on the mechanism of O-O bond formation in photosystem II. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-024-01117-2. [PMID: 39186214 DOI: 10.1007/s11120-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
In recent years, there has been a steady interest in unraveling the intricate mechanistic details of water oxidation mechanism in photosynthesis. Despite the substantial progress made over several decades, a comprehensive understanding of the precise kinetics underlying O-O bond formation and subsequent evolution remains elusive. However, it is well-established that the oxygen evolving complex (OEC), specifically the CaMn4O5 cluster, plays a crucial role in O-O bond formation, undergoing a series of four oxidative events as it progresses through the S-states of the Kok cycle. To gain further insights into the OEC, researchers have explored the substitution of the Ca2+ cofactor with strontium (Sr), the sole atomic replacement capable of retaining oxygen-evolving activity. Empirical investigations utilizing spectroscopic techniques such as XAS, XRD, EPR, FTIR, and XANES have been conducted to probe the structural consequences of Ca2+→Sr2+ substitution. In parallel, the development of DFT and QM/MM computational models has explored different oxidation and protonation states, as well as variations in ligand coordination at the catalytic center involving amino acid residues. In this review, we critically evaluate and integrate these computational and spectroscopic approaches, focusing on the structural and mechanistic implications of Ca2+→Sr2+ substitution in PS II. We contribute DFT modelling and simulate EXAFS Fourier transforms of Sr-substituted OEC, analyzing promising structures of the S3 state. Through the combination of computational modeling and spectroscopic investigations, valuable insights have been gained, developing a deeper understanding of the photosynthetic process.
Collapse
Affiliation(s)
- Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Ariafard A, Longhurst M, Swiegers GF, Stranger R. Mechanistic elucidation of O 2 production from tBuOOH in water using the Mn(II) catalyst [Mn 2(mcbpen) 2(H 2O) 2] 2+: a DFT study. Dalton Trans 2024; 53:14089-14097. [PMID: 39120522 DOI: 10.1039/d4dt01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This study employs density functional theory at the SMD/B3LYP-D3/6-311+G(2d,p),def2-TZVPP//SMD/B3LYP-D3/6-31G(d),SDD level of theory to explore the mechanistic details of O2 generation from tBuOOH, using H218O as the solvent, in the presence of the Mn(II) catalyst [Mn2(mcbpen)2(H2O)2]2+. Since this chemistry was reported to occur through the reaction of Mn(III)(μ-O)Mn(IV)-O˙ with water, we first revaluated this proposal and found that it occurs with an activation barrier greater than 36 kcal mol-1, ruling out the functioning of such a dimer as the active catalyst. Experimental evidence has shown that the oxidation of [Mn2(mcbpen)2(H2O)2]2+ by tBuOOH in H218O produces the Mn(IV) species [Mn(18O)(mcbpen)]+. Our investigations revealed a plausible mechanism for this observation in which [Mn (18O)(mcbpen)]+ acts as the active catalyst, generating the tert-butyl peroxyl radical (tBuOO˙) through its reaction with tBuOOH. In this proposed mechanism, the O-O bond is formed through the interaction of tBuOO˙ with another [Mn(18O)(mcbpen)]+, finally leading to the formation of the 16O18O product. Our findings underscore the pivotal role of [Mn(18O)(mcbpen)]+ in both generating the active species tBuOO˙ and consuming it to produce 16O18O. With activation barriers as low as about 9 kcal mol-1, these elementary steps highlight the feasibility of our proposed mechanism. Moreover, this mechanism elucidates why, experimentally, one of the oxygen atoms in the released O2 comes from water, while the other originates from tBuOOH. This research broadens our understanding of high oxidation state manganese chemistry, setting the stage for the development of more efficient Mn-based catalysts, aimed at improving processes in both renewable energy and synthetic chemistry.
Collapse
Affiliation(s)
- Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, Australia.
| | - Matthew Longhurst
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra, Australia.
| |
Collapse
|
12
|
Wheeler TA, Tilley TD. Metal-Metal Redox Exchange to Produce Heterometallic Manganese-Cobalt Oxo Cubanes via a "Dangler" Intermediate. J Am Chem Soc 2024; 146:20279-20290. [PMID: 38978206 PMCID: PMC11273651 DOI: 10.1021/jacs.4c05367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Pendent metals bound to heterocubanes are components of well-known active sites in enzymes that mediate difficult chemical transformations. Investigations into the specific role of these metal ions, sometimes referred to as "danglers", have been hindered by a paucity of rational synthetic routes to appropriate model structures. To generate pendent metal ions bonded to an oxo cubane through a carboxylate bridge, the cubane Co4(μ3-O)4(OAc)4(t-Bupy)4 (OAc = acetate, t-Bupy = 4-tert-butylpyridine) was exposed to various metal acetate complexes. Reaction with Cu(OAc)2 gave the structurally characterized (by X-ray diffraction) dicopper dangler Cu2Co4(μ4-O)2(μ3-O)2(OAc)6(Cl)2(t-Bupy)4. In contrast, the analogous reaction with Mn(OAc)2 produced the MnIV-containing cubane cation [MnCo3(μ3-O)4(OAc)4(t-Bupy)4]+ by way of a metal-metal exchange that gives Co(OAc)2 and [CoIII(μ-OH)(OAc)]n oligomers as byproducts. Additionally, reaction of the formally CoIV cubane complex [Co4(μ3-O)4(OAc)4(t-Bupy)4][PF6] with Mn(OAc)2 gave the corresponding Mn-containing cubane in 80% yield. A mechanistic examination of the related metal-metal exchange reaction between Co4(μ3-O)4(OBz)4(py)4 (OBz = benzoate) and [Mn(acac)2(py)2][PF6] by ultraviolet-visible (UV-vis) spectroscopy provided support for a process involving rate-determining association of the reactants and electron transfer through a μ-oxo bridge in the adduct intermediate. The rates of exchange correlate with the donor strength of the cubane pyridine and benzoate ligand substituents; more electron-donating pyridine ligands accelerate metal-metal exchange, while both electron-donating and -withdrawing benzoate ligands can accelerate exchange. These experiments suggest that the basicity of the cubane oxo ligands promotes metal-metal exchange reactivity. The redox potentials of the Mn and cubane starting materials and isotopic labeling studies suggest an inner-sphere electron-transfer mechanism in a dangler intermediate.
