1
|
Zhang J, Wang B. Illuminating green fluorescent protein: Characterizing tri-peptide fluorescent chromophore, probing reactivity of cysteines, and unveiling site-directed modifications through mass spectrometry. J Pharm Biomed Anal 2025; 259:116771. [PMID: 40031130 DOI: 10.1016/j.jpba.2025.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
Bioconjugation technologies enable covalent attachment of diagnostic or therapeutic effectuators onto biological targets, allowing for the precise delivery of desired drugs to the intended targets with enhanced potency, selectivity, specificity, and prolonged duration of action. As the number of bioconjugation techniques has grown enormously, identification and in-depth characterization of in-process products play a critical role in the development of covalent drug conjugates. This is especially significant in light of the increased complexity of novel biotherapeutics derived from biological matrices. This paper describes liquid chromatography-mass spectrometry (LC-MS/MS)-based studies that have contributed to the development of site-specific genetic incorporation of non-natural amino acids (nnAAs) into proteins. A holistic approach was implemented to characterize a wild type green fluorescent protein (wtGFP) and an enhanced green fluorescent protein (eGFP). By using the wtGFP as a pilot and model system, the reactivity of cysteine residues was investigated under different sample processing conditions, followed by a stability evaluation using intact mass measurement. The subsequent complementary proteolytic peptide mappings were performed to achieve full sequence coverage of the proteins, identification of predominant modifications, and granular details of the fluorescent chromophore. The developed method was successfully applied to isolate the eGFP incorporated with nnAA from cells. This enables the verification of the specific site of nnAA incorporation, and the characterization of complex variants using de novo sequencing techniques. MS studies demonstrated that p-azido-phenylalanine (pAzF) was specifically incorporated into the desired site of eGFP with high efficiency and fidelity.
Collapse
Affiliation(s)
- Jianmin Zhang
- Global Discovery Chemistry, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Bing Wang
- Global Discovery Chemistry, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
2
|
Li C, Li T, Tian X, An W, Wang Z, Han B, Tao H, Wang J, Wang X. Research progress on the PEGylation of therapeutic proteins and peptides (TPPs). Front Pharmacol 2024; 15:1353626. [PMID: 38523641 PMCID: PMC10960368 DOI: 10.3389/fphar.2024.1353626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
With the rapid advancement of genetic and protein engineering, proteins and peptides have emerged as promising drug molecules for therapeutic applications. Consequently, there has been a growing interest in the field of chemical modification technology to address challenges associated with their clinical use, including rapid clearance from circulation, immunogenicity, physical and chemical instabilities (such as aggregation, adsorption, deamination, clipping, oxidation, etc.), and enzymatic degradation. Polyethylene glycol (PEG) modification offers an effective solution to these issues due to its favorable properties. This review presents recent progress in the development and application of PEGylated therapeutic proteins and peptides (TPPs). For this purpose, firstly, the physical and chemical properties as well as classification of PEG and its derivatives are described. Subsequently, a detailed summary is provided on the main sites of PEGylated TPPs and the factors that influence their PEGylation. Furthermore, notable instances of PEG-modified TPPs (including antimicrobial peptides (AMPs), interferon, asparaginase and antibodies) are highlighted. Finally, we propose the chemical modification of TPPs with PEG, followed by an analysis of the current development status and future prospects of PEGylated TPPs. This work provides a comprehensive literature review in this promising field while facilitating researchers in utilizing PEG polymers to modify TPPs for disease treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xinya Tian
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei An
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
3
|
Hu J, Shi J, Yuan Y, Li S, Zhang B, Dong H, Zhong Q, Xie Q, Bai X, Li Y. Self-fused concatenation of interferon with enhanced bioactivity, pharmacokinetics and antitumor efficacy. RSC Adv 2022; 12:28279-28282. [PMID: 36320276 PMCID: PMC9531251 DOI: 10.1039/d2ra04978c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
We report an easy but universal protein modification approach, self-fused concatenation (SEC), to biosynthesize a set of interferon (IFN) concatemers with improved in vitro bioactivity, in vivo pharmacokinetics and therapeutic efficacy over the monomeric IFN, and the results can be positively enhanced by the concatenated number of self-fused proteins.
Collapse
Affiliation(s)
- Jin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Jianquan Shi
- Department of Intensive Care Unit, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing 101149China
| | - Yeshuang Yuan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing 100730China
| | - Shengjie Li
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Bo Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Haitao Dong
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Qing Zhong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Qiu Xie
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Yingxing Li
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| |
Collapse
|
4
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Pelosi C, Duce C, Wurm FR, Tinè MR. Effect of Polymer Hydrophilicity and Molar Mass on the Properties of the Protein in Protein-Polymer Conjugates: The Case of PPEylated Myoglobin. Biomacromolecules 2021; 22:1932-1943. [PMID: 33830737 PMCID: PMC8154264 DOI: 10.1021/acs.biomac.1c00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/07/2021] [Indexed: 11/28/2022]
Abstract
Polyphosphoesters (PPEs), a versatile class of biodegradable and biocompatible polymers, have been proposed as alternatives to poly(ethylene glycol) (PEG), which is suspected to be responsible for anaphylactic reactions in some patients after the administration of PEGylated compounds, e.g., in the current Covid-19 vaccines. We present the synthesis and characterization of a novel set of protein-polymer conjugates using the model protein myoglobin and a set of PPEs with different hydrophilicity and molar mass. We report an extensive evaluation of the (bio)physical properties of the protein within the conjugates, studying its conformation, residual activity, and thermal stability by complementary techniques (UV-vis spectroscopy, nano-differential scanning calorimetry, and fluorometry). The data underline the systematic influence of polymer hydrophilicity on protein properties. The more hydrophobic polymers destabilize the protein, the more hydrophilic PPEs protect against thermally induced aggregation and proteolytic degradation. This basic study aims at guiding the design of future PPEylated drugs and protein conjugates.
Collapse
Affiliation(s)
- Chiara Pelosi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi, Pisa 56124, Italy
| | - Celia Duce
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi, Pisa 56124, Italy
| | - Frederik R. Wurm
- Sustainable
Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute
for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Maria R. Tinè
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi, Pisa 56124, Italy
| |
Collapse
|
6
|
Cao SJ, Lv ZQ, Guo S, Jiang GP, Liu HL. An update - Prolonging the action of protein and peptide drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Wilkerson JW, Smith AK, Wilding KM, Bundy BC, Knotts TA. The Effects of p-Azidophenylalanine Incorporation on Protein Structure and Stability. J Chem Inf Model 2020; 60:5117-5125. [PMID: 32966074 DOI: 10.1021/acs.jcim.0c00725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization is often needed to harness the power of proteins for beneficial use but can cause losses to stability and/or activity. State of the art methods to limit these deleterious effects accomplish this by substituting an amino acid in the wild-type molecule into an unnatural amino acid, such as p-azidophenylalanine (pAz), but selecting the residue for substitution a priori remains an elusive goal of protein engineering. The results of this work indicate that all-atom molecular dynamics simulation can be used to determine whether substituting pAz for a natural amino acid will be detrimental to experimentally determined protein stability. These results offer significant hope that local deviations from wild-type structure caused by pAz incorporation observed in simulations can be a predictive metric used to reduce the number of costly experiments that must be done to find active proteins upon substitution with pAz and subsequent functionalization.
