1
|
Shimada N, Kinoshita H, Tokunaga S, Umegae T, Kume N, Sakamoto W, Maruyama A. Inter-polyelectrolyte nano-assembly induces folding and activation of functional peptides. J Control Release 2015; 218:45-52. [PMID: 26435456 DOI: 10.1016/j.jconrel.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 10/23/2022]
Abstract
Insufficient solubility, fragile folding structure and short half-life frequently hamper use of peptides as biological reagents or therapies. To enhance the peptide function, the effect of complexation of the peptides with ionic graft copolymers with water-soluble graft chains was tested in this study. Amphiphilic anionic peptide E5 acquires membrane disrupting activity at acidic pH due to folding from the random coil state to an ordered α-helical structure. Aggregation and imprecise folding of the peptide limited membrane disrupting activity of the peptide. In the presence of a cationic graft copolymer, E5 and its analogs adopted an ordered conformation without aggregation. The mixture of the peptides and the copolymer functioned more efficiently than peptide alone at not only acidic pH but also neutral pH at which the peptide alone had no activity. Similarly, a cationic peptide was successfully folded and activated by an anionic graft copolymer. Thus, our analysis indicated that spontaneous nano-assembly of ionic peptides with graft copolymers having opposite ionic charges triggers the folding of peptides without loss of solubility, leading to enhanced bioactivity.
Collapse
Affiliation(s)
- Naohiko Shimada
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Hirotaka Kinoshita
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Shuichi Tokunaga
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Takuma Umegae
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Nozomi Kume
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Wakako Sakamoto
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Atsushi Maruyama
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan.
| |
Collapse
|
2
|
Saneyoshi H, Shimada N, Maruyama A, Ito Y, Abe H. Polycation-assisted DNA detection by reduction triggered fluorescence amplification probe. Bioorg Med Chem Lett 2013; 23:6851-3. [DOI: 10.1016/j.bmcl.2013.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/28/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
3
|
Makita N, Choi SW, Kano A, Yamayoshi A, Akaike T, Maruyama A. Effect of cationic comb-type copolymer on quadruplex folding of human telomeric DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:1115-9. [PMID: 18058548 DOI: 10.1080/15257770701521508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cationic comb-type copolymer (CCC) consisting of a polycationic backbone and abundant graft water-soluble chains exhibited considerable stabilization effect on DNA hybrids, such as double- and triple-stranded DNAs. Here, we describe the effect of CCC on antiparallel G-quadruplex folding of human telomeric DNA, d(GGGTTA)(n) in the presence of sodium ions. CCC did not significantly alter the circular dichroism (CD) spectra of d((GGGTTA)(3)GGG) and d((GGGTTA)(7)GGG) indicating that the CCC did not influence the antiparallel folding of the telomeric repeats. Hence, the ionic interaction of CCC with the DNA sequence did not interfere with specific interaction of the DNA with sodium ions to form G-quartets. Interestingly, CCC did not change the melting temperature of the d((GGGTTA)(3)GGG) suggesting negligible stabilizing effect of CCC on the antiparallel quadruplex structure.
Collapse
Affiliation(s)
- Naoki Makita
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Grossmann TN, Sasaki S, Ritzefeld M, Choi SW, Maruyama A, Seitz O. Inducing the replacement of PNA in DNA.PNA duplexes by DNA. Bioorg Med Chem 2007; 16:34-9. [PMID: 17513114 DOI: 10.1016/j.bmc.2007.04.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/05/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
The uncharged DNA-analogue peptide nucleic acid (PNA) can invade into dsDNA by displacing the non-complementary DNA strand. The formed strand displacement complexes can create a sterical hindrance to block access of enzymes such as nucleases and polymerases. Due to the high stability of DNA.PNA duplexes it is usually not possible to displace the PNA strand by ssDNA or ssRNA. We herein report that the polycationic, comb-type copolymer alphaPLL-g-Dex can induce such a replacement of PNA in DNA.PNA duplexes by ssDNA. The influence of the copolymer on strand exchange highly depends on the nature of the oligonucleotides. Acceleration has only been observed when both the starting duplex and the single-stranded exchanger strand were negatively charged. The presented approach should allow the withdrawal of PNA induced sterical hindrance of DNA by rehybridisation with ssDNA.