Collapse
Affiliation(s)
- T. Alexander Wheeler
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - T. Don Tilley
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Guo Y, He L, Ding Y, Kloo L, Pantazis DA, Messinger J, Sun L. Closing Kok's cycle of nature's water oxidation catalysis. Nat Commun 2024; 15:5982. [PMID: 39013902 PMCID: PMC11252165 DOI: 10.1038/s41467-024-50210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The Mn4CaO5(6) cluster in photosystem II catalyzes water splitting through the Si state cycle (i = 0-4). Molecular O2 is formed and the natural catalyst is reset during the final S3 → (S4) → S0 transition. Only recently experimental breakthroughs have emerged for this transition but without explicit information on the S0-state reconstitution, thus the progression after O2 release remains elusive. In this report, our molecular dynamics simulations combined with density functional calculations suggest a likely missing link for closing the cycle, i.e., restoring the first catalytic state. Specifically, the formation of closed-cubane intermediates with all hexa-coordinate Mn is observed, which would undergo proton release, water dissociation, and ligand transfer to produce the open-cubane structure of the S0 state. Thereby, we theoretically identify the previously unknown structural isomerism in the S0 state that acts as the origin of the proposed structural flexibility prevailing in the cycle, which may be functionally important for nature's water oxidation catalysis.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lanlan He
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Johannes Messinger
- Department of Plant Physiology, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
14
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
15
|
Yano J, Kern J, Yachandra VK. Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers. Annu Rev Biophys 2024; 53:343-365. [PMID: 39013027 PMCID: PMC11321711 DOI: 10.1146/annurev-biophys-071723-102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.
Collapse
Affiliation(s)
- Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| |
Collapse
|
16
|
Hussein R, Graça A, Forsman J, Aydin AO, Hall M, Gaetcke J, Chernev P, Wendler P, Dobbek H, Messinger J, Zouni A, Schröder WP. Cryo-electron microscopy reveals hydrogen positions and water networks in photosystem II. Science 2024; 384:1349-1355. [PMID: 38900892 DOI: 10.1126/science.adn6541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Photosystem II starts the photosynthetic electron transport chain that converts solar energy into chemical energy and thus sustains life on Earth. It catalyzes two chemical reactions: water oxidation to molecular oxygen and plastoquinone reduction. Coupling of electron and proton transfer is crucial for efficiency; however, the molecular basis of these processes remains speculative owing to uncertain water binding sites and the lack of experimentally determined hydrogen positions. We thus collected high-resolution cryo-electron microscopy data of fully hydrated photosystem II from the thermophilic cyanobacterium Thermosynechococcus vestitus to a final resolution of 1.71 angstroms. The structure reveals several previously undetected partially occupied water binding sites and more than half of the hydrogen and proton positions. This clarifies the pathways of substrate water binding and plastoquinone B protonation.
Collapse
Affiliation(s)
- Rana Hussein
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - André Graça
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Jack Forsman
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Michael Hall
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - Julia Gaetcke
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, D 14476, Potsdam-Golm, Germany
| | - Holger Dobbek
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Wolfgang P Schröder
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| |
Collapse
|
17
|
Ariafard A, Longhurst M, Swiegers GF, Stranger R. Mechanisms of Mn(V)-Oxo to Mn(IV)-Oxyl Conversion: From Closed-Cubane Photosystem II to Mn(V) Catalysts and the Role of the Entering Ligands. Chemistry 2024; 30:e202400396. [PMID: 38659321 DOI: 10.1002/chem.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The low activation barrier for O-O coupling in the closed-cubane Oxygen-Evolving Centre (OEC) of Photosystem II (PSII) requires water coordination with the Mn4 'dangler' ion in the Mn(V)-oxo fragment. This coordination transforms the Mn(V)-oxo complex into a more reactive Mn4(IV)-oxyl species, enhancing O-O coupling. This study explains the mechanism behind the coordination and indicates that in the most stable form of the OEC, the Mn4 fragment adopts a trigonal bipyramidal geometry but needs to transition to a square pyramidal form to be activated for O-O coupling. This transition stabilizes the Mn4 dxy orbital, enabling electron transfer from the oxo ligand to the dxy orbital, converting the oxo ligand into an oxyl species. The role of the water is to coordinate with the square pyramidal structure, reducing the energy gap between the oxo and oxyl forms, thereby lowering the activation energy for O-O coupling. This mechanism applies not only to the OEC system but also to other Mn(V)-based catalysts. For other catalysts, ligands such as OH- stabilize the Mn(IV)-oxyl species better than water, improving catalyst activation for reactions like C-H bond activation. This study is the first to explain the Mn(V)-oxo to Mn(IV)-oxyl conversion, providing a new foundation for Mn-based catalyst design.