Collapse
Affiliation(s)
- Joshua W Wilkerson
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Addison K Smith
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Kristen M Wilding
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Thomas A Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
8
|
Santich BH, Cheal SM, Ahmed M, McDevitt MR, Ouerfelli O, Yang G, Veach DR, Fung EK, Patel M, Burnes Vargas D, Malik AA, Guo HF, Zanzonico PB, Monette S, Michel AO, Rudin CM, Larson SM, Cheung NK. A Self-Assembling and Disassembling (SADA) Bispecific Antibody (BsAb) Platform for Curative Two-step Pretargeted Radioimmunotherapy. Clin Cancer Res 2020; 27:532-541. [PMID: 32958698 DOI: 10.1158/1078-0432.ccr-20-2150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Many cancer treatments suffer from dose-limiting toxicities to vital organs due to poor therapeutic indices. To overcome these challenges we developed a novel multimerization platform that rapidly removes tumor-targeting proteins from the blood to substantially improve therapeutic index. EXPERIMENTAL DESIGN The platform was designed as a fusion of a self-assembling and disassembling (SADA) domain to a tandem single-chain bispecific antibody (BsAb, anti-ganglioside GD2 × anti-DOTA). SADA-BsAbs were assessed with multiple in vivo tumor models using two-step pretargeted radioimmunotherapy (PRIT) to evaluate tumor uptake, dosimetry, and antitumor responses. RESULTS SADA-BsAbs self-assembled into stable tetramers (220 kDa), but could also disassemble into dimers or monomers (55 kDa) that rapidly cleared via renal filtration and substantially reduced immunogenicity in mice. When used with rapidly clearing DOTA-caged PET isotopes, SADA-BsAbs demonstrated accurate tumor localization, dosimetry, and improved imaging contrast by PET/CT. When combined with therapeutic isotopes, two-step SADA-PRIT safely delivered massive doses of alpha-emitting (225Ac, 1.48 MBq/kg) or beta-emitting (177Lu, 6,660 MBq/kg) S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA) payloads to tumors, ablating them without any short-term or long-term toxicities to the bone marrow, kidneys, or liver. CONCLUSIONS The SADA-BsAb platform safely delivered large doses of radioisotopes to tumors and demonstrated no toxicities to the bone marrow, kidneys, or liver. Because of its modularity, SADA-BsAbs can be easily adapted to most tumor antigens, tumor types, or drug delivery approaches to improve therapeutic index and maximize the delivered dose.See related commentary by Capala and Kunos, p. 377.
Collapse
Affiliation(s)
- Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahiuddin Ahmed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael R McDevitt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guangbin Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren R Veach
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Mitesh Patel
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniela Burnes Vargas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aiza A Malik
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Adam O Michel
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Charles M Rudin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Nai K Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
9
|
Porfiryeva NN, Moustafine RI, Khutoryanskiy VV. PEGylated Systems in Pharmaceutics. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s181123822001004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
|
11
|
Peciak K, Laurine E, Tommasi R, Choi JW, Brocchini S. Site-selective protein conjugation at histidine. Chem Sci 2019; 10:427-439. [PMID: 30809337 PMCID: PMC6354831 DOI: 10.1039/c8sc03355b] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Site-selective conjugation generally requires both (i) molecular engineering of the protein of interest to introduce a conjugation site at a defined location and (ii) a site-specific conjugation technology. Three N-terminal interferon α2-a (IFN) variants with truncated histidine tags were prepared and conjugation was examined using a bis-alkylation reagent, PEG(10kDa)-mono-sulfone 3. A histidine tag comprised of two histidines separated by a glycine (His2-tag) underwent PEGylation. Two more IFN variants were then prepared with the His2-tag engineered at different locations in IFN. Another IFN variant was prepared with the His-tag introduced in an α-helix, and required three contiguous histidines to ensure that two histidine residues in the correct conformation would be available for conjugation. Since histidine is a natural amino acid, routine methods of site-directed mutagenesis were used to generate the IFN variants from E. coli in soluble form at titres comparable to native IFN. PEGylation conversions ranged from 28-39%. A single step purification process gave essentially the pure PEG-IFN variant (>97% by RP-HPLC) in high recovery with isolated yields ranging from 21-33%. The level of retained bioactivity was strongly dependent on the site of PEG conjugation. The highest biological activity of 74% was retained for the PEG10-106(HGHG)-IFN variant which is unprecedented for a PEGylated IFN. The His2-tag at 106(HGHG)-IFN is engineered at the flexible loop most distant from IFN interaction with its dimeric receptor. The biological activity for the PEG10-5(HGH)-IFN variant was determined to be 17% which is comparable to other PEGylated IFN conjugates achieved at or near the N-terminus that have been previously described. The lowest retained activity (10%) was reported for PEG10-120(HHH)-IFN which was prepared as a negative control targeting a IFN site thought to be involved in receptor binding. The presence of two histidines as a His2-tag to generate a site-selective target for bis-alkylating PEGylation is a feasible approach for achieving site-selective PEGylation. The use of a His2-tag to strategically engineer a conjugation site in a protein location can result in maximising the retention of the biological activity following protein modification.
Collapse
Affiliation(s)
- Karolina Peciak
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | | | - Rita Tommasi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Ji-Won Choi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Steve Brocchini
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
| |
Collapse
|
12
|
Imada T, Moriya K, Uchiyama M, Inukai N, Hitotsuyanagi M, Masuda A, Suzuki T, Ayukawa S, Tagawa YI, Dohmae N, Kohara M, Yamamura M, Kiga D. A Highly Bioactive Lys-Deficient IFN Leads to a Site-Specific Di-PEGylated IFN with Equivalent Bioactivity to That of Unmodified IFN-α2b. ACS Synth Biol 2018; 7:2537-2546. [PMID: 30277749 DOI: 10.1021/acssynbio.8b00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although conjugation with polyethylene glycol (PEGylation) improves the pharmacokinetics of therapeutic proteins, it drastically decreases their bioactivity. Site-specific PEGylation counters the reduction in bioactivity, but developing PEGylated proteins with equivalent bioactivity to that of their unmodified counterparts remains challenging. This study aimed to generate PEGylated proteins with equivalent bioactivity to that of unmodified counterparts. Using interferon (IFN) as a model protein, a highly bioactive Lys-deficient protein variant generated using our unique directed evolution methods enables the design of a site-specific di-PEGylated protein. Antiviral activity of our di-PEGylated IFN was similar to that of unmodified IFN-α2b. The di-PEGylated IFN exhibited 3.0-fold greater antiviral activity than that of a commercial PEGylated IFN. Moreover, our di-PEGylated IFN showed higher in vitro and in vivo stability than those of unmodified IFN-α2b. Hence, we propose that highly bioactive Lys-deficient proteins solve the limitation of conventional PEGylation with respect to the reduction in bioactivity of PEGylated proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Akiko Masuda
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Shotaro Ayukawa
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| | | | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Michinori Kohara
- Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | | | - Daisuke Kiga
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| |
Collapse
|
13
|
Liu X, Sun M, Sun J, Hu J, Wang Z, Guo J, Gao W. Polymerization Induced Self-Assembly of a Site-Specific Interferon α-Block Copolymer Conjugate into Micelles with Remarkably Enhanced Pharmacology. J Am Chem Soc 2018; 140:10435-10438. [DOI: 10.1021/jacs.8b06013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyu Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mengmeng Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiawei Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jin Hu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhuoran Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianwen Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weiping Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Hou Y, Zhou Y, Wang H, Wang R, Yuan J, Hu Y, Sheng K, Feng J, Yang S, Lu H. Macrocyclization of Interferon-Poly(α-amino acid) Conjugates Significantly Improves the Tumor Retention, Penetration, and Antitumor Efficacy. J Am Chem Soc 2018; 140:1170-1178. [PMID: 29262256 DOI: 10.1021/jacs.7b13017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclization and polymer conjugation are two commonly used approaches for enhancing the pharmacological properties of protein drugs. However, cyclization of parental proteins often only affords a modest improvement in biochemical or cell-based in vitro assays. Moreover, very few studies have included a systematic pharmacological evaluation of cyclized protein-based therapeutics in live animals. On the other hand, polymer-conjugated proteins have longer circulation half-lives but usually show poor tumor penetration and suboptimal pharmacodynamics due to increased steric hindrance. We herein report the generation of a head-to-tail interferon-poly(α-amino acid) macrocycle conjugate circ-P(EG3Glu)20-IFN by combining the aforementioned two approaches. We then compared the antitumor pharmacological activity of this macrocycle conjugate against its linear counterparts, N-P(EG3Glu)20-IFN, C-IFN-P(EG3Glu)20, and C-IFN-PEG. Our results found circ-P(EG3Glu)20-IFN to show considerably greater stability, binding affinity, and in vitro antiproliferative activity toward OVCAR3 cells than the three linear conjugates. More importantly, circ-P(EG3Glu)20-IFN exhibited longer circulation half-life, remarkably higher tumor retention, and deeper tumor penetration in vivo. As a result, administration of the macrocyclic conjugate could effectively inhibit tumor progression and extend survival in mice bearing established xenograft human OVCAR3 or SKOV3 tumors without causing severe paraneoplastic syndromes. Taken together, our study provided until now the most relevant experimental evidence in strong support of the in vivo benefit of macrocyclization of protein-polymer conjugates and for its application in next-generation therapeutics.