Collapse
Affiliation(s)
- Tom N Grossmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Sato Y, Moriyama R, Choi SW, Kano A, Maruyama A. Spectroscopic investigation of cationic comb-type copolymers/DNA interaction: interpolyelectrolyte complex enhancement synchronized with DNA hybridization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:65-9. [PMID: 17190486 DOI: 10.1021/la0615847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have demonstrated that cationic comb-type copolymers consisting of a polycation backbone and abundant grafts of water-soluble polymers stabilize DNA hybrids. Furthermore, the copolymers were found to accelerate strand exchange reaction between a double-stranded DNA and its complementary single-stranded DNA. In this article, we investigated the effects of PLL-g-Dex on base pairs of a self-complementary DNA octamer, d(GGAATTCC). The soluble interpolyelectrolyte complex (IPEC) between the DNA and copolymer allowed us to characterize the complex by using spectroscopic methods under physiological ionic condition. Chemical shifts of nucleobase proton signals were not changed by PLL-g-Dex. Furthermore, the copolymer slightly changed the von't Hoff DeltaH accompanying the helix-coil transition of the octamer. These results indicated that the base pairs of the duplex DNA in the IPEC were not perturbed by the polycationic copolymer. It was obviously shown by temperature dependencies of proton and phosphorus NMR spectra that DNA/copolymer interaction was considerably enhanced in response to ds DNA formation. An increase in the density and total number of DNA negative charges upon hybrid formation likely caused the higher affinity of the copolymer with the ds form over that of the copolymer with the ss form. The IPEC formation of CCCs with DNA, however, seems highly sensitive to the coil-helix transition of the DNA.
Collapse
Affiliation(s)
- Yuichi Sato
- Precursory Research for Embryonic Science and Technology (PRESTO) and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | |
Collapse
|
6
|
Mahato RI, Cheng K, Guntaka RV. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2006; 2:3-28. [PMID: 16296732 DOI: 10.1517/17425247.2.1.3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antisense oligodeoxynucleotides, triplex-forming oligodeoxynucleotides and double-stranded small interfering RNAs have great potential for the treatment of many severe and debilitating diseases. Concerted efforts from both industry and academia have made significant progress in turning these nucleic acid drugs into therapeutics, and there is already one FDA-approved antisense drug in the clinic. Despite the success of one product and several other ongoing clinical trials, challenges still exist in their stability, cellular uptake, disposition, site-specific delivery and therapeutic efficacy. The principles, strategies and delivery consideration of these nucleic acids are reviewed. Furthermore, the ways to overcome the biological barriers are also discussed so that therapeutic concentrations at their target sites can be maintained for a desired period.
Collapse
MESH Headings
- Animals
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Drug Carriers
- Gene Expression Regulation
- Gene Silencing
- Gene Targeting/methods
- Genetic Therapy/methods
- Humans
- Nucleic Acid Conformation/drug effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis/drug effects
- RNA Interference
- RNA Splicing/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ram I Mahato
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, 26 South Dunlap Street, Feurt Bldg RM 406, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
7
|
Sato YI, Kobayashi Y, Kamiya T, Watanabe H, Akaike T, Yoshikawa K, Maruyama A. The effect of backbone structure on polycation comb-type copolymer/DNA interactions and the molecular assembly of DNA. Biomaterials 2005; 26:703-11. [PMID: 15350774 DOI: 10.1016/j.biomaterials.2004.03.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/13/2004] [Indexed: 11/15/2022]
Abstract
A series of comb-type copolymers comprised of various polycation backbones and dextran (Dex) side chains were prepared to study the DNA/copolymer interaction. While the cationic copolymers with a lower degree of dextran grafts maintained an ability to condense DNA molecules into a globule form those with a higher degree of dextran grafting interacted with DNA without inducing DNA condensation. The structural differences in cationic backbones diversely influenced DNA hybridization as evaluated by circular dichroism (CD) spectrometry and UV-melting analyses. The copolymer having a polyallylamine (PAA) backbone induced B-->A-type transformation of DNA duplex, whereas the copolymers having either alpha-poly(l-lysine) (alpha PLL) or epsilon-poly(l-lysine) (epsilon PLL) backbone induced B-->C-type transformation. The PAA copolymer is the first example of the artificial polymer that induces B-->A-type transformation under physiologically relevant condition. UV-melting analyses of DNA strands indicated that the alpha PLL copolymers showed the highest stabilization efficacy toward poly(dA).poly(dT) duplex and poly(dA).2poly(dT) triplex without affecting reversibility of inter DNA association. Melting temperatures (T(m)) of the triplex increased from 38 degrees Celsius to 99 degrees Celsius by the addition of the alpha PLL copolymer with an appropriate grafting degree. While the PAA copolymers had higher density of cationic groups along the backbone than alpha PLL copolymers, these copolymers moderately increased T(m) of the DNA triplex. The PAA copolymer caused considerable hysteresis in thermal melting/reassociation processes. Note that the PLL copolymers increased T(m) of the DNA triplex and not the duplex, suggesting their potential as a triplex selective stabilizer. Chemical structures of the cationic backbones of the copolymers were characteristically affected on the copolymer/DNA interaction even if their backbones were surrounded by abundant side chains (> wt%) of dextran. The study suggested that tailor-made design of "functional polycounterion" is a strategy to engineer molecular assembling of DNA.