Collapse
Affiliation(s)
- Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Matthew Longhurst
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
18
|
Quiroz M, Darensbourg MY. Development of (NO)Fe(N 2S 2) as a Metallodithiolate Spin Probe Ligand: A Case Study Approach. Acc Chem Res 2024; 57:831-844. [PMID: 38416694 PMCID: PMC10979402 DOI: 10.1021/acs.accounts.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
ConspectusThe ubiquity of sulfur-metal connections in nature inspires the design of bi- and multimetallic systems in synthetic inorganic chemistry. Common motifs for biocatalysts developed in evolutionary biology include the placement of metals in close proximity with flexible sulfur bridges as well as the presence of π-acidic/delocalizing ligands. This Account will delve into the development of a (NO)Fe(N2S2) metallodithiolate ligand that harnesses these principles. The Fe(NO) unit is the centroid of a N2S2 donor field, which as a whole is capable of serving as a redox-active, bidentate S-donor ligand. Its paramagnetism as well as the ν(NO) vibrational monitor can be exploited in the development of new classes of heterobimetallic complexes. We offer four examples in which the unpaired electron on the {Fe(NO)}7 unit is spin-paired with adjacent paramagnets in proximal and distal positions.First, the exceptional stability of the (NO)Fe(N2S2)-Fe(NO)2 platform, which permits its isolation and structural characterization at three distinct redox levels, is linked to the charge delocalization occurring on both the Fe(NO) and the Fe(NO)2 supports. This accommodates the formation of a rare nonheme {Fe(NO)}8 triplet state, with a linear configuration. A subsequent FeNi complex, featuring redox-active ligands on both metals (NO on iron and dithiolene on nickel), displayed unexpected physical properties. Our research showed good reversibility in two redox processes, allowing isolation in reduced and oxidized forms. Various spectroscopic and crystallographic analyses confirmed these states, and Mössbauer data supported the redox change at the iron site upon reduction. Oxidation of the complex produced a dimeric dication, revealing an intriguing magnetic behavior. The monomer appears as a spin-coupled diradical between {Fe(NO)}7 and the nickel dithiolene monoradical, while dimerization couples the latter radical units via a Ni2S2 rhomb. Magnetic data (SQUID) on the dimer dication found a singlet ground state with a thermally accessible triplet state that is responsible for magnetism. A theoretical model built on an H4 chain explains this unexpected ferromagnetic low-energy triplet state arising from the antiferromagnetic coupling of a four-radical molecular conglomerate. For comparison, two (NO)Fe(N2S2) were connected through diamagnetic group 10 cations producing diradical trimetallic complexes. Antiferromagnetic coupling is observed between {Fe(NO)}7 units, with exchange coupling constants (J) of -3, -23, and -124 cm-1 for NiII, PdII, and PtII, respectively. This trend is explained by the enhanced covalency and polarizability of sulfur-dense metallodithiolate ligands. A central paramagnetic trans-Cr(NO)(MeCN) receiver unit core results in a cissoid structural topology, influenced by the stereoactivity of the lone pair(s) on the sulfur donors. This {Cr(NO)}5 radical bridge, unlike all previous cases, finds the coupling between the distal Fe(NO) radicals to be ferromagnetic (J = 24 cm-1).The stability and predictability of this S = 1/2 moiety and the steric/electronic properties of the bridging thiolate sulfurs suggest it to be a likely candidate for the development of novel molecular (magnetic) compounds and possibly materials. The role of synthetic inorganic chemistry in designing synthons that permit connections of the (NO)Fe(N2S2) metalloligand is highlighted as well as the properties of the heterobi- and polymetallic complexes derived therefrom.
Collapse
Affiliation(s)
- Manuel Quiroz
- Department of Chemistry, Texas
A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas
A & M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Singh A, Roy L. Evolution in the Design of Water Oxidation Catalysts with Transition-Metals: A Perspective on Biological, Molecular, Supramolecular, and Hybrid Approaches. ACS OMEGA 2024; 9:9886-9920. [PMID: 38463281 PMCID: PMC10918817 DOI: 10.1021/acsomega.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
Collapse
Affiliation(s)
- Ajeet
Kumar Singh
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| | - Lisa Roy
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| |
Collapse
|
20
|
Biswas S, Chowdhury SN, Lepcha P, Sutradhar S, Das A, Paine TK, Paul S, Biswas AN. Electrochemical generation of high-valent oxo-manganese complexes featuring an anionic N5 ligand and their role in O-O bond formation. Dalton Trans 2023; 52:16616-16630. [PMID: 37882084 DOI: 10.1039/d3dt02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Generation of high-valent oxomanganese complexes through controlled removal of protons and electrons from low-valent congeners is a crucial step toward the synthesis of functional analogues of the native oxygen evolving complex (OEC). In-depth studies of the water oxidation activity of such biomimetic compounds help in understanding the mechanism of O-O bond formation presumably occurring in the last step of the photosynthetic cycle. Scarce reports of reactive high-valent oxomanganese complexes underscore the impetus for the present work, wherein we report the electrochemical generation of the non-heme oxomanganese(IV) species [(dpaq)MnIV(O)]+ (2) through a proton-coupled electron transfer (PCET) process from the hydroxomanganese complex [(dpaq)MnIII(OH)]ClO4 (1). Controlled potential spectroelectrochemical studies of 1 in wet acetonitrile at 1.45 V vs. NHE revealed quantitative formation of 2 within 10 min. The high-valent oxomanganese(IV) transient exhibited remarkable stability and could be reverted to the starting complex (1) by switching the potential to 0.25 V vs. NHE. The formation of 2via PCET oxidation of 1 demonstrates an alternate pathway for the generation of the oxomanganese(IV) transient (2) without the requirement of redox-inactive metal ions or acid additives as proposed earlier. Theoretical studies predict that one-electron oxidation of [(dpaq)MnIV(O)]+ (2) forms a manganese(V)-oxo (3) species, which can be oxidized further by one electron to a formal manganese(VI)-oxo transient (4). Theoretical analyses suggest that the first oxidation event (2 to 3) takes place at the metal-based d-orbital, whereas, in the second oxidation process (3 to 4), the electron eliminates from an orbital composed of equitable contribution from the metal and the ligand, leaving a single electron in the quinoline-dominant orbital in the doublet ground spin state of the manganese(VI)-oxo species (4). This mixed metal-ligand (quinoline)-based oxidation is proposed to generate a formal Mn(VI) species (4), a non-heme analogue of the species 'compound I', formed in the catalytic cycle of cytochrome P-450. We propose that the highly electrophilic species 4 catches water during cyclic voltammetry experiments and results in O-O bond formation leading to electrocatalytic oxidation of water to hydrogen peroxide.
Collapse
Affiliation(s)
- Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Srijan Narayan Chowdhury
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Panjo Lepcha
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Subhankar Sutradhar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19, Rajkumar Chakraborty Sarani, Kolkata-700009, India
| | - Achintesh N Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| |
Collapse
|
21
|
Erbe A, Tesch MF, Rüdiger O, Kaiser B, DeBeer S, Rabe M. Operando studies of Mn oxide based electrocatalysts for the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:26958-26971. [PMID: 37585177 DOI: 10.1039/d3cp02384b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inspired by photosystem II (PS II), Mn oxide based electrocatalysts have been repeatedly investigated as catalysts for the electrochemical oxygen evolution reaction (OER), the anodic reaction in water electrolysis. However, a comparison of the conditions in biological OER catalysed by the water splitting complex CaMn4Ox with the requirements for an electrocatalyst for industrially relevant applications reveals fundamental differences. Thus, a systematic development of artificial Mn-based OER catalysts requires both a fundamental understanding of the catalytic mechanisms as well as an evaluation of the practicality of the system for industrial scale applications. Experimentally, both aspects can be approached using in situ and operando methods including spectroscopy. This paper highlights some of the major challenges common to different operando investigation methods and recent insights gained with them. To this end, vibrational spectroscopy, especially Raman spectroscopy, absorption techniques in the bandgap region and operando X-ray spectroelectrochemistry (SEC), both in the hard and soft X-ray regime are particularly focused on here. Technical challenges specific to each method are discussed first, followed by challenges that are specific to Mn oxide based systems. Finally, recent in situ and operando studies are reviewed. This analysis shows that despite the technical and Mn specific challenges, three specific key features are common to most of the studied systems with significant OER activity: structural disorder, Mn oxidation states between III and IV, and the appearance of layered birnessite phases in the active regime.