Collapse
Affiliation(s)
- Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Yu Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China , Chengdu 610054, People's Republic of China
| | - Hao Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Ruijue Wang
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities , Chengdu 610041, People's Republic of China
| | - Jingsong Yuan
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Yali Hu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, People's Republic of China
| | - Kai Sheng
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China , Chengdu 610054, People's Republic of China
| | - Shengtao Yang
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities , Chengdu 610041, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
16
|
Herrington-Symes A, Choi JW, Brocchini S. Interferon dimers: IFN-PEG-IFN. J Drug Target 2017; 25:881-890. [PMID: 28817988 DOI: 10.1080/1061186x.2017.1363214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Increasingly complex proteins can be made by a recombinant chemical approach where proteins that can be made easily can be combined by site-specific chemical conjugation to form multifunctional or more active protein therapeutics. Protein dimers may display increased avidity for cell surface receptors. The increased size of protein dimers may also increase circulation times. Cytokines bind to cell surface receptors that dimerise, so much of the solvent accessible surface of a cytokine is involved in binding to its target. Interferon (IFN) homo-dimers (IFN-PEG-IFN) were prepared by two methods: site-specific bis-alkylation conjugation of PEG to the two thiols of a native disulphide or to two imidazoles on a histidine tag of two His8-tagged IFN (His8IFN). Several control conjugates were also prepared to assess the relative activity of these IFN homo-dimers. The His8IFN-PEG20-His8IFN obtained by histidine-specific conjugation displayed marginally greater in vitro antiviral activity compared to the IFN-PEG20-IFN homo-dimer obtained by disulphide re-bridging conjugation. This result is consistent with previous observations in which enhanced retention of activity was made possible by conjugation to an N-terminal His-tag on the IFN. Comparison of the antiviral and antiproliferative activities of the two IFN homo-dimers prepared by disulphide re-bridging conjugation indicated that IFN-PEG10-IFN was more biologically active than IFN-PEG20-IFN. This result suggests that the size of PEG may influence the antiviral activity of IFN-PEG-IFN homo-dimers.
Collapse
Affiliation(s)
| | - Ji-Won Choi
- a Abzena , Babraham Research Campus , Babraham, Cambridge , UK
| | | |
Collapse
|
17
|
Spolaore B, Raboni S, Satwekar AA, Grigoletto A, Mero A, Montagner IM, Rosato A, Pasut G, Fontana A. Site-Specific Transglutaminase-Mediated Conjugation of Interferon α-2b at Glutamine or Lysine Residues. Bioconjug Chem 2016; 27:2695-2706. [PMID: 27731976 DOI: 10.1021/acs.bioconjchem.6b00468] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interferon α (IFN α) subtypes are important protein drugs that have been used to treat infectious diseases and cancers. Here, we studied the reactivity of IFN α-2b to microbial transglutaminase (TGase) with the aim of obtaining a site-specific conjugation of this protein drug. Interestingly, TGase allowed the production of two monoderivatized isomers of IFN with high yields. Characterization by mass spectrometry of the two conjugates indicated that they are exclusively modified at the level of Gln101 if the protein is reacted in the presence of an amino-containing ligand (i.e., dansylcadaverine) or at the level of Lys164 if a glutamine-containing molecule is used (i.e., carbobenzoxy-l-glutaminyl-glycine, ZQG). We explained the extraordinary specificity of the TGase-mediated reaction on the basis of the conformational features of IFN. Indeed, among the 10 Lys and 12 Gln residues of the protein, only Gln101 and Lys164 are located in highly flexible protein regions. The TGase-mediated derivatization of IFN was then applied to the production of IFN derivatives conjugated to a 20 kDa polyethylene glycol (PEG), using PEG-NH2 for Gln101 derivatization and PEG modified with ZQG for Lys164 derivatization. The two mono-PEGylated isomers of IFN were obtained in good yields, purified, and characterized in terms of protein conformation, antiviral activity, and pharmacokinetics. Both conjugates maintained a native-like secondary structure, as indicated by far-UV circular dichroism spectra. Importantly, they disclosed good in vitro antiviral activity retention (about only 1.6- to 1.8-fold lower than that of IFN) and half-lives longer (about 5-fold) than that of IFN after intravenous administration to rats. Overall, these results provide evidence that TGase can be used for the development of site-specific derivatives of IFN α-2b possessing interesting antiviral and pharmacokinetic properties.
