1
|
Pellitero M, Jensen IM, Dominique NL, Ekowo LC, Camden JP, Jenkins DM, Arroyo-Currás N. Stability of N-Heterocyclic Carbene Monolayers under Continuous Voltammetric Interrogation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35701-35709. [PMID: 37449918 PMCID: PMC10377464 DOI: 10.1021/acsami.3c06148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are promising monolayer-forming ligands that can overcome limitations of thiol-based monolayers in terms of stability, surface functionality, and reactivity across a variety of transition-metal surfaces. Recent publications have reported the ability of NHCs to support biomolecular receptors on gold substrates for sensing applications and improved tolerance to prolonged biofluid exposure relative to thiols. However, important questions remain regarding the stability of these monolayers when subjected to voltage perturbations, which is needed for applications with electrochemical platforms. Here, we investigate the ability of two NHCs, 1,3-diisopropylbenzimidazole and 5-(ethoxycarbonyl)-1,3-diisopropylbenzimidazole, to form monolayers via self-assembly from methanolic solutions of their trifluoromethanesulfonate salts. We compare the electrochemical behavior of the resulting monolayers relative to that of benchmark mercaptohexanol monolayers in phosphate-buffered saline. Within the -0.15 to 0.25 V vs Ag|AgCl voltage window, NHC monolayers are stable on gold surfaces, wherein they electrochemically perform like thiol-based monolayers and undergo similar reorganization kinetics, displaying long-term stability under incubation in buffered media and under continuous voltammetric interrogation. At negative voltages, NHC monolayers cathodically desorb from the electrode surface at lower bias (-0.1 V) than thiol-based monolayers (-0.5 V). At voltages more positive than 0.25 V, NHC monolayers anodically desorb from electrode surfaces at similar voltages to thiol-based monolayers. These results highlight new limitations to NHC monolayer stability imposed by electrochemical interrogation of the underlying gold electrodes. Our results serve as a framework for future optimization of NHC monolayers on gold for electrochemical applications, as well as structure-functionality studies of NHCs on gold.
Collapse
Affiliation(s)
- Miguel
Aller Pellitero
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Isabel M. Jensen
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nathaniel L. Dominique
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Lilian Chinenye Ekowo
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jon P. Camden
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - David M. Jenkins
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
2
|
Ucci S, Spaziani S, Quero G, Vaiano P, Principe M, Micco A, Sandomenico A, Ruvo M, Consales M, Cusano A. Advanced Lab-on-Fiber Optrodes Assisted by Oriented Antibody Immobilization Strategy. BIOSENSORS 2022; 12:1040. [PMID: 36421158 PMCID: PMC9688615 DOI: 10.3390/bios12111040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Lab-on-fiber (LoF) optrodes offer several advantages over conventional techniques for point-of-care platforms aimed at real-time and label-free detection of clinically relevant biomarkers. Moreover, the easy integration of LoF platforms in medical needles, catheters, and nano endoscopes offer unique potentials for in vivo biopsies and tumor microenvironment assessment. The main barrier to translating the vision close to reality is the need to further lower the final limit of detection of developed optrodes. For immune-biosensing purposes, the assay sensitivity significantly relies on the capability to correctly immobilize the capture antibody in terms of uniform coverage and correct orientation of the bioreceptor, especially when very low detection limits are requested as in the case of cancer diagnostics. Here, we investigated the possibility to improve the immobilization strategies through the use of hinge carbohydrates by involving homemade antibodies that demonstrated a significantly improved recognition of the antigen with ultra-low detection limits. In order to create an effective pipeline for the improvement of biofunctionalization protocols to be used in connection with LoF platforms, we first optimized the protocol using a microfluidic surface plasmon resonance (mSPR) device and then transferred the optimized strategy onto LoF platforms selected for the final validation. Here, we selected two different LoF platforms: a biolayer interferometry (BLI)-based device (commercially available) and a homemade advanced LoF biosensor based on optical fiber meta-tips (OFMTs). As a clinically relevant scenario, here we focused our attention on a promising serological biomarker, Cripto-1, for its ability to promote tumorigenesis in breast and liver cancer. Currently, Cripto-1 detection relies on laborious and time-consuming immunoassays. The reported results demonstrated that the proposed approach based on oriented antibody immobilization was able to significantly improve Cripto-1 detection with a 10-fold enhancement versus the random approach. More interestingly, by using the oriented antibody immobilization strategy, the OFMTs-based platform was able to reveal Cripto-1 at a concentration of 0.05 nM, exhibiting detection capabilities much higher (by a factor of 250) than those provided by the commercial LoF platform based on BLI and similar to the ones shown by the commercial and well-established bench-top mSPR Biacore 8K system. Therefore, our work opened new avenues into the development of high-sensitivity LoF biosensors for the detection of clinically relevant biomarkers in the sub-ng/mL range.