Collapse
Affiliation(s)
- Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marc Frederic Tesch
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Bernhard Kaiser
- Surface Science Laboratory, Department of Materials- and Earth Sciences, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Martin Rabe
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
22
|
Song YT, Li XC, Siegbahn PEM. Is There a Different Mechanism for Water Oxidation in Higher Plants? J Phys Chem B 2023; 127:6643-6647. [PMID: 37467375 PMCID: PMC10405216 DOI: 10.1021/acs.jpcb.3c03029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Indexed: 07/21/2023]
Abstract
The leading mechanism for the formation of O2 in photosystem II (PSII) has, during the past decade, been established as the so-called oxyl-oxo mechanism. In that mechanism, O2 is formed from a binding between an oxygen radical (oxyl) and a bridging oxo group. For the case of higher plants, that mechanism has recently been criticized. Instead, a nucleophilic attack of an oxo group on a five-coordinated Mn(V)═O group forming O2 has been suggested in a so-called water-unbound (WU) mechanism. In the present study, the WU mechanism has been investigated. It is found that the WU mechanism is just a variant of a previously suggested mechanism but with a reactant and a transition state that have much higher energies. The addition of a water molecule on the empty site of the Mn(V)═O center is very exergonic and leads back to the previously suggested oxyl-oxo mechanism.
Collapse
Affiliation(s)
- Yu-Tian Song
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xi-Chen Li
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Per E. M. Siegbahn
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Shiau AA, Lee HB, Oyala PH, Agapie T. Coordination Number in High-Spin-Low-Spin Equilibrium in Cluster Models of the S 2 State of the Oxygen Evolving Complex. J Am Chem Soc 2023; 145:14592-14598. [PMID: 37366634 PMCID: PMC10575483 DOI: 10.1021/jacs.3c04464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The S2 state of the Oxygen Evolving Complex (OEC) of Photosystem II (PSII) shows high-spin (HS) and low-spin (LS) EPR signals attributed to distinct structures based on computation. Five-coordinate MnIII centers are proposed in these species but are absent in available spectroscopic model complexes. Herein, we report the synthesis, crystal structure, electrochemistry, SQUID magnetometry, and EPR spectroscopy of a MnIIIMnIV3O4 cuboidal complex featuring five-coordinate MnIII. This cluster displays a spin ground state of S = 5/2, while conversion to a six-coordinate Mn upon treatment with water results in a spin state change to S = 1/2. These results demonstrate that coordination number, without dramatic changes within the Mn4O4 core, has a substantial effect on spectroscopy.
Collapse
Affiliation(s)
- Angela A Shiau
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Heui Beom Lee
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Paul H Oyala
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
24
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
25
|
Liu T, Zhan S, Shen N, Wang L, Szabó Z, Yang H, Ahlquist MSG, Sun L. Bioinspired Active Site with a Coordination-Adaptive Organosulfonate Ligand for Catalytic Water Oxidation at Neutral pH. J Am Chem Soc 2023; 145:11818-11828. [PMID: 37196315 DOI: 10.1021/jacs.3c03415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Many enzymes use adaptive frameworks to preorganize substrates, accommodate various structural and electronic demands of intermediates, and accelerate related catalysis. Inspired by biological systems, a Ru-based molecular water oxidation catalyst containing a configurationally labile ligand [2,2':6',2″-terpyridine]-6,6″-disulfonate was designed to mimic enzymatic framework, in which the sulfonate coordination is highly flexible and functions as both an electron donor to stabilize high-valent Ru and a proton acceptor to accelerate water dissociation, thus boosting the catalytic water oxidation performance thermodynamically and kinetically. The combination of single-crystal X-ray analysis, various temperature NMR, electrochemical techniques, and DFT calculations was utilized to investigate the fundamental role of the self-adaptive ligand, demonstrating that the on-demand configurational changes give rise to fast catalytic kinetics with a turnover frequency (TOF) over 2000 s-1, which is compared to oxygen-evolving complex (OEC) in natural photosynthesis.
Collapse
Affiliation(s)
- Tianqi Liu
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Shaoqi Zhan
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Nannan Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Zoltán Szabó
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Hao Yang
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Mårten S G Ahlquist
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Licheng Sun
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, China
| |
Collapse
|
26
|
Bhowmick A, Hussein R, Bogacz I, Simon PS, Ibrahim M, Chatterjee R, Doyle MD, Cheah MH, Fransson T, Chernev P, Kim IS, Makita H, Dasgupta M, Kaminsky CJ, Zhang M, Gätcke J, Haupt S, Nangca II, Keable SM, Aydin AO, Tono K, Owada S, Gee LB, Fuller FD, Batyuk A, Alonso-Mori R, Holton JM, Paley DW, Moriarty NW, Mamedov F, Adams PD, Brewster AS, Dobbek H, Sauter NK, Bergmann U, Zouni A, Messinger J, Kern J, Yano J, Yachandra VK. Structural evidence for intermediates during O 2 formation in photosystem II. Nature 2023; 617:629-636. [PMID: 37138085 PMCID: PMC10191843 DOI: 10.1038/s41586-023-06038-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 μs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 μs, signifying the presence of a reduced intermediate, possibly a bound peroxide.
Collapse
Affiliation(s)
- Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rana Hussein
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mohamed Ibrahim
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret D Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Thomas Fransson
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Medhanjali Dasgupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Corey J Kaminsky
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Julia Gätcke
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Stephanie Haupt
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Isabela I Nangca
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen M Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Leland B Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Franklin D Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Daniel W Paley
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Holger Dobbek
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Athina Zouni
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden.