Collapse
Affiliation(s)
- Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy.,CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| | - Samanta Raboni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | - Abhijeet A Satwekar
- CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | - Anna Mero
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | | | - Antonio Rosato
- Veneto Institute of Oncology IOV - IRCCS , via Gattamelata 64, I-35128 Padua, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padua , via Nicolò Giustiniani 2, 35124 Padua, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS , via Gattamelata 64, I-35128 Padua, Italy
| | - Angelo Fontana
- CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| |
Collapse
|
18
|
Alternate release of different target species based on the same gold nanorods and monitored by cell imaging. Colloids Surf B Biointerfaces 2016; 145:671-678. [DOI: 10.1016/j.colsurfb.2016.05.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/25/2022]
|
19
|
Kim KS, Hyun H, Yang JA, Lee MY, Kim H, Yun SH, Choi HS, Hahn SK. Bioimaging of Hyaluronate-Interferon α Conjugates Using a Non-Interfering Zwitterionic Fluorophore. Biomacromolecules 2015; 16:3054-61. [PMID: 26258264 DOI: 10.1021/acs.biomac.5b00933] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We conducted real-time bioimaging of the hyaluronate-interferon α (HA-IFNα) conjugate using a biologically inert zwitterionic fluorophore of ZW800-1 for the treatment of hepatitis C virus (HCV) infection. ZW800-1 was labeled on the IFNα molecule of the HA-IFNα conjugate to investigate its biodistribution and clearance without altering its physicochemical and targeting characteristics. Confocal microscopy clearly visualized the effective in vitro cellular uptake of the HA-IFNα conjugate to HepG2 cells. After verifying the biological activity in Daudi cells, we conducted the pharmacokinetic analysis of the HA-IFNα conjugate, which confirmed its target-specific delivery to the liver with a prolonged residence time longer than that of PEGylated IFNα. In vivo and ex vivo bioimaging of the ZW800-1-labeled HA-IFNα conjugate directly showed real-time biodistribution and clearance of the conjugate that are consistent with the biological behaviors analyzed by an enzyme-linked immunosorbent assay. Furthermore, the elevated level of OAS1 mRNA in the liver confirmed in vivo antiviral activity of HA-IFNα conjugates. With the data taken together, we could confirm the feasibility of ZW800-1 as a biologically inert fluorophore and target-specific HA-IFNα conjugate for the treatment of HCV infection.
Collapse
Affiliation(s)
- Ki Su Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Hoon Hyun
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , 330 Brookline Avenue, Boston, Massachusetts 02215, United States.,Department of Biomedical Science, Chonnam National University Medical School , 160 Baekseo-ro, Dong-gu, Gwangju 501-746, Korea
| | - Jeong-A Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Min Young Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Hyemin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , 330 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Sei Kwang Hahn
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| |
Collapse
|
20
|
Abstract
PEGylation is the covalent conjugation of PEG to therapeutic molecules. Protein PEGylation is a clinically proven approach for extending the circulation half-life and reducing the immunogenicity of protein therapeutics. Most clinically used PEGylated proteins are heterogeneous mixtures of PEG positional isomers conjugated to different residues on the protein main chain. Current research is focused to reduce product heterogeneity and to preserve bioactivity. Recent advances and possible future directions in PEGylation are described in this review. So far protein PEGylation has yielded more than 10 marketed products and in view of the lack of equally successful alternatives to extend the circulation half-life of proteins, PEGylation will still play a major role in drug delivery for many years to come.
Collapse
|
21
|
Development of next generation of therapeutic IFN-α2b via genetic code expansion. Acta Biomater 2015; 19:100-11. [PMID: 25769229 DOI: 10.1016/j.actbio.2015.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/08/2015] [Accepted: 03/03/2015] [Indexed: 01/04/2023]
Abstract
With the aim to overcome the heterogeneity associated with marketed IFN-α2b PEGylates and optimize the size of the PEG moiety and the site of PEGylation, we develop a viable and facile platform through genetic code expansion for PEGylation of IFN-α2b at any chosen site(s). This approach includes site-specific incorporation of an azide-bearing amino acid into IFN-α2b followed by orthogonal and stoichiometric conjugation of a variety of PEGs via a copper-free click reaction. By this approach, only the chosen site(s) within IFN-α2b is consistently PEGylated under mild conditions, leading to a single and homogenous conjugate. Furthermore, it makes the structure-activity relationship study of IFN-α2b possible by which the opposite effects of PEGylation on the biological and pharmacological properties are optimized. Upon re-examination of the PEGylated IFN-α2b isomers carrying different sizes of PEG at different sites, we find mono-PEGylates at H34, A74 and E107 with a 20-, 10- and 10-kDa PEG moiety, respectively, have both higher biological activities and better PK profiles than others. These might represent the direction for development of the next generation of PEGylated IFN-α2b.
Collapse
|
22
|
Zhao W, Liu F, Chen Y, Bai J, Gao W. Synthesis of well-defined protein–polymer conjugates for biomedicine. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
24
|
Tian S, Hui X, Fan Z, Li Q, Zhang J, Yang X, Ma X, Huang B, Chen D, Chen H. Suppression of hepatocellular carcinoma proliferation and hepatitis B surface antigen secretion with interferon-λ1 or PEG-interferon-λ1. FASEB J 2014; 28:3528-39. [PMID: 24769671 DOI: 10.1096/fj.14-250704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer associated with chronic hepatitis B virus (HBV) infection. Conventional interferon-α (IFN-α) and pegylated IFNs (PEG-IFNs) approved for chronic HBV infection treatment can reduce the risk of HCC but are not suitable for the majority of patients and cause significant side effects. IFN-λ1 is a type III IFN with antiviral, antiproliferative, and immunomodulatory functions similar to type I IFNs but with fewer side effects. However, the tolerability and antitumor activity of PEG-IFN-λ1 in HCC xenograft mice are unknown. In vitro IFN-λ1 treatment of Hep3B and Huh7 human hepatoma cell lines increased MHC class I expression, activated JAK-STAT signaling pathways, induced IFN-stimulated gene expression, and inhibited hepatitis B surface antigen (HBsAg) expression. IFN-λ1 treatment also caused 23.2 and 19.9% growth inhibition of Hep3B and Huh7 cells, respectively, and promoted cellular apoptosis. PEG-IFN-λ1, but not IFN-λ1 treatment, significantly suppressed tumor growth (P=0.002) and induced tumor cell apoptosis in a Hep3B cell xenograft mouse model without significant weight loss or toxicity. PEG-IFN-λ1 also significantly inhibited (P=0.000) serum HBsAg secretion from Hep3B xenograft tumors in vivo. Thus, PEG-IFN-λ1 can suppress Hep3B xenograft tumor growth and inhibit HBsAg production and may be a potential treatment for HBV-related HCC.
Collapse
Affiliation(s)
- Shuo Tian
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Xiwu Hui
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and CSPC ZhongQi Pharmaceutical Technology, Shijiazhuang, China
| | - Zhenzhen Fan
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Qinshan Li
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Junwen Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Xia Yang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Xiaoli Ma
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Bingren Huang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Deng Chen
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Hong Chen
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| |
Collapse
|
25
|
Fam CM, Eisenberg SP, Carlson SJ, Chlipala EA, Cox GN, Rosendahl MS. PEGylation improves the pharmacokinetic properties and ability of interferon gamma to inhibit growth of a human tumor xenograft in athymic mice. J Interferon Cytokine Res 2014; 34:759-68. [PMID: 24841172 DOI: 10.1089/jir.2013.0067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interferon gamma (IFN-γ) is a 28 kDa homodimeric cytokine that exhibits potent immunomodulatory, anti-proliferative, and antiviral properties. The protein is used to treat chronic granulomatous disease and malignant osteopetrosis, and it is under investigation as a treatment for a variety of cancer, fungal and viral diseases. IFN-γ has a short circulating half life in vivo, which necessitates frequent administration to patients. An unusual feature of IFN-γ is that the protein contains no native cysteines. To create a longer-acting and potentially more effective form of the protein, we introduced a cysteine residue into the IFN-γ coding sequence at amino acid position 103, which is located in a surface-exposed, non-helical region of the protein. The added cysteine residue served as the site for targeted modification of the protein with a cysteine-reactive polyethylene glycol (PEG) reagent. The recombinant protein was expressed in bacteria, purified and modified with 10, 20, and 40 kDa maleimide PEGs. The purified, PEGylated proteins had in vitro bioactivities comparable to IFN-γ, as measured using an in vitro cell growth inhibition assay. The PEGylated proteins displayed 20- to 32-fold longer half lives than IFN-γ in rats, and they were significantly more effective than IFN-γ at inhibiting growth of a human tumor xenograft in athymic mice.