Collapse
Affiliation(s)
- Sarassunta Ucci
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Sara Spaziani
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Giuseppe Quero
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Patrizio Vaiano
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
| | - Maria Principe
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
| | - Alberto Micco
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Marco Consales
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Andrea Cusano
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| |
Collapse
|
3
|
Le HT, D’Ambrosio EA, Mashayekh S, Grimes CL. Customized peptidoglycan surfaces to investigate innate immune recognition via surface plasmon resonance. Methods Enzymol 2022; 665:73-103. [PMID: 35379444 PMCID: PMC9042648 DOI: 10.1016/bs.mie.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glycan-protein interactions facilitate some of the most important biomolecular processes in and between cells. They are involved in different cellular pathways, cell-cell interactions and associated with many diseases, making these interactions of great interest. However, their structural and functional diversity poses great challenges in studying them at the molecular level. Surface plasmon resonance (SPR) technology presents great advantages to study glycan-protein interactions due to its superior sensitivity, ability to monitor real-time interactions, relatively simple data interpretation, and most importantly, direct measurement of binding without a need for fluorescent labeling. Here, another dimensionality of SPR in studying glycan-protein interactions is demonstrated via examples of binding between human innate immune receptors and their bacterial peptidoglycan ligands. In order to best resemble interactions in solution, a novel strategy of tethering the carbohydrate at different positions to the biosensor surface is applied to represent the potential displays of the carbohydrate ligand to the receptor. Subsequent kinetic analysis provides insights into the optimized configuration of peptidoglycan fragments for binding with its receptors. The manuscript contains a "how-to guide" to help with the implementation of these methods in other glycan-protein binding systems.
Collapse
Affiliation(s)
- Ha T. Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth A. D’Ambrosio
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Siavash Mashayekh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States,Correspondence to Catherine L. Grimes, The University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19716,
| |
Collapse
|
4
|
Akrami M, Samimi S, Alipour M, Bardania H, Ramezanpour S, Najafi N, Hosseinkhani S, Kamankesh M, Haririan I, Hassanshahi F. Potential anticancer activity of a new pro-apoptotic peptide-thioctic acid gold nanoparticle platform. NANOTECHNOLOGY 2021; 32:145101. [PMID: 33321485 DOI: 10.1088/1361-6528/abd3cb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Targeted nanoparticle platforms designed to induce cell death by apoptosis can bypass the resistance mechanisms of cancer cells. With this in mind we have constructed a new cancer-targeting peptide-functionalized nanoparticle using gold nanoparticles (AuNPs) and a thioctic acid-DMPGTVLP peptide (TA-peptide) conjugate. Morphological analysis of the nanoparticles by transmission electron microscopy showed average diameters of about 3.52 nm and 26.2 nm for the AuNP core and shell, respectively. Strong affinity toward the nucleolin receptors of breast cancer cell lines MCF-7 and T47D was observed for the TA-peptide gold nanoparticles (TAP@AuNPs) based on IC50 values. Furthermore, the nanoparticles showed excellent hemocompatibility. Quantitative results of atomic absorption showed improved uptake of TAP@AuNPs. Treatment of the cells with TAP@AuNPS resulted in greater release of cytochrome c following caspase-3/7 activation compared with free TA-peptide. The cytosolic level of adenosine triphosphate for TAP@AuNPs was higher than in controls. Higher anti-tumor efficiency was observed for TAP@AuNPs than TA-peptide compared with phosphate-buffered saline after intratumoral injection in tumor-bearing mice. It can be concluded that the design and development of a receptor-specific peptide-AuNP platform will be valuable for theranostic applications in cancer nanomedicine.