- Department of Chemistry, Umeå University, Umeå, Sweden.
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
27
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
28
|
Guo Y, Messinger J, Kloo L, Sun L. Alternative Mechanism for O 2 Formation in Natural Photosynthesis via Nucleophilic Oxo-Oxo Coupling. J Am Chem Soc 2023; 145:4129-4141. [PMID: 36763485 DOI: 10.1021/jacs.2c12174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
O2 formation in photosystem II (PSII) is a vital event on Earth, but the exact mechanism remains unclear. The presently prevailing theoretical model is "radical coupling" (RC) involving a Mn(IV)-oxyl unit in an "open-cubane" Mn4CaO6 cluster, which is supported experimentally by the S3 state of cyanobacterial PSII featuring an additional Mn-bound oxygenic ligand. However, it was recently proposed that the major structural form of the S3 state of higher plants lacks this extra ligand, and that the resulting S4 state would feature instead a penta-coordinate dangler Mn(V)=oxo, covalently linked to a "closed-cubane" Mn3CaO4 cluster. For this proposal, we explore here a large number of possible pathways of O-O bond formation and demonstrate that the "nucleophilic oxo-oxo coupling" (NOOC) between Mn(V)=oxo and μ3-oxo is the only eligible mechanism in such a system. The reaction is facilitated by a specific conformation of the cluster and concomitant water binding, which is delayed compared to the RC mechanism. An energetically feasible process is described starting from the valid S4 state through the sequential formation of peroxide and superoxide, followed by O2 release and a second water insertion. The newly found mechanism is consistent with available experimental thermodynamic and kinetic data and thus a viable alternative pathway for O2 formation in natural photosynthesis, in particular for higher plants.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), Umeå SE-90187, Sweden
- Molecular Biomimetics, Department of Chemistry─Ångström Laboratory, Uppsala University, Uppsala SE-75120, Sweden
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
29
|
Threatt SD, Rees DC. Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system. FEBS Lett 2023; 597:45-58. [PMID: 36344435 PMCID: PMC10100503 DOI: 10.1002/1873-3468.14534] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Nitrogenase is the sole enzyme responsible for the ATP-dependent conversion of atmospheric dinitrogen into the bioavailable form of ammonia (NH3 ), making this protein essential for the maintenance of the nitrogen cycle and thus life itself. Despite the widespread use of the Haber-Bosch process to industrially produce NH3 , biological nitrogen fixation still accounts for half of the bioavailable nitrogen on Earth. An important feature of nitrogenase is that it operates under physiological conditions, where the equilibrium strongly favours ammonia production. This biological, multielectron reduction is a complex catalytic reaction that has perplexed scientists for decades. In this review, we explore the current understanding of the molybdenum nitrogenase system based on experimental and computational research, as well as the limitations of the crystallographic, spectroscopic, and computational techniques employed. Finally, essential outstanding questions regarding the nitrogenase system will be highlighted alongside suggestions for future experimental and computational work to elucidate this essential yet elusive process.
Collapse
Affiliation(s)
- Stephanie D Threatt
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
30
|
Lubitz W, Pantazis DA, Cox N. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett 2023; 597:6-29. [PMID: 36409002 DOI: 10.1002/1873-3468.14543] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The understanding of light-induced biological water oxidation in oxygenic photosynthesis is of great importance both for biology and (bio)technological applications. The chemically difficult multistep reaction takes place at a unique protein-bound tetra-manganese/calcium cluster in photosystem II whose structure has been elucidated by X-ray crystallography (Umena et al. Nature 2011, 473, 55). The cluster moves through several intermediate states in the catalytic cycle. A detailed understanding of these intermediates requires information about the spatial and electronic structure of the Mn4 Ca complex; the latter is only available from spectroscopic techniques. Here, the important role of Electron Paramagnetic Resonance (EPR) and related double resonance techniques (ENDOR, EDNMR), complemented by quantum chemical calculations, is described. This has led to the elucidation of the cluster's redox and protonation states, the valence and spin states of the manganese ions and the interactions between them, and contributed substantially to the understanding of the role of the protein surrounding, as well as the binding and processing of the substrate water molecules, the O-O bond formation and dioxygen release. Based on these data, models for the water oxidation cycle are developed.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | | | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
31
|
Yamaguchi K, Shoji M, Isobe H, Kawakami T, Miyagawa K, Suga M, Akita F, Shen JR. Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Kessinger M, Soudackov AV, Schneider J, Bangle RE, Hammes-Schiffer S, Meyer GJ. Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst. J Am Chem Soc 2022; 144:20514-20524. [DOI: 10.1021/jacs.2c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew Kessinger
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | | | - Jenny Schneider
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Rachel E. Bangle
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | | | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| |
Collapse
|
33
|
Khan MA, Sen UR, Khan S, Sengupta S, Shruti S, Naskar S. Manganese based Molecular Water Oxidation Catalyst: From Natural to Artificial Photosynthesis. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Sahanwaj Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla Institute of Technology-Mesra, Ranchi, India
| | - Sonal Shruti
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| | - Subhendu Naskar
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| |
Collapse
|
34
|
Xu B, Chen Y, Yao R, Chen C, Zhang C. Redox‐Induced Structural Change in Artificial Heterometallic‐Oxide Cluster Mimicking the Photosynthetic Oxygen‐Evolving Center. Chemistry 2022; 28:e202201456. [DOI: 10.1002/chem.202201456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Boran Xu
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Yang Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Ruoqing Yao
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Changhui Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Chunxi Zhang
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| |
Collapse
|
35
|