Collapse
|
26
|
Lee JI, Eisenberg SP, Rosendahl MS, Chlipala EA, Brown JD, Doherty DH, Cox GN. Site-specific PEGylation enhances the pharmacokinetic properties and antitumor activity of interferon beta-1b. J Interferon Cytokine Res 2013; 33:769-77. [PMID: 23962003 PMCID: PMC3868373 DOI: 10.1089/jir.2012.0148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/22/2013] [Indexed: 11/13/2022] Open
Abstract
Interferon beta (IFN-β) is widely used to ameliorate disease progression in patients with Multiple Sclerosis. IFN-β has a short half-life in humans, necessitating frequent administration for optimum effectiveness. Covalent modification of IFN-β with polyethylene glycol (PEG) improves the pharmacokinetic properties of the protein, but can adversely affect the protein's in vitro bioactivity. Random modification of lysine residues in IFN-β with amine-reactive PEGs decreased the in vitro bioactivity of the protein 50-fold, presumably due to modification of lysine residues near critical receptor binding sites. PEGylated IFN-β proteins that retained high in vitro bioactivity could be obtained by selective modification of the N-terminus of the protein with PEG. Here we use site-specific PEGylation technology (targeted attachment of a cysteine-reactive-PEG to an engineered cysteine residue in IFN-β) to identify several additional amino acid positions where PEG can be attached to IFN-β without appreciable loss of in vitro bioactivity. Unexpectedly, we found that most of the PEG-IFN-β analogs showed 11- to 78-fold improved in vitro bioactivities relative to their unPEGylated parent proteins and to IFN-β-1b. In vivo studies showed that a lead PEG-IFN-β protein had improved pharmacokinetic properties compared to IFN-β and was significantly more effective than IFN-β at inhibiting growth of a human tumor xenograft in athymic mice.
Collapse
Affiliation(s)
- Ji I Lee
- 1 Bolder BioTechnology, Inc. , Boulder, Colorado
| | | | | | | | | | | | | |
Collapse
|
27
|
Ichihashi T, Asano A, Usui T, Takeuchi T, Watanabe Y, Yamano Y. Antiviral and antiproliferative effects of canine interferon-λ1. Vet Immunol Immunopathol 2013; 156:141-6. [PMID: 24126210 DOI: 10.1016/j.vetimm.2013.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/12/2013] [Accepted: 09/20/2013] [Indexed: 12/22/2022]
Abstract
Interferon (IFN)-λs, members of the type III IFN group, were recently identified in several vertebrates. Although IFN-λs have the potential to be utilized as antiviral and antitumor agents in veterinary medicine, the biological properties of IFN-λs have not yet been studied in companion animals. In this study, we analyzed the expression of canine IFN-λs and their receptors, produced a recombinant canine IFN-λ1 protein, and investigated its antiviral and antiproliferative activities using a canine kidney epithelial cell line, MDCK cells. MDCK cells were found to express type III IFN molecules, IFN-λ1 and IFN-λ3, and the receptors, IFNλR1 and IL10R2. IFN-λ1 was induced faster than IFN-λ3 by stimulation with poly (I:C). His-tagged IFN-λ1 protein expressed in Escherichia coli inhibited cytolytic plaque formation by influenza A virus infection, and induced the expression of interferon-stimulated genes, Mx1 and OAS1, in MDCK cells. In addition, recombinant IFN-λ1 inhibited the proliferation of MDCK cells slightly. These effects were observed in a dose-dependent manner. These results indicate that canine IFN-λ1 has antiviral effect, and suggest the potential applicability of canine IFN-λ1 as a therapeutic agent.
Collapse
Affiliation(s)
- Tomonori Ichihashi
- Laboratory of Veterinary Biochemistry, Tottori University, Tottori 680-8553, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Tian S, Li Q, Yao W, Xu C. Construction and characterization of a potent, long-lasting recombinant human serum albumin-interferon α1 fusion protein expressed in Pichia pastoris. Protein Expr Purif 2013; 90:124-8. [DOI: 10.1016/j.pep.2013.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022]
|
29
|
Chen X, Henschke L, Wu Q, Muthoosamy K, Neumann B, Weil T. Site-selective azide incorporation into endogenous RNase A via a “chemistry” approach. Org Biomol Chem 2013; 11:353-61. [DOI: 10.1039/c2ob26561c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Chen M, Zhu X, Yan D. Sequential drug release for synergistic cancer treatment and immunity promotion. RSC Adv 2013. [DOI: 10.1039/c3ra41437j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Meng W, Guo X, Qin M, Pan H, Cao Y, Wang W. Mechanistic insights into the stabilization of srcSH3 by PEGylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16133-16140. [PMID: 23106398 DOI: 10.1021/la303466w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein PEGylation (attaching PEG chains to proteins) has been widely used in pharmaceuticals and nanotechnology. Although it is widely known that PEGylation can increase the thermodynamic stability of proteins, the underlying mechanism remains elusive. In this Article, we studied the effect of PEGylation on the thermodynamic and kinetic stability of a protein, SH3. We show that the thermodynamic stability of SH3 is enhanced upon PEGylation, mainly due to the slowing of the unfolding rate. Moreover, PEGylation can decrease the solvent-accessible surface area of SH3, leading to an increase of the m-value (the change in free energy with respect to denaturant concentration, which is a measure of the transition cooperativity between corresponding states). Such an effect also causes an enhancement of the thermodynamic stability. We quantitatively measured how the physical properties of PEG, such as the molecular weight and the number of PEGylation sites, affect the stabilization effect. We found that the stabilization effect is largely dependent on the number of PEGylation sites but only has a weak correlation with the molecular weight of the attached PEG. These experimental findings inspire us to derive a physical model based on excluded volume effect, which can satisfactorily describe all experimental observations. This model allows quantitatively calculating the free energy change upon PEGylation based on the change of water excluded zone on the protein surface. Although it is still unknown whether such a mechanism can be extended to other proteins, our work represents a key step toward the understanding of the nature of protein stabilization upon PEGylation.