Collapse
Affiliation(s)
- Mohammad Akrami
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Samimi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Alipour
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sorour Ramezanpour
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Niayesh Najafi
- Department of Biological Sciences, University of California, Irvine, United States of America
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Kamankesh
- Department of Polymer chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hassanshahi
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gunnarsson A, Stubbs CJ, Rawlins PB, Taylor-Newman E, Lee WC, Geschwindner S, Hytönen V, Holdgate G, Jha R, Dahl G. Regenerable Biosensors for Small-Molecule Kinetic Characterization Using SPR. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 26:730-739. [PMID: 33289457 DOI: 10.1177/2472555220975358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A key activity in small-molecule drug discovery is the characterization of compound-target interactions. Surface plasmon resonance (SPR) is a flexible technique for this purpose, with a wide affinity range (micromoles to picomoles), low protein requirements, and the ability to characterize the kinetics of compound binding. However, a key requirement of SPR is the immobilization of the target protein to the surface of the sensor chip. The most commonly used immobilization techniques (covalent immobilization, streptavidin-biotin) are irreversible in nature, which can afford excellent baseline stability but impose limitations throughput for slowly dissociating compounds or unstable targets. Reversible immobilization (e.g., His-tag-Ni-NTA) is possible but typically precludes accurate quantification of slow dissociation kinetics due to baseline drift.Here we present our investigation of three immobilization strategies (dual-His-tagged target protein, His-tagged streptavidin, and switchavidin) that combine the robustness of irreversible immobilization with the flexibility of reversible immobilization. Each has its own advantages and limitations, and while a universal immobilization procedure remains to be found, these strategies add to the immobilization toolbox that enables previously out-of-scope applications. Such applications are highlighted in two examples that greatly increased throughput for the kinetic characterization of potent kinase inhibitors and kinetic profiling of covalent inhibitors.
Collapse
Affiliation(s)
- Anders Gunnarsson
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Christopher J Stubbs
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Philip B Rawlins
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Eleanor Taylor-Newman
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.,Deptartment of Chemistry, University of Leicester, Leicester, UK
| | - Wei-Chao Lee
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefan Geschwindner
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Vesa Hytönen
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Pirkanmaa, Finland
| | - Geoffrey Holdgate
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, UK
| | - Rupam Jha
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Göran Dahl
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
6
|
Abstract
Gravimetric transducers produce a signal based on a change in mass. These transducers can be used to construct gas sensors or biosensors using odorant binding proteins (OBPs) as recognition elements for small volatile organic compounds. The methods described in this chapter are based on the immobilization of the OBPs onto functionalized (activated) self-assembled monolayer (SAMs) on gold and on nanocrystalline diamond surfaces. Depending on the surface immobilization methods used to fabricate the biosensor, recombinant proteins can be engineered to express six histidine tags either on the N-terminal or C-terminal of the proteins and these can also be used to facilitate protein immobilization. These methods are used to produce functional sensors based on quartz crystal microbalances or surface acoustic wave devices and are also applicable to other types of gravimetric transducers.
Collapse
Affiliation(s)
- Khasim Cali
- Department of Instrumentation and Analytical Science, The University of Manchester, Manchester, United Kingdom
| | | | - Krishna C Persaud
- Department of Instrumentation and Analytical Science, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
7
|
Zhao H, Boyd LF, Schuck P. Measuring Protein Interactions by Optical Biosensors. ACTA ACUST UNITED AC 2017; 88:20.2.1-20.2.25. [PMID: 28369667 DOI: 10.1002/cpps.31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This unit gives an introduction to the basic techniques of optical biosensing for measuring equilibrium and kinetics of reversible protein interactions. Emphasis is placed on description of robust approaches that will provide reliable results with few assumptions. How to avoid the most commonly encountered problems and artifacts is also discussed. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Huaying Zhao
- National Institutes of Health, Bethesda, Maryland
| | - Lisa F Boyd
- National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Photochemically modified diamond-like carbon surfaces for neural interfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:1199-206. [DOI: 10.1016/j.msec.2015.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/10/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
|
9
|
Khantamat O, Li CH, Yu F, Jamison AC, Shih WC, Cai C, Lee TR. Gold nanoshell-decorated silicone surfaces for the near-infrared (NIR) photothermal destruction of the pathogenic bacterium E. faecalis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3981-93. [PMID: 25611157 DOI: 10.1021/am506516r] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Catheter-related infections (CRIs) are associated with the formation of pathogenic biofilms on the surfaces of silicone catheters, which are ubiquitous in medicine. These biofilms provide protection against antimicrobial agents and facilitate the development of bacterial resistance to antibiotics. The application of photothermal agents on catheter surfaces is an innovative approach to overcoming biofilm-generated CRIs. Gold nanoshells (AuNSs) represent a promising photothermal tool, because they can be used to generate heat upon exposure to near-infrared (NIR) radiation, are biologically inert at physiological temperatures, and can be engineered for the photothermal ablation of cells and tissue. In this study, AuNSs functionalized with carboxylate-terminated organosulfur ligands were attached to model catheter surfaces and tested for their effectiveness at killing adhered Enterococcus faecalis (E. faecalis) bacteria. The morphology of the AuNSs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while the elemental composition was characterized by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Furthermore, optical and photothermal properties were acquired by ultraviolet-visible (UV-vis) spectroscopy and thermographic imaging with an infrared camera, respectively. Bacterial survival studies on AuNS-modified surfaces irradiated with and without NIR light were evaluated using a colony-formation assay. These studies demonstrated that AuNS-modified surfaces, when illuminated with NIR light, can effectively kill E. faecalis on silicone surfaces.