Kobayashi A, Takizawa SY, Hirahara M. Photofunctional molecular assembly for artificial photosynthesis: Beyond a simple dye sensitization strategy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Li M, Liao RZ. Water Oxidation Catalyzed by a Bioinspired Tetranuclear Manganese Complex: Mechanistic Study and Prediction. CHEMSUSCHEM 2022; 15:e202200187. [PMID: 35610183 DOI: 10.1002/cssc.202200187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Density functional theory calculations were utilized to elucidate the water oxidation mechanism catalyzed by polyanionic tetramanganese complex a [MnIII 3 MnIV O3 (CH3 COO)3 (A-α-SiW9 O34 )]6- . Theoretical results indicated that catalytic active species 1 (Mn4 III,III,IV,IV ) was formed after O2 formation in the first turnover. From 1, three sequential proton-coupled electron transfer (PCET) oxidations led to the MnIV -oxyl radical 4 (Mn4 IV,IV,IV,IV -O⋅). Importantly, 4 had an unusual butterfly-shaped Mn2 O2 core for the two substrate-coordinated Mn sites, which facilitated O-O bond formation via direct coupling of the oxyl radical and the adjacent MnIV -coordinated hydroxide to produce the hydroperoxide intermediate Int1 (Mn4 III,IV,IV,IV -OOH). This step had an overall energy barrier of 24.9 kcal mol-1 . Subsequent PCET oxidation of Int1 to Int2 (Mn4 III,IV,IV,IV -O2 ⋅) enabled the O2 release in a facile process. Furthermore, apart from the Si-centered complex, computational study suggested that tetramanganese polyoxometalates with Ge, P, and S could also catalyze the water oxidation process, where those bearing P and S likely present higher activities.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
37
|
Naskar T, Jana M, Majumdar A. Binuclear manganese(II)-thiolate complexes: Synthesis, characterization and nitrite induced structural changes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Gorantla KR, Mallik BS. Non-heme oxoiron complexes as active intermediates in the water oxidation process with hydrogen/oxygen atom transfer reactions. Dalton Trans 2022; 51:11899-11908. [PMID: 35876181 DOI: 10.1039/d2dt01295b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we explore the water oxidation process with the help of density functional theory. The formation of an oxygen-oxygen bond is crucial in the water oxidation process. Here, we report the formation of the oxygen-oxygen bond by the N5-coordinate oxoiron species with a higher oxidation state of FeIV and FeV. This bond formation is studied through the nucleophilic addition of water molecules and the transfer of the oxygen atom from meta-chloroperbenzoic acid (mCPBA). Our study reveals that the oxygen-oxygen bond formation by reacting mCPBA with FeVO requires less activation barrier (13.7 kcal mol-1) than the other three pathways. This bond formation by the oxygen atom transfer (OAT) pathway is more favorable than that achieved by the hydrogen atom transfer (HAT) pathway. In both cases, the oxygen-oxygen bond formation occurs by interacting the σ*dz2-2pz molecular orbital of the iron-oxo intermediate with the 2px orbital of the oxygen atom. From this study, we understand that the oxygen-oxygen bond formation by FeIVO with the OAT process is also feasible (16 kcal mol-1), suggesting that FeVO may not always be required for the water oxidation process by non-heme N5-oxoiron. After the oxygen-oxygen bond formation, the release of the dioxygen molecule occurs with the addition of the water molecule. The release of dioxygen requires a barrier of 7.0 kcal mol-1. The oxygen-oxygen bond formation is found to be the rate-determining step.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, Telangana, India.
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, Telangana, India.
| |
Collapse
|
39
|
Guo Y, Messinger J, Kloo L, Sun L. Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O-O Bond Formation. J Am Chem Soc 2022; 144:11736-11747. [PMID: 35748306 PMCID: PMC9264352 DOI: 10.1021/jacs.2c03528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Photosynthetic water
oxidation is catalyzed by a manganese–calcium
oxide cluster, which experiences five “S-states” during
a light-driven reaction cycle. The unique “distorted chair”-like
geometry of the Mn4CaO5(6) cluster shows structural
flexibility that has been frequently proposed to involve “open”
and “closed”-cubane forms from the S1 to
S3 states. The isomers are interconvertible in the S1 and S2 states, while in the S3 state,
the open-cubane structure is observed to dominate inThermosynechococcus elongatus (cyanobacteria) samples.
In this work, using density functional theory calculations, we go
beyond the S3+Yz state to the S3nYz• → S4+Yz step, and report for the first time
that the reversible isomerism, which is suppressed in the S3+Yz state, is fully recovered
in the ensuing S3nYz• state due to the proton release
from a manganese-bound water ligand. The altered coordination strength
of the manganese–ligand facilitates formation of the closed-cubane
form, in a dynamic equilibrium with the open-cubane form. This tautomerism
immediately preceding dioxygen formation may constitute the rate limiting
step for O2 formation, and exert a significant influence
on the water oxidation mechanism in photosystem II.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187 Umeå, Sweden.,Molecular Biomimetics, Department of Chemistry─Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
40
|
Tao X, Zhao Y, Wang S, Li C, Li R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem Soc Rev 2022; 51:3561-3608. [PMID: 35403632 DOI: 10.1039/d1cs01182k] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The conversion and storage of solar energy to chemical energy via artificial photosynthesis holds significant potential for optimizing the energy situation and mitigating the global warming effect. Photocatalytic water splitting utilizing particulate semiconductors offers great potential for the production of renewable hydrogen, while this cross-road among biology, chemistry, and physics features a topic with fascinating interdisciplinary challenges. Progress in photocatalytic water splitting has been achieved in recent years, ranging from fundamental scientific research to pioneering scalable practical applications. In this review, we focus mainly on the recent advancements in terms of the development of new light-absorption materials, insights and strategies for photogenerated charge separation, and studies towards surface catalytic reactions and mechanisms. In particular, we emphasize several efficient charge separation strategies such as surface-phase junction, spatial charge separation between facets, and polarity-induced charge separation, and also discuss their unique properties including ferroelectric and photo-Dember effects on spatial charge separation. By integrating time- and space-resolved characterization techniques, critical issues in photocatalytic water splitting including photoinduced charge generation, separation and transfer, and catalytic reactions are analyzed and reviewed. In addition, photocatalysts with state-of-art efficiencies in the laboratory stage and pioneering scalable solar water splitting systems for hydrogen production using particulate photocatalysts are presented. Finally, some perspectives and outlooks on the future development of photocatalytic water splitting using particulate photocatalysts are proposed.