Collapse
Affiliation(s)
- Wei Meng
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Miyaji Y, Kasuya Y, Furuta Y, Kurihara A, Takahashi M, Ogawara KI, Izumi T, Okazaki O, Higaki K. Novel Comb-Shaped PEG Modification Enhances the Osteoclastic Inhibitory Effect and Bone Delivery of Osteoprotegerin After Intravenous Administration in Ovariectomized Rats. Pharm Res 2012; 29:3143-55. [DOI: 10.1007/s11095-012-0807-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/08/2012] [Indexed: 01/27/2023]
|
33
|
Yue J, Liu S, Wang R, Hu X, Xie Z, Huang Y, Jing X. Transferrin-conjugated micelles: enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol Pharm 2012; 9:1919-31. [PMID: 22616905 DOI: 10.1021/mp300213g] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the transport protein for iron, transferrin can trigger cellular endocytosis once binding to its receptor (TfR) on the cell membrane. Using this property, we conjugated transferrin onto the surface of biodegradable polymeric micelles constructed from amphiphilic block copolymers. The core of micelle was either labeled with a near-infrared dye (NIR) or conjugated with a chemotherapeutic drug paclitaxel (PTX) to study the biodistribution or antitumor effect in nude mice bearing subcutaneous TfR-overexpressing cancers. DLS and TEM showed that the sizes of Tf-conjugated and Tf-free micelles were in the range of 85-110 nm. Confocal laser scanning microscopy and flow cytometry experiments indicated that the uptake efficiency of the micelles by the TfR-overexpressing cells was enhanced by Tf conjugation. Semiquantitative analysis of the NIR signals collected from the tumor site showed that the maximum accumulation was achieved at 28 h in the M(NIR) group, while at 22 h in Tf-M(NIR) groups; and the area under the intensity curve in the Tf-M(NIR) groups was more than that in M(NIR) group. Finally, the tumor inhibition effects of targeting micelles were studied with the gastric carcinoma model which overexpressed TfR. The analysis of tumor volumes and the observation of H&E-stained tumor sections showed that Tf-M(PTX) had the best antitumor effect compared with the control groups (saline, PTX, and M(PTX)). The results of this study demonstrated the potential application of Tf-conjugated polymeric micelles in the treatment of TfR-overexpressing cancers.
Collapse
Affiliation(s)
- Jun Yue
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Improving the stability of the EC1 domain of E-cadherin by thiol alkylation of the cysteine residue. Int J Pharm 2012; 431:16-25. [PMID: 22531851 DOI: 10.1016/j.ijpharm.2012.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/07/2012] [Accepted: 03/26/2012] [Indexed: 11/24/2022]
Abstract
The objective of this work was to improve chemical and physical stability of the EC1 protein derived from the extracellular domain of E-cadherin. In solution, the EC1 protein has been shown to form a covalent dimer via a disulfide bond formation followed by physical aggregation and precipitation. To improve solution stability of the EC1 protein, the thiol group of the Cys13 residue in EC1 was alkylated with iodoacetate, iodoacetamide, and maleimide-PEG-5000 to produce thioether derivatives called EC1-IA, EC1-IN, and EC1-PEG. The physical and chemical stabilities of the EC1 derivatives and the parent EC1 were evaluated at various pHs (3.0, 7.0, and 9.0) and temperatures (0, 3, 70 °C). The structural characteristics of each molecule were analyzed by circular dichroism (CD) and fluorescence spectroscopy and the derivatives have similar secondary structure as the parent EC1 protein at pH 7.0. Both EC1-IN and EC1-PEG derivatives showed better chemical and physical stability profiles than did the parent EC1 at pH 7.0. EC1-PEG had the best stability profile compared to EC1-IN and EC1 in solution under various conditions.
Collapse
|
35
|
Chen X, Muthoosamy K, Pfisterer A, Neumann B, Weil T. Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling. Bioconjug Chem 2012; 23:500-8. [PMID: 22339664 DOI: 10.1021/bc200556n] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The site-selective modification of the proteins RNase A, lysozyme C, and the peptide hormone somatostatin is presented via a kinetically controlled labeling approach. A single lysine residue on the surface of these biomolecules reacts with an activated biotinylation reagent at mild conditions, physiological pH, and at RT in a high yield of over 90%. In addition, fast reaction speed, quick and easy purification, as well as low reaction temperatures are particularly attractive for labeling sensitive peptides and proteins. Furthermore, the multifunctional bioorthogonal bioconjugation reagent (19) has been achieved allowing the site-selective incorporation of a single ethynyl group. The introduced ethynyl group is accessible for, e.g., click chemistry as demonstrated by the reaction of RNase A with azidocoumarin. The approach reported herein is fast, less labor-intensive and minimizes the risk for protein misfolding. Kinetically controlled labeling offers a high potential for addressing a broad range of native proteins and peptides in a site-selective fashion and complements the portfolio of recombinant techniques or chemoenzymatic approaches.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Organic Chemistry III, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
36
|
Yang JA, Park K, Jung H, Kim H, Hong SW, Yoon SK, Hahn SK. Target specific hyaluronic acid–interferon alpha conjugate for the treatment of hepatitis C virus infection. Biomaterials 2011; 32:8722-9. [DOI: 10.1016/j.biomaterials.2011.07.088] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 07/30/2011] [Indexed: 11/27/2022]
|
37
|
Gowen BB, Ennis J, Russell A, Sefing EJ, Wong MH, Turner J. Use of recombinant adenovirus vectored consensus IFN-α to avert severe arenavirus infection. PLoS One 2011; 6:e26072. [PMID: 22039436 PMCID: PMC3200317 DOI: 10.1371/journal.pone.0026072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/19/2011] [Indexed: 01/30/2023] Open
Abstract
Several arenaviruses can cause viral hemorrhagic fever, a severe disease with case-fatality rates in hospitalized individuals ranging from 15-30%. Because of limited prophylaxis and treatment options, new medical countermeasures are needed for these viruses classified by the National Institutes of Allergy and Infectious Diseases (NIAID) as top priority biodefense Category A pathogens. Recombinant consensus interferon alpha (cIFN-α) is a licensed protein with broad clinical appeal. However, while cIFN-α has great therapeutic value, its utility for biodefense applications is hindered by its short in vivo half-life, mode and frequency of administration, and costly production. To address these limitations, we describe the use of DEF201, a replication-deficient adenovirus vector that drives the expression of cIFN-α, for pre- and post-exposure prophylaxis of acute arenaviral infection modeled in hamsters. Intranasal administration of DEF201 24 h prior to challenge with Pichindé virus (PICV) was highly effective at protecting animals from mortality and preventing viral replication and liver-associated disease. A significant protective effect was still observed with a single dosing of DEF201 given two weeks prior to PICV challenge. DEF201 was also efficacious when administered as a treatment 24 to 48 h post-virus exposure. The protective effect of DEF201 was largely attributed to the expression of cIFN-α, as dosing with a control empty vector adenovirus did not protect hamsters from lethal PICV challenge. Effective countermeasures that are highly stable, easily administered, and elicit long lasting protective immunity are much needed for arena and other viral infections. The DEF201 technology has the potential to address all of these issues and may serve as a broad-spectrum antiviral to enhance host defense against a number of viral pathogens.