Collapse
Affiliation(s)
- Orawan Khantamat
- Department of Chemistry and the Texas Center for Superconductivity and ‡Department of Electrical and Computer Engineering University of Houston , Houston, Texas 77204-5003, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
Näreoja T, Ebner A, Gruber HJ, Taskinen B, Kienberger F, Hänninen PE, Hytönen VP, Hinterdorfer P, Härmä H. Kinetics of bioconjugate nanoparticle label binding in a sandwich-type immunoassay. Anal Bioanal Chem 2013; 406:493-503. [PMID: 24264621 DOI: 10.1007/s00216-013-7474-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
Nanoparticle labels have enhanced the performance of diagnostic, screening, and other measurement applications and hold further promise for more sensitive, precise, and cost-effective assay technologies. Nevertheless, a clear view of the biomolecular interactions on the molecular level is missing. Controlling the ratio of molecular recognition over undesired nonspecific adhesion is the key to improve biosensing with nanoparticles. To improve this ratio with an aim to disallow nonspecific binding, a more detailed perspective into the kinetic differences between the cases is needed. We present the application of two novel methods to determine complex binding kinetics of bioconjugate nanoparticles, interferometry, and force spectroscopy. Force spectroscopy is an atomic force microscopy technique and optical interferometry is a direct method to monitor reaction kinetics in second-hour timescale, both having steadily increasing importance in nanomedicine. The combination is perfectly suited for this purpose, due to the high sensitivity to detect binding events and the ability to investigate biological samples under physiological conditions. We have attached a single biofunctionalized nanoparticle to the outer tip apex and studied the binding behavior of the nanoparticle in a sandwich-type immunoassay using dynamic force spectroscopy in millisecond timescale. Utilization of the two novel methods allowed characterization of binding kinetics in a time range spanning from 50 ms to 4 h. These experiments allowed detection and demonstration of differences between specific and nonspecific binding. Most importantly, nonspecific binding of a nanoparticle was reduced at contact times below 100 ms with the solid-phase surface.
Collapse
Affiliation(s)
- Tuomas Näreoja
- Laboratory of Biophysics, Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland,
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pollheimer P, Taskinen B, Scherfler A, Gusenkov S, Creus M, Wiesauer P, Zauner D, Schöfberger W, Schwarzinger C, Ebner A, Tampé R, Stutz H, Hytönen VP, Gruber HJ. Reversible biofunctionalization of surfaces with a switchable mutant of avidin. Bioconjug Chem 2013; 24:1656-68. [PMID: 23978112 DOI: 10.1021/bc400087e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Label-free biosensors detect binding of prey molecules (″analytes″) to immobile bait molecules on the sensing surface. Numerous methods are available for immobilization of bait molecules. A convenient option is binding of biotinylated bait molecules to streptavidin-functionalized surfaces, or to biotinylated surfaces via biotin-avidin-biotin bridges. The goal of this study was to find a rapid method for reversible immobilization of biotinylated bait molecules on biotinylated sensor chips. The task was to establish a biotin-avidin-biotin bridge which was easily cleaved when desired, yet perfectly stable under a wide range of measurement conditions. The problem was solved with the avidin mutant M96H which contains extra histidine residues at the subunit-subunit interfaces. This mutant was bound to a mixed self-assembled monolayer (SAM) containing biotin residues on 20% of the oligo(ethylene glycol)-terminated SAM components. Various biotinylated bait molecules were bound on top of the immobilized avidin mutant. The biotin-avidin-biotin bridge was stable at pH ≥3, and it was insensitive to sodium dodecyl sulfate (SDS) at neutral pH. Only the combination of citric acid (2.5%, pH 2) and SDS (0.25%) caused instantaneous cleavage of the biotin-avidin-biotin bridge. As a consequence, the biotinylated bait molecules could be immobilized and removed as often as desired, the only limit being the time span for reproducible chip function when kept in buffer (2-3 weeks at 25 °C). As expected, the high isolectric pH (pI) of the avidin mutant caused nonspecific adsorption of proteins. This problem was solved by acetylation of avidin (to pI < 5), or by optimization of SAM formation and passivation with biotin-BSA and BSA.