Collapse
Affiliation(s)
- Xiaoping Tao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Shengyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China. .,University of Chinese Academy of Sciences, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| |
Collapse
|
41
|
Chen C, Xu B, Yao R, Chen Y, Zhang C. Synthesizing Mechanism of the Mn 4 Ca Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. CHEMSUSCHEM 2022; 15:e202102661. [PMID: 35075776 DOI: 10.1002/cssc.202102661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The photosynthetic oxygen-evolving center (OEC) is a unique Mn4 CaO5 cluster that serves as a blueprint to develop superior water-splitting catalysts for the generation of solar fuels in artificial photosynthesis. It is a great challenge and long-standing issue to reveal the synthesizing mechanism of this Mn4 CaO5 cluster in both natural and artificial photosynthesis. Herein, efforts were made to reveal the synthesizing mechanism of an artificial Mn4 CaO4 cluster, a close mimic of the OEC. Four key intermediates were successfully isolated and structurally characterized for the first time. It was demonstrated that the Mn4 CaO4 cluster could be formed through a reaction between a thermodynamically stable Mn3 CaO4 cluster and an unusual four-coordinated MnIII ion, followed by stabilization process through binding an organic base (e.g., pyridine) on the "dangling" Mn ion. These findings shed new light on the synthesizing mechanism of the OEC and rational design of new artificial water-splitting catalysts.
Collapse
Affiliation(s)
- Changhui Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Boran Xu
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruoqing Yao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
42
|
Kalendra V, Reiss KM, Banerjee G, Ghosh I, Baldansuren A, Batista VS, Brudvig GW, Lakshmi KV. Binding of the substrate analog methanol in the oxygen-evolving complex of photosystem II in the D1-N87A genetic variant of cyanobacteria. Faraday Discuss 2022; 234:195-213. [PMID: 35147155 DOI: 10.1039/d1fd00094b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction is catalyzed at the Mn4Ca-oxo cluster in the oxygen-evolving complex (OEC), which cycles through five light-driven S-state intermediates (S0-S4). A detailed mechanism of the reaction remains elusive as it requires knowledge of the delivery and binding of substrate water in the higher S-state intermediates. In this study, we use two-dimensional (2D) hyperfine sublevel correlation spectroscopy, in conjunction with quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT), to probe the binding of the substrate analog, methanol, in the S2 state of the D1-N87A variant of PSII from Synechocystis sp. PCC 6803. The results indicate that the size and specificity of the "narrow" channel is altered in D1-N87A PSII, allowing for the binding of deprotonated 13C-labeled methanol at the Mn4(IV) ion of the catalytic cluster in the S2 state. This has important implications on the mechanistic models for water oxidation in PSII.
Collapse
Affiliation(s)
- Vidmantas Kalendra
- Department of Chemistry and Chemical Biology, The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA.
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Gourab Banerjee
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Ipsita Ghosh
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology, The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology, The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA.
| |
Collapse
|
43
|
Ohnishi Y, Yamamoto K, Takatsuka K. Suppression of Charge Recombination by Auxiliary Atoms in Photoinduced Charge Separation Dynamics with Mn Oxides: A Theoretical Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030755. [PMID: 35164020 PMCID: PMC8838452 DOI: 10.3390/molecules27030755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Charge separation is one of the most crucial processes in photochemical dynamics of energy conversion, widely observed ranging from water splitting in photosystem II (PSII) of plants to photoinduced oxidation reduction processes. Several basic principles, with respect to charge separation, are known, each of which suffers inherent charge recombination channels that suppress the separation efficiency. We found a charge separation mechanism in the photoinduced excited-state proton transfer dynamics from Mn oxides to organic acceptors. This mechanism is referred to as coupled proton and electron wave-packet transfer (CPEWT), which is essentially a synchronous transfer of electron wave-packets and protons through mutually different spatial channels to separated destinations passing through nonadiabatic regions, such as conical intersections, and avoided crossings. CPEWT also applies to collision-induced ground-state water splitting dynamics catalyzed by Mn4CaO5 cluster. For the present photoinduced charge separation dynamics by Mn oxides, we identified a dynamical mechanism of charge recombination. It takes place by passing across nonadiabatic regions, which are different from those for charge separations and lead to the excited states of the initial state before photoabsorption. This article is an overview of our work on photoinduced charge separation and associated charge recombination with an additional study. After reviewing the basic mechanisms of charge separation and recombination, we herein studied substituent effects on the suppression of such charge recombination by doping auxiliary atoms. Our illustrative systems are X–Mn(OH)2 tied to N-methylformamidine, with X=OH, Be(OH)3, Mg(OH)3, Ca(OH)3, Sr(OH)3 along with Al(OH)4 and Zn(OH)3. We found that the competence of suppression of charge recombination depends significantly on the substituents. The present study should serve as a useful guiding principle in designing the relevant photocatalysts.
Collapse
|
44
|
Liu D, Yang Y, Zhu H, Liu D, Yan S, Zou Z. Heat-Electricity Coupling Driven Cascade Oxidation Reaction of Redox Couple and Water. J Phys Chem Lett 2022; 13:49-57. [PMID: 34958228 DOI: 10.1021/acs.jpclett.1c03727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High barriers of water oxidation mediated by redox couple continuously challenge to maximizing efficiency from renewables to hydrogen energy. Here, an electricity-heat complementary strategy was achieved by a heat-electricity-sensitive interconversion of the α-Ni(OH)2/γ-NiOOH redox couple. In our strategy, the thermo-activated effects significantly lower the barrier energies of initial electroxidation of Ni2+/Ni3+ and subsequent chemical water oxidation to the nearly equal value via coupling a low-grade heat field (<100 °C), thereby achieving a consecutive two-step cascade reaction without kinetic delay. As a result, the cascaded water splitting reaction can happen at an extremely low overpotential of 130 mV and affords a low cell voltage of 1.73 V at 100 mA cm-2 at 90 °C in alkaline electrolyte. Our findings open a new avenue to produce hydrogen by complementation and gain effects of different-grade energies.