Collapse
Affiliation(s)
- Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America.
| | | | | | | | | | | |
Collapse
|
38
|
Cai Y, Zhang Z, Fan K, Zhang J, Shen W, Li M, Si D, Luo H, Zeng Y, Fu P, Liu C. Pharmacokinetics, tissue distribution, excretion, and antiviral activity of pegylated recombinant human consensus interferon-α variant in monkeys, rats and guinea pigs. ACTA ACUST UNITED AC 2011; 173:74-81. [PMID: 21985916 DOI: 10.1016/j.regpep.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/28/2011] [Accepted: 09/16/2011] [Indexed: 11/25/2022]
Abstract
The study aims to characterize the pharmacokinetic, tissue distribution, excretion, and antiviral activity properties of a novel pegylated recombinant human consensus interferon-α variant (PEG-IFN-SA) following a single subcutaneous administration to monkeys, rats and guinea pigs. Studies included: (1) pharmacokinetic properties of PEG-IFN-SA and comparison with those of non-pegylated IFN-SA in rhesus monkeys and rats; (2) tissue distribution and urinary, fecal, and biliary excretion patterns of (125)I-PEG-IFN-SA in guinea pigs; and (3) antiviral activity assessment of PEG-IFN-SA in cynomolgus monkeys. The pegylated protein exhibited improved pharmacokinetic properties compared to IFN-SA in both monkeys and rats, with a 12-fold and 15-fold increase in elimination half-life, and a 100-fold and 10-fold decrease in serum clearance, as well as a 2.5-fold and 10-fold increase in the time to reach peak serum concentration, respectively. (125)I-PEG-IFN-SA was found to be distributed to most of the tissues examined and has character of targeting special distribution, and urinary appeared to be a major route for the excretion of PEG-IFN-SA in guinea pigs. Serum sample analysis from PEG-IFN-SA-treated monkeys showed dose-dependent antiviral activity for one week. These findings demonstrate that pegylation of IFN-SA results in more desirable pharmacokinetic properties, enhanced drug exposure and sustained-efficacy of in vivo antiviral action.
Collapse
Affiliation(s)
- Yongming Cai
- Department of Pharmaceutical Engineering, School of Chemical and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Crielaard BJ, van der Wal S, Le HT, Bode ATL, Lammers T, Hennink WE, Schiffelers RM, Fens MHAM, Storm G. Liposomes as carriers for colchicine-derived prodrugs: vascular disrupting nanomedicines with tailorable drug release kinetics. Eur J Pharm Sci 2011; 45:429-35. [PMID: 21907797 DOI: 10.1016/j.ejps.2011.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
Newly formed tumor vasculature has proven to be an effective target for tumor therapy. A strategy to attack this angiogenic tumor vasculature is to initiate local blood vessel congestion and consequently induce massive tumor cell necrosis. Vascular disrupting agents (VDAs) typically bind to tubulin and consequently disrupt microtubule dynamics. Colchicine and its derivatives (colchicinoids) are very potent tubulin binding compounds but have a narrow therapeutic index, which may be improved by employing a liposomal targeting strategy. However, as a result of their physicochemical properties, colchicinoids are problematic to retain in liposomes, as they are released relatively rapidly upon encapsulation. To overcome this limitation, two hydrolyzable PEGylated derivatives of colchicine were developed for encapsulation into the aqueous core of long-circulating liposomes: a moderately rapid hydrolyzing PEGylated colchicinoid containing a glycolic acid linker (prodrug I), and a slower hydrolyzing PEGylated colchicinoid with a lactic acid linker (prodrug II). Hydrolysis studies at 37°C and pH 7.4 showed that prodrug I possessed relatively rapid conversion characteristics (t(1/2)=5.4 h) whereas prodrug II hydrolyzed much slower (t(1/2)=217 h). Upon encapsulation into liposomes, colchicine was released rapidly, whereas both PEGylated colchicine derivatives were efficiently retained and appeared to be released only after cleavage of the PEG-linker. This study therefore demonstrates that, in contrast to colchicine, these novel PEGylated colchicine-derived prodrugs are retained within the aqueous interior after encapsulation into liposomes, and that the release of the active parent can be controlled by using different biodegradable linkers.
Collapse
Affiliation(s)
- Bart J Crielaard
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Karpf DM, Sørensen BB, Hermit MB, Holmberg HL, Tranholm M, Bysted BV, Groth AV, Bjørn SE, Stennicke HR. Prolonged half-life of glycoPEGylated rFVIIa variants compared to native rFVIIa. Thromb Res 2011; 128:191-5. [PMID: 21429564 DOI: 10.1016/j.thromres.2011.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Bleeding episodes in haemophilia patients with inhibitors are primarily treated with by-passing agents such as recombinant activated FVII (rFVIIa). Prophylactic treatment with rFVIIa has been shown to significantly reduce the number of bleeding episodes as compared to conventional on-demand haemostatic therapy, and a reduced dosing frequency could present an improved treatment option in inhibitor patients. MATERIALS AND METHODS A series of glycoPEGylated rFVIIa derivatives (5-40K PEG) has been produced and their effect and pharmocokinetics have been investigated in several animal species. RESULTS The glycoPEGylated rFVIIa derivatives exhibit significant prolongation of half-life in mice, dogs and pigs as measured by rFVIIa clot activity. The clearance of rFVIIa, rFVIIa-5K PEG, rFVIIa-10K PEG, rFVIIa-20K PEG and rFVIIa-40K PEG in minipigs were estimated to 59, 27, 22, 8.7 and 3.1 ml/h/kg, respectively. Across species a reduction in clearance as a function of the size of the attached PEG was observed. By allometric scaling, the compiled pharmacokinetics predicts a human half-life for rFVIIa-10K PEG and rFVIIa-40K PEG of approximately 7 and 12h, respectively. The rFVIIa-10K PEG and rFVIIa-40K PEG are efficacious in stopping a bleed in the haemophilia A mouse tail-bleeding model after intravenous administration. CONCLUSIONS GlycoPEGylation of rFVIIa significantly increases the rFVIIa exposure in three animal models, glycoPEGylated rFVIIa compounds are effective in vivo and thus, represents a potential prophylactic treatment option for patients with inhibitors.
Collapse
Affiliation(s)
- Ditte M Karpf
- Novo Nordisk A/S, Novo Nordisk Park, Maalov, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang C, Lu D, Liu Z. How PEGylation Enhances the Stability and Potency of Insulin: A Molecular Dynamics Simulation. Biochemistry 2011; 50:2585-93. [DOI: 10.1021/bi101926u] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Yang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Liu Y, Li M, Wang D, Yao J, Shen J, Liu W, Feng S, Tao L, Davis TP. PolyPEGylation of Protein using Semitelechelic and Mid-functional Poly(PEGMA)s synthesized by RAFT polymerization. Aust J Chem 2011. [DOI: 10.1071/ch11312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of well defined semitelechelic and mid-functionalized poly(poly(ethylene glycol) methyl ether methacrylate)s (poly(PEGMA)s) were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization using thiazolidine-2-thione-functionalized chain transfer agents (CTAs). The thiazolidine-2-thione group was located either at the end or in the middle of polymer chains depending on the different structural CTAs. All polymers were fully analyzed by 1H NMR spectroscopy and GPC, confirming their well-defined structures, such as predesigned molecular weights, narrow polydispersity indices, and high yield chain-end or chain-middle functionalization. The thiazolidine-2-thione functionality located at the end of or at the middle of the polymer chains can react with amine residues on protein surfaces, forming protein-polymer conjugates via amide linkages. The bioactivity of protein conjugates were subsequently tested using micrococcus lysodeikticus cell as substitute. The protein conjugations from the mid-functionalized polymer remained much more protein bioactivity comparing to their semitelechelic counterpart with similar molecular weights, indicating the steric hindrance of the mid-functionalized poly(PEGMA)s lead to the better selective conjugation to protein. The number of polymer chains on the protein surface was additionally evaluated by TNBS analysis, exhibiting that there are less mid-functionalized poly(PEGMA)s linked on the protein surface than the semitelechelic polymers, also supporting the hypothesis that the steric hindrance from branch-structural polymers results in the better reaction selectivity. This synthetic methodology is suitable for universal proteins, seeking a balance between the protein bioactivity and the protein protection by the covalent linkage with polymer, and exhibits promising potential for pharmaceutical protein conjugation.