Collapse
Affiliation(s)
- Philipp Pollheimer
- Institute of Biophysics, Johannes Kepler University , Gruberstr. 40, 4020 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Alhamdani MSS, Hoheisel JD. Antibody Microarrays in Proteome Profiling. MOLECULAR ANALYSIS AND GENOME DISCOVERY 2011:219-243. [DOI: 10.1002/9781119977438.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Hudalla GA, Murphy WL. Chemically well-defined self-assembled monolayers for cell culture: toward mimicking the natural ECM. SOFT MATTER 2011; 7:9561-9571. [PMID: 25214878 PMCID: PMC4159093 DOI: 10.1039/c1sm05596h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The extracellular matrix (ECM) is a network of biological macromolecules that surrounds cells within tissues. In addition to serving as a physical support, the ECM actively influences cell behavior by providing sites for cell adhesion, establishing soluble factor gradients, and forming interfaces between different cell types within a tissue. Thus, elucidating the influence of ECM-derived biomolecules on cell behavior is an important aspect of cell biology. Self-assembled monolayers (SAMs) have emerged as promising tools to mimic the ECM as they provide chemically well-defined substrates that can be precisely tailored for specific cell culture applications, and their application in this regard is the focus of this review. In particular, this review will describe various approaches to prepare SAM-based culture substrates via non-specific adsorption, covalent immobilization, or non-covalent sequestering of ECM-derived biomolecules. Additionally, this review will highlight SAMs that present ECM-derived biomolecules to cells to probe the role of these molecules in cell-ECM interactions, including cell attachment, spreading and 'outside-in' signaling via focal adhesion complex formation. Finally, this review will introduce SAMs that can present or sequester soluble signaling molecules, such as growth factors, to study the influence of localized soluble factor activity on cell behavior. Together, these examples demonstrate that the chemical specificity and variability afforded by SAMs can provide robust, well-defined substrates for cell culture that can simplify experimental design and analysis by eliminating many of the confounding factors associated with traditional culture substrates.
Collapse
Affiliation(s)
- Gregory A. Hudalla
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
- Department of Pharmacology, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
| |
Collapse
|
15
|
Steinhagen M, Holland-Nell K, Meldal M, Beck-Sickinger AG. Simultaneous “One Pot” Expressed Protein Ligation and CuI-Catalyzed Azide/Alkyne Cycloaddition for Protein Immobilization. Chembiochem 2011; 12:2426-30. [DOI: 10.1002/cbic.201100434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 01/15/2023]
|
16
|
Glass NR, Tjeung R, Chan P, Yeo LY, Friend JR. Organosilane deposition for microfluidic applications. BIOMICROFLUIDICS 2011; 5:36501-365017. [PMID: 22662048 PMCID: PMC3364836 DOI: 10.1063/1.3625605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 05/05/2023]
Abstract
Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Silanization, the generic term applied to the formation of organosilane monolayers on substrates, is both widely reported in the literature and troublesome in actual application for the uninitiated. These monolayers can be subsequently modified to produce a surface of a specific functionality. Here various organosilane deposition protocols and some application notes are provided as a basis for the novice reader to construct their own silanization procedures, and as a practical resource to a broader range of techniques even for the experienced user.