Collapse
Affiliation(s)
- Duanduan Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Yandong Yang
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Heng Zhu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Depei Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Shicheng Yan
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
45
|
Han G, Chernev P, Styring S, Messinger J, Mamedov F. Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Chem Sci 2022; 13:8667-8678. [PMID: 35974765 PMCID: PMC9337725 DOI: 10.1039/d2sc00854h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S0–S4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between −10 °C and +20 °C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 °C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S1 → S2 transition, while the S2 → S3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible “molecular errors” connected to the e− transfer, H+ transfer, H2O binding and O2 release are identified. Temperature dependence of the transition inefficiencies (misses) for the water oxidation process in photosystem II were studied by EPR spectroscopy and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster.![]()
Collapse
Affiliation(s)
- Guangye Han
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
46
|
Bigness A, Vaddypally S, Zdilla MJ, Mendoza-Cortes JL. Ubiquity of cubanes in bioinorganic relevant compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Debus RJ. Alteration of the O 2-Producing Mn 4Ca Cluster in Photosystem II by the Mutation of a Metal Ligand. Biochemistry 2021; 60:3841-3855. [PMID: 34898175 DOI: 10.1021/acs.biochem.1c00504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The O2-evolving Mn4Ca cluster in photosystem II (PSII) is arranged as a distorted Mn3Ca cube that is linked to a fourth Mn ion (denoted as Mn4) by two oxo bridges. The Mn4 and Ca ions are bridged by residue D1-D170. This is also the only residue known to participate in the high-affinity Mn(II) site that participates in the light-driven assembly of the Mn4Ca cluster. In this study, we use Fourier transform infrared difference spectroscopy to characterize the impact of the D1-D170E mutation. On the basis of analyses of carboxylate and carbonyl stretching modes and the O-H stretching modes of hydrogen-bonded water molecules, we show that this mutation alters the extensive network of hydrogen bonds that surrounds the Mn4Ca cluster in the same manner as that of many other mutations. It also alters the equilibrium between conformers of the Mn4Ca cluster in the dark-stable S1 state so that a high-spin form of the S2 state is produced during the S1-to-S2 transition instead of the low-spin form that gives rise to the S2 state multiline electron paramagnetic resonance signal. The mutation may also change the coordination mode of the carboxylate group at position 170 to unidentate ligation of Mn4. This is the first mutation of a metal ligand in PSII that substantially impacts the spectroscopic signatures of the Mn4Ca cluster without substantially eliminating O2 evolution. The results have significant implications for our understanding of the roles of alternate active/inactive conformers of the Mn4Ca cluster in the mechanism of O2 formation.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
48
|
de Lichtenberg C, Kim CJ, Chernev P, Debus RJ, Messinger J. The exchange of the fast substrate water in the S 2 state of photosystem II is limited by diffusion of bulk water through channels - implications for the water oxidation mechanism. Chem Sci 2021; 12:12763-12775. [PMID: 34703563 PMCID: PMC8494045 DOI: 10.1039/d1sc02265b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
The molecular oxygen we breathe is produced from water-derived oxygen species bound to the Mn4CaO5 cluster in photosystem II (PSII). Present research points to the central oxo-bridge O5 as the 'slow exchanging substrate water (Ws)', while, in the S2 state, the terminal water ligands W2 and W3 are both discussed as the 'fast exchanging substrate water (Wf)'. A critical point for the assignment of Wf is whether or not its exchange with bulk water is limited by barriers in the channels leading to the Mn4CaO5 cluster. In this study, we measured the rates of H2 16O/H2 18O substrate water exchange in the S2 and S3 states of PSII core complexes from wild-type (WT) Synechocystis sp. PCC 6803, and from two mutants, D1-D61A and D1-E189Q, that are expected to alter water access via the Cl1/O4 channels and the O1 channel, respectively. We found that the exchange rates of Wf and Ws were unaffected by the E189Q mutation (O1 channel), but strongly perturbed by the D61A mutation (Cl1/O4 channel). It is concluded that all channels have restrictions limiting the isotopic equilibration of the inner water pool near the Mn4CaO5 cluster, and that D61 participates in one such barrier. In the D61A mutant this barrier is lowered so that Wf exchange occurs more rapidly. This finding removes the main argument against Ca-bound W3 as fast substrate water in the S2 state, namely the indifference of the rate of Wf exchange towards Ca/Sr substitution.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry, Umeå University Linnaeus väg 6 (KBC huset), SE-901 87 Umeå Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University POB 523 SE-75120 Uppsala Sweden
| | - Christopher J Kim
- Department of Biochemistry, University of California Riverside California 92521 USA
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University POB 523 SE-75120 Uppsala Sweden
| | - Richard J Debus
- Department of Biochemistry, University of California Riverside California 92521 USA
| | - Johannes Messinger
- Department of Chemistry, Umeå University Linnaeus väg 6 (KBC huset), SE-901 87 Umeå Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University POB 523 SE-75120 Uppsala Sweden
| |
Collapse
|
49
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
50
|
Drosou M, Pantazis DA. Redox Isomerism in the S 3 State of the Oxygen-Evolving Complex Resolved by Coupled Cluster Theory. Chemistry 2021; 27:12815-12825. [PMID: 34288176 PMCID: PMC8518824 DOI: 10.1002/chem.202101567] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 01/19/2023]
Abstract
The electronic and geometric structures of the water-oxidizing complex of photosystem II in the steps of the catalytic cycle that precede dioxygen evolution remain hotly debated. Recent structural and spectroscopic investigations support contradictory redox formulations for the active-site Mn4 CaOx cofactor in the final metastable S3 state. These range from the widely accepted MnIV 4 oxo-hydroxo model, which presumes that O-O bond formation occurs in the ultimate transient intermediate (S4 ) of the catalytic cycle, to a MnIII 2 MnIV 2 peroxo model representative of the contrasting "early-onset" O-O bond formation hypothesis. Density functional theory energetics of suggested S3 redox isomers are inconclusive because of extreme functional dependence. Here, we use the power of the domain-based local pair natural orbital approach to coupled cluster theory, DLPNO-CCSD(T), to present the first correlated wave function theory calculations of relative stabilities for distinct redox-isomeric forms of the S3 state. Our results enabled us to evaluate conflicting models for the S3 state of the oxygen-evolving complex (OEC) and to quantify the accuracy of lower-level theoretical approaches. Our assessment of the relevance of distinct redox-isomeric forms for the mechanism of biological water oxidation strongly disfavors the scenario of early-onset O-O formation advanced by literal interpretations of certain crystallographic models. This work serves as a case study in the application of modern coupled cluster implementations to redox isomerism problems in oligonuclear transition metal systems.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry LaboratoryNational and Kapodistrian University of AthensPanepistimiopolisZografou15771Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| |
Collapse
|