Collapse
|
43
|
Kumaki Y, Ennis J, Rahbar R, Turner JD, Wandersee MK, Smith AJ, Bailey KW, Vest ZG, Madsen JR, Li JKK, Barnard DL. Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model. Antiviral Res 2011; 89:75-82. [PMID: 21093489 PMCID: PMC3018546 DOI: 10.1016/j.antiviral.2010.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/04/2010] [Accepted: 11/11/2010] [Indexed: 11/21/2022]
Abstract
Interferons (IFNs) are a first line of defense against viral infection. Herein we describe the use of an adenovirus vectored mouse IFN alpha gene (mDEF201) as a prophylactic and treatment countermeasure in a SARS-CoV-infected BALB/c mouse model. Complete survival protection was observed in mice given a single dose of mDEF201 administered intranasally 1, 3, 5, 7, or 14 days prior to lethal SARS-CoV challenge (p<0.001), and body weights of these treated mice were unaffected by the challenge. In addition, low doses of mDEF201 protected lungs in a dose dependent manner as measured by a reduction in gross pathology. Intranasal treatment with mDEF201 ranging from 10(6) to 10(8)PFU significantly protected mice against a lethal SARS-CoV infection in a dose dependent manner up to 12h post infection (p<0.001). The data suggest that mDEF201 is a new class of antiviral agent further development as treatment for SARS-CoV infections.
Collapse
Affiliation(s)
- Yohichi Kumaki
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Jane Ennis
- Defyrus Inc., 2 Bloor Street West, Suite 2602, Toronto, Ontario, Canada M4W 3E2
| | - Ramtin Rahbar
- Defyrus Inc., 2 Bloor Street West, Suite 2602, Toronto, Ontario, Canada M4W 3E2
| | - Jeffrey D. Turner
- Defyrus Inc., 2 Bloor Street West, Suite 2602, Toronto, Ontario, Canada M4W 3E2
| | - Miles K. Wandersee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Aaron J. Smith
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Kevin W. Bailey
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Zachary G. Vest
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Jason R. Madsen
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Joseph K.-K. Li
- Department of Biology, 5305 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Dale L. Barnard
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
44
|
Saito-Yabe M, Kasuya Y, Yoshigae Y, Yamamura N, Suzuki Y, Fukuda N, Honma M, Yano K, Mochizuki SI, Okada F, Okada A, Nagayama Y, Tsuda E, Fischer T, Höpner U, Zaja S, Mueller J, Okada J, Kurihara A, Ikeda T, Okazaki O. PEGylation of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) results in decreased uptake into rats and human liver. J Pharm Pharmacol 2010; 62:985-94. [PMID: 20663032 DOI: 10.1111/j.2042-7158.2010.01120.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Our aim was to investigate the effect of PEGylation on the uptake of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) into rat liver, kidney and spleen, and human liver. METHODS Copolymer of polyethyleneglycol allylmethylether and maleamic acid sodium salt with OCIF (poly(PEG)-OCIF) (0.5 mg/kg) was administered to rats and the concentrations of poly(PEG)-OCIF in the liver, kidney and spleen at 15 min after administration were measured by ELISA. For human liver uptake, the liver perfusion of OCIF and (3)H-labelled poly(PEG)-OCIF was conducted using fresh human liver block. KEY FINDINGS The tissue uptake of poly(PEG)-OCIF in rats was significantly lower compared with that of OCIF. In fresh human liver perfusion, (3)H-poly(PEG)-OCIF was rarely taken up into the liver. On the other hand, more than 50% of the perfused OCIF was taken up. CONCLUSIONS PEGylation of OCIF using poly(PEG) dramatically suppressed the uptake of OCIF into human liver as well as into rat liver and could be a promising approach for improving the pharmacokinetic and pharmacological effects of OCIF in the clinical setting.
Collapse
Affiliation(s)
- Motoko Saito-Yabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baslé E, Joubert N, Pucheault M. Protein chemical modification on endogenous amino acids. ACTA ACUST UNITED AC 2010; 17:213-27. [PMID: 20338513 DOI: 10.1016/j.chembiol.2010.02.008] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 12/15/2022]
Abstract
Chemical modification of protein is an arduous but fruitful task. Many chemical methods have been developed for such purpose by carefully balancing reactivity and selectivity. Now both chemists and biologists have in hand an arsenal of tools from which they can select a relevant reaction to tackle their problems. This review focuses on the various chemical transformations available for selective modification of proteins. It also provides a brief overview of some of their main applications, including detection of protein interactions, preparation of bioconjugates, and protein microarrays.
Collapse
Affiliation(s)
- Emmanuel Baslé
- Molecular Chemistry and Photonic, UMR 6510 CPM, Centre National de la Recherche Scientifique, Université de Rennes1, 263 Avenue du Général Leclerc, 35042 Rennes cedex, France
| | | | | |
Collapse
|
46
|
Choi YY, Jang JH, Park MH, Choi BG, Chi B, Jeong B. Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b922956f] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Sugiyama A, Sato A, Shimizu H, Ando K, Takeuchi T. PEGylated lactoferrin enhances its hepatoprotective effects on acute liver injury induced by D-galactosamine and lipopolysaccharide in rats. J Vet Med Sci 2009; 72:173-80. [PMID: 19942815 DOI: 10.1292/jvms.09-0324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyethylene glycol (PEG) is attached to proteins in order to increase their half-life in circulation and reduce their immunogenicity in vivo. The present study was conducted to examine whether two different sizes of PEGylated bovine lactoferrin (40k- and 20k-PEG-bLf) would enhance the protective effect of native bLf on liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in rats. The treatment of PEGylated bLf more remarkably prevented the elevation of serum levels of hepatic enzyme markers and inhibited inflammatory and hemorrhagic changes and hepatic apoptosis induced by GalN/LPS than native bLf. The treatment of PEGylated bLf more significantly inhibited the increased concentration of proinflammatory cytokines (TNF-alpha and IL-6) in serum caused by GaIN/LPS, and enhanced anti-inflammatory cytokine (IL-10) production more than native bLf. PEGylated bLf decreased serum levels of nitric oxide (NO) more than native bLf. These results indicate that PEGylated bLf inhibits more significantly the induction of inflammatory mediators such as cytokines and NO than native bLf, resulting in the enhancement of its prevention of fulminant liver failure induced by GalN/LPS in rats. The present study provided evidence that PEGylated bLf may offer a novel alternative therapy for the prevention of acute hepatic failure through its anti-inflammatory and immunomodulatory properties.
Collapse
Affiliation(s)
- Akihiko Sugiyama
- Course of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Minami, Koyama-cho, Tottori, Tottori 680-8553, Japan.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Protein conjugation with biodegradable polyPEGMA and subsequent release is described.
Collapse
Affiliation(s)
- Lei Tao
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
49
|
Nojima Y, Suzuki Y, Yoshida K, Abe F, Shiga T, Takeuchi T, Sugiyama A, Shimizu H, Sato A. Lactoferrin Conjugated with 40-kDa Branched Poly(ethylene Glycol) Has an Improved Circulating Half-Life. Pharm Res 2009; 26:2125-32. [DOI: 10.1007/s11095-009-9925-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
50
|
|