Collapse
Affiliation(s)
- Nick R Glass
- Micro/Nanophysics Research Laboratory, Department of Mechanical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
17
|
Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirjalili BF, Mirkhalaf F. Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1, 3-dithiane self-assembled monolayer. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Abstract
Atomic force microscopy (AFM) works by scanning a very tiny tip over a surface with great precision. The microscope tips can be chemically functionalized to improve the images obtained. Well-defined chemical functionalization of AFM tips is especially important for experiments, such as chemical force microscopy and single molecule recognition force microscopy, to examine specific interactions at the single molecular level. In this chapter, we present an overview of chemical modifications of tips that have been reported to date with regards to the proper fixation of probe molecules, focusing particularly on chemical procedures developed to anchor biological molecules on AFM tips.
Collapse
Affiliation(s)
- Régis Barattin
- Département de chimie, Université Laval, Quebec, QC, Canada
| | | |
Collapse
|
19
|
Byeon JY, Limpoco FT, Bailey RC. Efficient bioconjugation of protein capture agents to biosensor surfaces using aniline-catalyzed hydrazone ligation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15430-5. [PMID: 20809595 PMCID: PMC2947609 DOI: 10.1021/la1021824] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Aniline-catalyzed hydrazone ligation between surface-immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the efficiency of this surface bioconjugate reaction at various pHs and in the presence or absence of aniline as a nucleophilic catalyst. It is found that aniline significantly increases the net antibody loading for surfaces functionalized over a pH range from 4.5 to 7.4, allowing derivatization of substrates with reduced incubation time and sample consumption. This increase in antibody loading directly results in more sensitive antigen detection when functionalized microrings are employed in a label-free immunoassay. Furthermore, these experiments also reveal an interesting pH-dependent noncovalent binding trend that plays an important role in dictating the amount of antibody attached onto the substrate, highlighting the competing contributions of the bioconjugate reaction rate and the dynamic interactions that control opportunities for a solution-phase biomolecule to react with a substrate-bound reagent.
Collapse
Affiliation(s)
- Ji-Yeon Byeon
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - F. T. Limpoco
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| |
Collapse
|
20
|
Kopitzki S, Jensen KJ, Thiem J. Synthesis of benzaldehyde-functionalized glycans: a novel approach towards glyco-SAMs as a tool for surface plasmon resonance studies. Chemistry 2010; 16:7017-29. [PMID: 20432412 DOI: 10.1002/chem.200902693] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In recent years the interest in tools for investigating carbohydrate-protein (CPI) and carbohydrate-carbohydrate interactions (CCI) has increased significantly. For the investigation of CPI and CCI, several techniques employing different linking methods are available. Surface plasmon resonance (SPR) imaging is a most appropriate tool for analyzing the formation of self-assembled monolayers (SAM) of carbohydrate derivatives, which can mimic the glycocalyx. In contrast to the SPR imaging methods used previously to analyze CPI and CCI, the novel approach reported herein allows a facile and rapid synthesis of linker spacers and carbohydrate derivatives and enhances the binding event by controlling the amount and orientation of ligand. For immobilization on biorepulsive amino-functionalized SPR chips by reductive amination, diverse aldehyde-functionalized glycan structures (glucose, galactose, mannose, glucosamine, cellobiose, lactose, and lactosamine) have been synthesized in several facile steps that include olefin metathesis. Effective immobilization and the first binding studies are presented for the lectin concanavalin A.