Collapse
Affiliation(s)
- Yu-ichi Sato
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Guntaka RV, Varma BR, Weber KT. Triplex-forming oligonucleotides as modulators of gene expression. Int J Biochem Cell Biol 2003; 35:22-31. [PMID: 12467644 DOI: 10.1016/s1357-2725(02)00165-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) have gained prominence in the recent years because of their potential applications in antigene therapy. In particular they have been used as (i) inducers of site-specific mutations, (ii) reagents that selectively and specifically cleave target DNA, and (iii) as modulators of gene expression. In this mini-review, we have made an attempt to highlight the characteristics of these TFOs and the effects of various modifications in the phosphate backbone as well as in the purine and pyrimidine moieties, which contribute to the stability and efficiency of triplex formation. Studies to explore the mechanism of down-regulation of transcription of various genes suggest that at least some TFOs exert their effect by inhibiting binding of specific transcription factors to their cognate cis-acting elements. Recent reports indicate the presence of these potential triplex-forming DNA structures in the genomes of prokaryotes and eukaryotes that may play a major role in target site selection and chromosome segregation as well as in the cause of heritable diseases. Finally, some potential problems in the development of these TFOs as antigene therapeutic agents have also been discussed.
Collapse
Affiliation(s)
- Ramareddy V Guntaka
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA.
| | | | | |
Collapse
|
9
|
Kim WJ, Akaike T, Maruyama A. DNA strand exchange stimulated by spontaneous complex formation with cationic comb-type copolymer. J Am Chem Soc 2002; 124:12676-7. [PMID: 12392411 DOI: 10.1021/ja0272080] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cationic comb-type copolymers (CCCs) composed of a polycation backbone and water-soluble side chains accelerate by 4-5 orders the DNA strand exchange reaction (SER) between double helical DNA and its homologous single-strand DNA. The accelerating effect is considered due to alleviation of counterion association during transitional intermediate formation in sequential displacement pathway. CCCs stabilize not only matured hybrids but also the nucleation complex to accelerate hybridization.
Collapse
Affiliation(s)
- Won Jong Kim
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, and Presto, Japan Science and Technology Corporation, Midori, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
10
|
Abstract
The accelerating effect of cationic substances on the DNA strand exchange reaction between a 20 bp DNA duplex and its complementary single strand was studied. A polycationic comb-type copolymer, that consists of a poly(L-lysine) backbone and a dextran graft chain (PLL-g-Dex) and known to stabilize triplex DNA, expedites the strand exchange reaction under physiological relevant conditions. Electrostatically a small excess of the copolymer let to a 300-1500-fold increase in the DNA strand exchange while large excess of spermine or cetyltrimethylammonium bromide, a cationic detergent known to promote markedly hybridization of complementary DNA strands, shows only a slight effect. The efficacy of the copolymer was not affected by a 10 mM Mg2+ concentration. Notably the copolymer promotes the strand exchange reaction while it stabilizes double-stranded DNA. The stabilization of strand exchange intermediates consisting of the parent duplex and the single strand by the copolymer is believed to be responsible for the observed acceleration behavior.
Collapse
Affiliation(s)
- W J Kim
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|