Collapse
Affiliation(s)
- Sebastian Kopitzki
- Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | |
Collapse
|
21
|
Protein immobilization at gold–thiol surfaces and potential for biosensing. Anal Bioanal Chem 2010; 398:1545-64. [DOI: 10.1007/s00216-010-3708-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 12/14/2022]
|
22
|
Stehrer B, Schwödiauer R, Bauer S, Graz I, Pollheimer P, Gruber H. High frequency QCM based sensor system for sensitive detection of dissolved analytes. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.proeng.2010.09.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zou Y, Yeh PYJ, Rossi NAA, Brooks DE, Kizhakkedathu JN. Nonbiofouling Polymer Brush with Latent Aldehyde Functionality as a Template for Protein Micropatterning. Biomacromolecules 2009; 11:284-93. [DOI: 10.1021/bm901159d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuquan Zou
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| | - Po-Ying J. Yeh
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| | - Nicholas A. A. Rossi
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| | - Donald E. Brooks
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| |
Collapse
|
24
|
Westcott NP, Yousaf MN. Chemoselective ligand patterning of electroactive surfaces using microfluidics. Electrophoresis 2009; 30:3381-5. [DOI: 10.1002/elps.200900275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Arya SK, Solanki PR, Datta M, Malhotra BD. Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosens Bioelectron 2009; 24:2810-7. [DOI: 10.1016/j.bios.2009.02.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 11/25/2022]
|
26
|
Henricus MM, Fath KR, Menzenski MZ, Banerjee IA. Morphology Controlled Growth of Chitosan-Bound Microtubes and a Study of their Biocompatibility and Antibacterial Activity. Macromol Biosci 2009; 9:317-25. [DOI: 10.1002/mabi.200800220] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Lu M, Wu D, Guo N. Novel functionalized ternary copolymer fluorescent nanoparticles: synthesis, fluorescent characteristics and protein immobilization. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:563-572. [PMID: 18839282 DOI: 10.1007/s10856-008-3596-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 09/17/2008] [Indexed: 05/26/2023]
Abstract
Novel fluorescent poly(styrene-acrylamide-acrylic acid) nanoparticles (FPSAAN) were synthesized by means of soapless emulsion polymerization and being modified with hydrazine hydrate by hydrazinolysis. The azidocarbonyl groups which can be rapidly coupled with proteins under mild condition were introduced onto the fluorescent nanoparticles by azido-reaction. Bovine serum albumin (BSA) was selected as a model protein to be covalently immobilized on the azidocarbonyl FPSAAN. Atom force microscopy (AFM), Transmission electron microscopy (TEM), Ultraviolet-visible (UV/Vis) spectrometer, Fourier transforms infrared spectrometer (FTIR), nanoparticle size analyzer and fluorescence spectrophotometer were used to characterize the FPSAAN. Results showed that FPSAAN had a regular spherical shape, and a dramatic narrow size distribution (polydispersity index 0.046 +/- 0.009). The fluorescence intensity of FPSAAN (lambda(ex)/lambda(em) = 253/306 nm), hydrazide-FPSAAN (lambda(ex/)lambda(em) = 260/326 nm), and protein-immobilized FPSAAN (lambda(ex)/lambda(em) = 258/325 nm) was linearly related to the concentration ranging from 1.0 x 10(-3) g l(-1) to 10.0 x 10(-3) g l(-1). The linear relationship was obtained. The equations are y = 52.808x + 16.465 (R (2) = 0.9927), y = 5.1814x + 4.1535 (R (2) = 0.9935) and y = 5.2227x + 5.2883 (R (2) = 0.9937), respectively. In addition, external factors such as pH and ionic strength exert a slight influence on fluorescent properties. The experiments of the immobilization of BSA indicated that FPSAAN with azidocarbonyl groups could be covalently coupled with BSA at the rate of 41.1%. Meanwhile, hCG antibody immobilized FPSAAN have the similar fluorescence characteristics to BSA immobilized FPSAAN. Only negligible difference of the fluorescence characteristics can be found. Furthermore, the fluorescence characteristics of hCG antibody immobilized FPSAAN have not been obviously affected after mixed with the hCG antigen and human plasma. These novel azidocarbonyl FPSAAN with stable fluorescence and active functional azidocarbonyl groups could be used as a promising fluorescent probe for quantitative detection, protein immobilization, cell labeling research and early rapid clinical diagnostics.
Collapse
Affiliation(s)
- Maolin Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | |
Collapse
|
28
|
User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosens Bioelectron 2009; 24:2643-8. [PMID: 19231152 DOI: 10.1016/j.bios.2009.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/23/2008] [Accepted: 01/19/2009] [Indexed: 11/21/2022]
Abstract
For the application of high fundamental frequency (HFF) quartz crystal resonators as ultra sensitive acoustic biosensors, a tailor-made quartz crystal microbalance (QCM) flow cell has been fabricated and tested. The cell permits an equally fast and easy installation and replacement of small and fragile HFF sensors. Usability and simple fabrication are two central features of the HFF-QCM flow cell. Mechanical, thermal, electrical and chemical requirements are considered. The design of the cell combines these, partially contradictory, requirements within a simple device. Central design concepts are discussed and a brief description of the fabrication, with a special focus on the preparation of crucial parts, is provided. For test measurements, the cell was equipped with a standard 50 MHz HFF resonator which had been surface-functionalised with a self-assembled monolayer of 1-octadecanethiol. The reliable performance is demonstrated with two types of experiments: the real time monitoring of phospholipid monolayer formation and its removal with detergent, as well as step-wise growth of a protein multilayer system by an alternating immobilisation of streptavidin and biotinylated immunoglobulin G.
Collapse
|
29
|
Van der Steen M, Stevens CV. Undecylenic acid: a valuable and physiologically active renewable building block from castor oil. CHEMSUSCHEM 2009; 2:692-713. [PMID: 19650106 DOI: 10.1002/cssc.200900075] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A lot of attention is currently being paid to the transition to a biobased economy. In this movement, most efforts concentrate on the development of bioenergy applications including bioethanol, biodiesel, thermochemical conversion of biomass, and others. However, in the energy sector other nonbiomass alternatives are known, whereas no valuable alternatives are available when thinking about chemical building blocks. Therefore, it is also essential to develop new routes for the synthesis of bio-based chemicals and materials derived thereof. Such intermediates can originate either from plants or from animals. Castor oil is a non-edible oil extracted from the seeds of the castor bean plant Ricinus communis (Euphorbiaceae), which grows in tropical and subtropical areas. Globally, around one million tons of castor seeds are produced every year, the leading producing areas being India, PR China, and Brazil.2 10-Undecenoic acid or undecylenic acid is a fatty acid derived from castor oil that, owing to its bifunctional nature, has many possibilities to develop sustainable applications.
Collapse
|
30
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Westcott NP, Pulsipher A, Lamb BM, Yousaf MN. Expedient generation of patterned surface aldehydes by microfluidic oxidation for chemoselective immobilization of ligands and cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9237-9240. [PMID: 18672921 DOI: 10.1021/la802208v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An expedient and inexpensive method to generate patterned aldehydes on self-assembled monolayers (SAMs) of alkanethiolates on gold with control of density for subsequent chemoselective immobilization from commercially available starting materials has been developed. Utilizing microfluidic cassettes, primary alcohol oxidation of tetra(ethylene glycol) undecane thiol and 11-mercapto-1-undecanol SAMs was performed directly on the surface generating patterned aldehyde groups with pyridinium chlorochromate. The precise density of surface aldehydes generated can be controlled and characterized by electrochemistry. For biological applications, fibroblast cells were seeded on patterned surfaces presenting biospecifc cell adhesive (Arg-Glyc-Asp) RGD peptides.
Collapse
Affiliation(s)
- Nathan P Westcott
- Department of Chemistry and Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
32
|
Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy. Top Curr Chem (Cham) 2008; 285:29-76. [DOI: 10.1007/128_2007_24] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Hölzl M, Tinazli A, Leitner C, Hahn CD, Lackner B, Tampé R, Gruber HJ. Protein-resistant self-assembled monolayers on gold with latent aldehyde functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5571-7. [PMID: 17432882 DOI: 10.1021/la0627664] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In the present study, oligo(ethylene glycol) (OEG)-linked alkanethiols were synthesized which carry a vicinal diol on one end of the OEG chain. After self-assembled monolayer (SAM) formation on gold, the vicinal diols were converted into aldehyde functions by exposure to aqueous NaIO4, as previously used for SAMs with OEG chains buried in the center of the SAM [Jang et al. Nano Lett. 2003, 3, 691-694]. Mixed SAMs with latent aldehydes on 5% of the OEG termini showed high protein resistance, which greatly slowed the kinetics of protein coupling on the time scale of minutes. Small bioligands (such as biocytin hydrazide) or small heterobifunctional crosslinkers (maleimidopropionyl hydrazide, pyridyldithiopropionyl hydrazide) with hydrazide functions were efficiently bound to the aldehyde functions on the SAM, providing for specific capture of streptavidin or for fast covalent binding of proteins with free thiols or maleimide functions, respectively. In conclusion, OEG-terminated SAMs with latent aldehydes serve as protein-resistant sensor surfaces which are easily functionalized with small ligands or with heterobifunctional crosslinkers to which the bait molecule is attached in a subsequent step.
Collapse
Affiliation(s)
- Martin Hölzl
- Institute of Biophysics and Institute of Organic Chemistry, University of Linz, Altenberger Str. 69, A-4040 Linz, Austria
| | | | | | | | | | | | | |
Collapse
|